Check for
Updates

Divisionless Computation of Square Roots Through
Continued Squaring

Diran Bararvan, Universily of Florida, Gainesville, Fla,

Congider the recurrence relation
2
Hol a
g =g L 1
mom
where @ and m == (are constant real numbers,
Starting with a chosen real number @, and through the
use of (1), a sequence {x}, 4= 0,1,2, ---, is obtained.
It is known that if this sequence is convergent then it
converges to one of the real roots of the quadratic equa-
tion

2 a .
R (2)
m | om

These roots are

m—\/ml’—lid

o = 5 (3)
_ m? — Ag
,3 - m "J[’\/21')’! Aa (:}:)

with the assumption henceforth valid that
m — 4o =n >0, (5)
with the cage n = (being dismissed as trivial.

Consider the right-hand member of equation (2) and
let

flay =S4
m m

A necessary condition for the convergence of the con-
sidered sequence is that | f'(x)| < 1. This requirement iz
satisfied here if

—m m
o O (—-‘3—»« , »;)u) and m > 0

]

or if

m —m
Ty € (5’ T) and m < {.

§ . . - . —m m
Now, since in the first case the interval (5 _,)>
R -

tontains only the root « and in the second ease the inter-
m
9

“ &

— M : PR .
val 50) conlains only the root 8, it follows from the

well-known theory of funerional iteration [1] that if m > 0
the sequence generated by relation (1) will converge to
o and if m < 0 it will converge to 8.

If :cq is an estimate or an initial or starting approximation
for either one of the roots of (2), then 2, ean be considered
as the 7th approximation to this root. For the sake of
simplicity, e, the smaller Toot corresponding to the case
m > 0, shall be considered. Then formula (3) can be
writlen
m — /n
—

Ty~ =

The latter in turn yields
m—2a=n=7r (6)
m o— 2~ o= (7)
Lettingm — 2a; = r., 7 = 0, 1,2, ---, the sequenec
{r2 is obtained which converges to r = vn = m — 2a.
The number r, shall be called the ith approximation for
= n.
Thus this computational method is based on the fol-
lowing steps:

™" m
m > 0, —§<;Co<'§
m’ - n 2
a = —— = 0.25(m"° — n) (8)
o=t 2 i=1,23 "
m m
= m — 2& ~ VN (9)

or

1 fx a* o
Vo= 77:——2[7(10-4—{——) + -] (10)
wmom m m

Obviously, if m is so chosen that its reciprocal is known
(such as 2, 4, 80, 100, etc.), then the arithmetical opera-
tion of division is completely eliminated from the re-
quired operations. In particular, if » is a number close to
unity, then, taking m = 1 and 2 = 0, formula (10) be-
comes [2]

vie=1—=2("+a) +0a -]

Commuunications of the ACM 319

http://crossmark.crossref.org/dialog/?doi=10.1145%2F367236.367267&domain=pdf&date_stamp=1960-05-01

It is known that e, = a — 2, the eommitted erpor on
the kth iterate of o, is approximately proportional to the
kth power of the asymptotic convergence facior [3]. In
the present case,

It 15 seen that the smaller 2a/m is, the smalicy (e com-
miitted error is. But sinec on account of tormula (3)
20 m —

m nt

1

it follows that, the eloser m s Lo v/n or the closer m® is to
r, the smaller 2a/m will result and therefore (he hetter
will be the obtamed approximations.

(1) and neglecting a/m we obtain:
rt
f!:g"*,l”‘v’%r;'. (ll)
With the same iterate x; written as X for the purpose
of distinetion, the Newton-Raphson method would give
here

2 2
X, —ua ay
5 r\../‘”» ’
92X, —m 2u, —m

Afl»fl = - ([2)
Now m is close Lo », and @, is a close approximation to
it. Therefore 2, ~ m or

23, — m o~ m,

The consideration of the latter enables one ta write
(12) as:
2

&,
Xi+l I~ !

o (13)

A comparison between relations (11) and (13) shows
that 20y ~ X,y . Since the Newton-Raphson method is a
second order iteration proeess, it follows that if m® is taken
very close to w then the method desceribed herein shall also
become abmost a second order iteration process.

It is worthwhile mentioning that this conelusion can
also be drawn from graphical considerations. In fact, the
graphieal representation of a functional iteration consists
of approaching to an appropriate point (representing a
root) on a curve by vertical and horizontal lines, while
in the Newton-Raphson process one approaches by tan-
gential lines to the considered root. If ¢ is small, then the
horizontal lines fall quite close to the tangential lines.

As far as the choice of the initial approximation z; is
coneerned, as indicated previcusly, it can be any number

helonging to the open interval (:211 , g) .So if one takes

25 = 0 through the rclation (1), 2, = 2 s obtained,
m

Thus, to save time and also for the sake of convenience,
one may take as well 1y = a/m where m is a rrumber with
a known reciprocal and also such that its square is as
close as possible to n.

320 Communications of the AGM

Fxampre: Compute » = /82, Here 5 =
9 - p .
wm = 100 or m = 10 one finds:

a = 0230m — n) = 025(18) = 453

vo= Lo 00(43) = 045 <
b i
e =0 T 000450 045 — 0.47025
. m.

gz = 0.1(0.47025)° + 043000 = 047211
vy = m o~ 21 = 10 — 094422 = 003578

This is an approximation correct to [{our signif
figures. 1t is worthwhile noting that if instead of m’ ~
or m = 10 we had taken m® = 81 ov m = 9 we ¢
have obtained still better approximations. However
(his case division by 9 will be required in our corapuras
in electronic computers the arithmetical operation of
gion can be avoided by the storuge of a few rec
numbers in the machine.

We shall now derive recurrence relations in itertrs -
and r.5, and free of x; and a.

From formula (9) is obtained

il

Pipp == M — 25

The combination of relations (8) and (9) with
latter formula gives the desired recurrence relation:

mt 4+ (m-r)

Fipt 5 — - [RE-N

Im I

This formula ean also be put into various ecuivales
forms, such as:

P = (:?r{(mz 4+ n) = (m— Y (4
rop = 8+ Q_‘i (n— ") f1de.
"

As far as the selection of 7y is concerned, we may po
ceed as follows, The relation (9) gives

ro = m — 2y, (o

5 %
is, in formulas (14) any positive number smaller thas =
can be taken as ro. However, sinee for the sake of co
venicnee it has been suggested above that xp = ¥
then to this selected value of ap the relation (15} ¥

. S —=m omy e
and since @, ¢ () it follows that vy & ({1, 2m),

9 . ' . " B
ro = {m’ 4+ n)/2m as u starting approximation. In the
case, formula (14a) can be written:

2
; m 4 n
0 = e
2m g
(m — r:)
Figp = g — —5—~

jxaspLe, Compute r = /440, Through the use of the
las (167 and wikh m’ = A0 or m = 20, one finds:

é{g sl
reo= 21, = 20097300, vy = 2007623,
-{'he latter is an approximmation to r = 440 correet to

45 figures and with o relative error of about 0.0000027.
Finally, it must be mentioned that, although formulas
143 and (16) have been derived on the assumption that
e > 0, it can be eagily shown that they are also valid
when mo < 0 on copdition that in these formulas m is

seplaced by its absolute value. For example, if m < 0 the

formuala (1407 would becore
O <1 <2 m|
=TT
2im,
However, it is evident that this case of m < 0 is of no
practical value,

(m, = 1)
2 mi

REFERENCES
1. Avenne, Pavn, Analyse Mathématique, Tome I, p. 165 (Gau-
thier-Villars, Editeur, Paris, 1951).
3. Sampapvan, Dinax, Program, Association for Computing Ma-
chinery, 12th National Meeting, Houston, June 19, 1957.
3. Hinowsraxo, P. B, Frtroduction to Nwmerical Analysis, pp.
443445 (MeGraw-Hill Beok Company, New York, 1956},

A Start at Automatic Storage Assignment

Roeerr L. Parrick, Manhatian Beach, Califorma

Summary. This techuigue outlines & method wherchy equation
sete run be ordered in computational order and checked for com-
patitifity. The technique also allows one to note what equations
can be computed tn paratlel (provided one has parallel arithmetic
capahilities) or can be consideved o logieal entity, i.e., segment,
Furthermore, the technigue will assist one Lo intelligently allocaie
high-speed memory (HSM) so that memory is reassigned to other
dubies us =008 as its present duties are fulfilled. Last, the tech.
igut appears (o be simple and fast to implement.

Assumptions

For the purposes of this discussion, it is assumed that all
variables within o procedure can be related through func-
tions, These funetions may vary in size, depending on the
capabilities of the person performing the defnition.

Introduction

The technique presented below tells how to build up a
double array. After this array has been built, the rows of
the array are then ordered hy a trivial processing opera-
tzan. The ordered array 1s then inspected and some light is
thrown on the problems of automatie segmenting, intelli-
gent storage allocation, aund implied flow.

The Method
Orrarion 1:

For every result or set of results, a funetion is defined.
A row of the arvay is awarded to each function. The col-
s of the array are as follows:

Column 1 ix the name of the function.

Column 2 is the ordercd step number (to be filled in
by the process).

Columns 3 through = (the last column) are awarded
one column for each named quantity (or set) within

] the entire procedure.

This array is filled out by entering a functional name in
the first column and by placing a bit in the column corre-

sponding o every inpué to the function. This artay we will
call the input array.

Stmultaneously a similar array is built up, called the
output array. The rows of the output array correspond fo
the rows of the input array. For every function in the input
array, the results of that funetiom are coded in the output
array by placing a bit in the colurnn of the array which cor-
responds to each result (or set, of results),

OreraTiON 2:

After the unordered arrays are constructed, a mask is
made up. The format of this mask is exactly the same
format as the right-hand section of both arrays, 1e., a
single bit position exists in the mask for every column posi-
tion in the arrays. The inputs to the entire procedure are
set into the mask as 1's; the remaining positions are ini-
tially set to 0. At this same time, the step counter is ini-
tinlized to L.

OPERATION 3:

The mask is applied to the first row of the input array.
if that row can “see through™ the mask, we have deter-
mined that each of the inputs to compute that function is
available, The function may be deemed computable at this
step. The current contents of the step counter are placed in
the step column corresponding to the function that has
just been determined to be computable, The mask is then
applied to the next row and so on until all rows have heen
tested for computability.

OPERATION 4:

After all rows have been tested for eomputability, the
step eounter is increased by 1. The rows of the output array
which correspond to those functions which have just been
determined to he computable are all ORed together (and
also eliminated from the output array). This is now ORed

Communications of the ACM 321

