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Roots Through 

Consider the recurrence relation 
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Xi  a 
xi+t . . . . . .  + - -  (1) 

' tn m 

where a and m ~-'- 0 are constant real numbers. 
Starting with a chosen real number  x0 and through the 

:e! use of (1), a sequence {x.,}, i = 0, 1, 2, . . .  , is obtMned. 
~gil It is krlown that  if this sequence is convergent then it, 
:Ce~ converges to one of the real roots of the quadratic equa- 
n~ tion 
e( '2 

X a 
:r = - + - .  ( 2 )  

@ m ,rrt 
IR 

These roots are 

un! m -- %/'m 2 -  4a 
yi ~ = ( 3 )  
.-i~ 2 

= ( 4 )  
2 

i~i~g)~i~ ~ with the assumptiOnm2_4ahenceforth_.n>Valid0, tha t  (5) 

iti~ I with the case n = 0 being dismissed as trivial. 
Consider the right-hand member of equation (2) and 

fi~ let 
+. 

f ( x ) = m (~- -~- ma " 

h necessary condition for the convergence of the con- 
sidered sequence is tha t  [ if(x)[  < 1. This requirement is 
~tisfied here if 

or if 

- -  ?l't ) x0C \ ~  ,,m and m > O  

x0~ , -~ - -  and m < 0. 

Now, since in the first ease the interval \ - 2 - ' 2 - ]  

contains only the root a and in the second case the inter- 

(m ?) val ~ ,  contains only the root f~, it follows from the 

well-known theory of functional iteration [1] that if m > 0 
the sequence generated by relation (1) will converge to 

and if m < 0 it, will converge to ¢L 
If x0 is art estimate or an initial or starting approximation 

for either one of the roots of (2) ,  then x~ can be considered 
as the /tit approximation to this root. For the sake of 
simplicity, a, the smaller root corresponding to the case 
m > 0, shall be considered. Then  formula (3) can be 
written 

The latter in turn  yields 

m - 2a  = ,x /n  = r (6) 

m --  2x~. ~'~ x /n  = r. ( 7 )  

L e t t i n g m - -  2x¢ = r~, i = 0, 1,2, - - - , t h e s e q u e n e c  
{re} is obtained which converges to r = x /n  = m -- 2a. 
The number r~ shall be called ttle i th approximation for 
r =  x/n.  

Thus  this computat ional  method is based on the fol- 
lowing steps: 

rgt, m 
m > O, - - ~  < Xo < ~ 

Iyb 2 - -  
a - - 0.25(m" -- n) (8) 

4 
2 

2;i--1 a x,: - + .... , i =  1 , 2 , 3 , " "  
?n  m 

r i  = Irt  ~ 2 x i  --~ %/ ' n  ( 9 )  

o r  

~ / n  = m - -  2 :Co + + . . . .  . ( 1 0 )  
m 

Obviously, if m is so chosen tha t  its reciprocal is known 
(such as 2, 4, 50, 100, etc.),  then the arithmetical opera- 
tion of division is completely eliminated from the re- 
quired operations. In particular, if n is a number close to 
rarity, then, taking m = 1 and x0 = 0, formula (10) be- 
comes [21 

~ / n  = 1 - 2 [ (a"  + a )  2 -4- a . . . ] ,  
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I t  is knowri that e~< = a -- x~<, the eommitt:ed error eli 
the Icth iterate of a, is approximately p r o p o r i i o l ~ a l  to the 
kth power of the asymptot ic  colivergenee f&Ctor [3]. [n 
the present case, 

: ( o  
L m _J 

I t  is seen tha t  the smaller 2 a i m  is, the smallcl: the  com- 
mitted error is. But  since on aeeount of fo rmula  (13) 

2a m -  Cn  
m m 

it follows that ,  the eloser rn is to x/n or the (;loser rn ~ is to 
n, the smaller 2 a l t o  will result and therefore the  better 
will be the obtained approximations.  

Assume now that  this eo,idition is satisfied. T h e n  using 
( l )  alid neglecting a i m  we obtain:  

2 

a:,; ( 11 ) 
'm 

With the same iterate z.z written as Xx for the  purpose 
of distinction, the Newton-t{aphson me thod  wou ld  give 
here 

X<+l - Xie - -  a . . . . .  x j : _ _ . .  ( 1 2 )  
2 X i  - -  m 2;ci - m 

Now m is close to r, and x,: is a close approx imat ion  to 
it. Therefore x,: ~ m or 

2 X i  - -  m , / ,  'm. 

The consideration of the latter enables one to write 
( 1 2 )  as: 

2 

X~+~ ~ !c!_. (13) 
m 

A comparison between relations (11) alid (;13) shows 
that  :c~+~ -,~ X~+~.  Since the Ne~ ton-Raphson  m e t h o d  is a 
second order i teration process, it follows tha t  if m ~ is taken 
very close to n then the method described here in  shall also 
become alrnost a second order iteration process. 

It. is worthwhile mentioning that  this conclus ion can 
also be drawn from graphical considerations. I t ,  fact, the 
graphical representation of a functional iterg~tion consists 
of approaching to an appropriate  point ( represen t ing  a 
root)  (:in a curve by vertical and horizontal  lines, while 
in the Newton-Raphson process one approaches  b y  tan- 
gential lines to the considered root. If  a is small ,  then the 
horizontal lines fall quite close to the tangent ia l  lines. 

As far as the choice of the initial app rox ima t ion  x0 is 
concerned, as indicated previously, it can be a n y  number  

bel°nging t °  the °pen interval (--22m '2m) "S° i f  °ne takes 

x0 = 0 through the relation (1), xl = -  is obtained,  
m 

T h u s ,  to  s a v e  t i m e  a n d  a l s o  for  t h e  s a k e  o f  c o n v e n i e n c e ,  

o n e  m a y  t a k e  a s  w e l l  x0 = alto w h e r e  m is  a n u m b e r  w i t h  

a k n o w n  r e c i p r o c a l  a n d  a l s o  s u c h  t h a t  i t s  s q u a r e  is  a s  

c lose  a s  p o s s i b l e  to  n .  

"~( 
]i]XA.~VL~:: C)mpu te  r : :  ~/82. ttere n ~ 82; ~tk~:l 

m e = 1 0 0 o r m  = 10one finds: { ~<a 

a ) 2 e l m  n) 0.25(;18) 4.5 i i ~>~!~ :;~i, 

a 
x0 = = 0.71.(4.5) = 0.45 

m 
,) 

2;0 a 
x~ = + -- = 0.1(0.45) e + 0 45 = 0.47025 ?in 7yt 

x.2 = 0.1 (0.47025) ~ q- 0.45000 = 0. t:7211 

r~ = m --  2x~ = 10 - -  0 . 9 4 4 2 2  = 9.05578 

This is an approximation correct to fottr sigtfifi</,:. 
figures. I t  is worthwhile notilig tha t  if instead of m 2 = F~ 
or m = 10 we had taken rn e = 81 or m = 9 wew0v.;: 
have obtained still bet ter  approximations,  ttowev(,. :~ 
this ease division by 9 will be required in our eonaputatio~.! 
In  electronic computers  the arithmetical operation 0f,;]]> 
sion can be avoided by the storage of a few reeij)r,,~,,; 
numbers  in the machine. 

We shall now derive recurrence relations in itoratt.,  
and r,.+l arid free of x~ and a. 

F rom fornulla (9) is obtained 

r i l l  ~ ~q~ - -  2 X i + l .  

The eombination of relations (8) and (9) with i)~. 
latter formula gives the desired recurrence relation: 

'm ~ + n ( m  - -  ri)'-' 
r i + i  ~ . . . . . . . . . . . . . . . . . . .  a ._  . . . . . . . . . . . . . . . . . . . . . . . .  

2m 2m 

This formula can also be put  into wirious equi' 
forms,  such as :  

o.5 {(m~ + ,,~) (m ,'i)"/ (!,ii,; 
# ' i + t  - -  - -  - -  

r~+l = r~ + __0"5 ( n  - ra ~) ( 
/rt 

As  far  as  the  se lec t ion  of r0 is eoneerned ,  we may p>, ;{ 
eeed as follows. The relatiol, (9) gives I 

t 

and since lro c: ( -~m 'm~ ~ i t  follows that r0 ~= (0, 2m.), *he I 
" ~ ' 2 /  

is, ii1 f o r m u l a s  (14:) a l ly  positive l luni.ber smal ler  thmt % t 
can be take** as re. However,  shiee for the sake of ~!ii/~ { 
venienoe it has been suggested above that  x0 = { 
then to this selected value of x0 the relation liD) yielde { 
r0 = (m ~ + n ) / 2 m  as a ,.startiri, g approximation. . l~ thi~ {~ 
ease, formula (14a) can be writtell: 

m ~ + n  
r0 - 2 m  ( I i  

( m  - -  r,.) e 
ri+l = re 2 m  ?, 

~-" j~ 

~' ]'~, 

ib' 
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EX.~.~WLI';. Compute r = v/440. Through  the use of the 

~/~, 0. mflas (15) a~d with 'rn ~ = 400 or 'm = 20, one finds: 

,'0 = 21, rt = 20.97500, r2 = 20,97623. 

~["he latter is an approximation to r = ,,/440 correct to 

tigures at~d with :a relative error of about  0.0000027. 

l:i~mily, it must be mentioned that,  a l though formulas 

l ~  ) and (16) have beret derived on the assumption tha(; 

e;'* > 0, it: can be easily shown that  they are also valid 

v,&en m < 0 on eondil ion that  in these ff)rmulas m is 

r.~)l'wed by its absolute vahte. For example, if m < 0 the 

formula (14a) would become 

0 < t o <  : 2 i m [  

"n ~ + '~ (J "~t  - r,:)" 
'r,-+~ = - 5 > ~  .......... 2 1  'm{  

However,  it. is evident that this case of m < 0 is of no 
practical value. 
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A Start at Automatic Storage Assignment 
[/OBERT L. PATItICK, Manhattan Beach, California 

S~mzmar~]. This technique outlines a method whereby equation 
~ets can be ordered in computational order and checked for com- 
p~tibility. The technique also allows one to note wh'tt equations 
e:m be computed in parallel (provided one has parallel arithmetic 
ceq)abilities) or can be considered a logical entity, i.e., segment. 
FiH'thermore, the technique will assist one to intelligently allocate 
't/igh.speed m(;mory (HSM) so that memory is reassigned to other 
~tufies as so(m as its present duties are fulfilled. Last, the tcch 
~'fi(lue appears to be simple and fast to implemenl. 

Assuml }tions 

For the purposes of this discussion, it is assumed that  all 
variables within a procedure can be related through func- 
tio~ls. These functions m a y  vary  ill size, depending on the 
capabilities of the person performing tile definition. 

[ntro(I a c t i o n  

The technique presented below tells how to build up a 
double array. After this array has been built, the rows of 
the array are then ordered by a trivial processing opera- 
fion. The ordered array is then inspected and some light is 
thrown on the problems of automatic  segmenting, intelli- 
gent storage Mlocation, and implied flow. 

The M e t h o d  

OPERATION I : 

For every result or set of result, s, a function is defined. 
£ row of the array is awarded to each function. The eol- 
unms of the array are as follows: 

Cohunn 1 is the name of the function. 
Cohunn 2 is the ordered step number (to be filled in 

by the process). 
Columns 3 through n (the last column) are awarded 

one column for each named quant i ty  (or set) within 
the entire procedure. 

This array is filled ou t  by entering a functional name in 
the first column and by  placing a bit  in the column eorre- 

sponding to every input to the funct ion.  This ar ray  we will 
call the input array.  

Simultaneously a similar a r ray  is built up, called the 
output  array. The rows of the o u t p u t  ar ray  correspond to 
the rows of the input array. For eve ry  function in the input 
array,  the results of tha t  function are  coded in the output  
array by placing a bit in the column of  tile array which cor- 
responds to each result (or set of results). 

OPERATION 2: 

After the unordered arrays are constructed,  a mask is 
made up. The format  of this m a s k  is exactly the same 
format  as the r ight-hand section of  both arrays, i.e., a 
single bit position exists in the mask  for every column posi- 
tion ill the arrays. The  inputs to  the  entire procedure are 
set into tile mask as l ' s ;  tile remaining positions are ini- 
tially set to 0. At; this same time, the  step counter is ini- 
tialized to 1. 

OPERATION 3: 

The mask is applied to tim first row of the input army.  
If  tha t  row can "see through"  the  mask,  we have deter- 
mined that  each of the inputs to  compu te  that  function is 
available. The function may be deemed  computable at  this 
step. The  current, contents of the s tep  counter are placed in 
the step column corresponding to the  function that  has 
just been determined to be computable .  The mask is then 
applied to tile next row and so on unt i l  all rows have been 
tested for computability. 

OPERATION 4 : 

After all rows |lave been tes ted  for computabili ty,  the 
step counter is increased by 1. The rows of the output array 
which correspond to those functions which have just been 
determined to be computable are aft ORed together (and 
also eliminated from the output array). This is now ORed 
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