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>:+'* :~ i{i! Introduction 

~ Sole[it fie prol)lems ar( (l u te oftell exl)resscd mathe- 
matically in the form (if ordinary differential equalions. 

}~ l~l many cases, these equations are nonlinear and cannot 
be solved analytically. Fortunately, their solution can 
allen be obt'fined by means of mlalog or digital eoniputing 
equipment. Analog simulations will not be discussed here 
e'ccept to state that they are very good in sonw, applica- 

r, • - 

r.a~,:..~, iicts but poor in others where tile size of the problem and 
, a,,(,.tlraey requh'ements prohibit their use. 

[u oMcr that differential equations nm,y tie solved on a 
g0nera[ purpose digital c<)mputer, a, method of nunmrical ! • 

i~tegraiiou must be selected and inch lded in the program. 
The problem of choosing the best method will tie avoided 
here (;xcept t<:) the, extent that; a iile{I,llS <if (;()n:iparing dif- 
i'erent methods will be indicated. The rnethod of [{ui<ige 
}(utta in(hiding ert'or checking alid interval nlodificati(>n 
will be discussed in detail. 
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The ProMem 

t The, analysis of seientiIic problems fr(quently leads 1o a 
I set of simulla~leous ordinary differenti',l equations which 
~, describe the phelioitleiloii being studied. These equations 
{ a'e usually nonlinear and ca[mot be solved analytically 

;;t it.pproxiilaatioiis can sometimes be ln'tde in an "ttteiript to 
I~eanze the equations, but this is often undesirable, as 

{ sigififica.nt, errors may be iritroduced. 
: ~ ¥ hlle equations for different problems vary m number, 

.... + ~der, and s~ze, they can be mampulated mathematmallv 
[0r any given problem into the general form : } 

91 =J~(t ,  y l , Y 2 , ' " , Y ~ )  

Y2 = A ( t , y , , Y 2 , ' " , Y . , )  
: 

9..~ = f m ( t ,  ~1, ~2 , ' ' ' ,  ~m) 

(1) 

dyi etc. 

+ / ) - e r e  

The soluti<in of the set of equ:~tious ( t )  is a tabulation 
(if values of the dependent variables y for various wdues 
of the independent variable t when given the initial values: 

g = t,, 

y.2 = y,.,(t.) 

= 

The  So lu t ion  

The (teterminatiou of the desired values of y involves 
the integration of the differential equatkms (1). The work 
involved in performing this integration can be greatly re- 
duced by tile use of analog or digital computers. 

Amrlog computers serve the purpose very well in quite 
a, few applications. However, there are problems which 
cannot be solved satisfactorily on the atialog computer 
because tim problem ma,y be too large or extreme at'curacy 
may be desired. In cases such as tlmse, a digital simulation 
is required. 

The programming (if a problem <if this type for a digitM 
conipuler can be greatly simplified by breaking the prob- 
lem up int</ two sections, one of which is the integration 
routine and the olher being ihe functi<m evaluation. Tbese 
two programs may be written independently (if each other 
once a fcw basic rules are set forth specifying the fimeti<>ns 
that each program is to perform. 

Machine. storage must be allocated for each of the two 
pr<)grams and the condition of the various accumulators 
must be Specified upon entry to the exit from either see: 
lion. For the purpose of this discussion, the following 
definitions and rules will be used: 

R E G I O N - - a  section of machine storage eontMning a 
specified nmnber of consecutive locations addressable 
symbolically by an alphabetic letter, folk)wed by "m R, 
followed by a number whic, h specifics tile particular 
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word in the region. Example:  BR12 is word 12 in region 
B. 

REGION I - - reserved for the integration routine program 
REGION F--reserved for the fun(Mort evaluation pro- 

gram 
R E G I O N  P--reserved for precision 
R E G I O N  Y--reserved for the dependent variables 
R E G I O N  D--reserved for the derivatives of the de- 

pendent, variables 
t - - independent  variable 
h - - increment  of the independent variable or 

integration interval 
IR1 ---entry to initialize integration routine 
FR1 ---entry to initialize function evaluation 
IR2 - - e n t r y  to integration routine front FR1 loop 
FR2 - - e n t r y  to function ewduation for purpose of 

evaluating equations (1) 
IR3 - - e n t r y  to integration routine from FR2 loop 
FR3 - - e n t r y  to function evaluation for output 

purposes 
IR4 - - e n t r y  to integration routine from FR3 loop 
m - -number  of differential equations 
PRECISION--d/allowable error per unit of #dependent 

variable 

The integration routine is responsible for the following: 
(a) Reading in initial values (t, h, y~, y2, . . ' ,  y,~) 

from cards or tapes, etc., arm placing the dependent wm- 
ables in R E G I O N  y. This is done in the initializing loop 
which starts at location I g l .  

(b) Performing a step-by-step integration using some 
numericM method. This is done by obtaining values of 
the derivatives of y t ,  y : ,  • " , y,,, at t by entering the 
function evaluation at  loeation FR2. When the integration 
routine is re-entered at  location IR3, the values of yt ,  y2, 
• . .  , ~),, are in locations DR.I, DR2, . . .  , DRm, respec- 
tively. 

(c) Performing truncat ion error checking on every y 
variable each t ime a new point is found. (I.e. : Assume 
that  the integratiou has proceeded to the point L, and 
that  the y variables and their derivatives are known at 
t , , ,  &-a,h,  t~--a~h, etc. An integration formula is now 
used to find the values of the y variables at &+aoh. The 
truncation error which is introduced by tile integration 
method over the inverval aoh must be computed for each 
of the y variables and checked against their respective 
preeisions which are located in PR1, PR2, . . .  , PRIn. If 
the truncation error exceeds the  allowable error specified 
by the precision for any of the y variables, the wfues at 
t,~q-aoh cannot be accepted. The  interval of integration 
must be reduced to a value which gives tmmcation errors 
which are less than the allowable errors specified for each 

of the y variables.) 
(d) When a new point is found and is acceptable as 

described in (c) ,  a new intervM of integration should be 
chosen for the next step. The  difference between the 
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truncation era'or and the allowable error over the last h> 
terval  provides sufficient information fox' the determinati0~ 
of the proper i,~terval size; for optimum operation. This 
difference is computed for all of the y variables, and the 
smMlest one is used to determine the new interval. Modi- 
fication of the interval may not be possible at each step 
when using certmn methods of numerical integration, such 
as Milne. However, su[~cient past history of the variables 
should be stored so that  the interval may be doubled if 
the  error check indicates that  the solution will rcmair~ 
within the accuracy limitations. 

(e) After a new point has been accepted and the n~.x~ 
interval chosen, the function evaluation should be entered 
at  location FR3 to execute tile output program. A~ this 
point, the solution has proceeded to a time t,~, the y vari. 
ables are in REGI()N Y, their derivatives are in ILEGION 
I) and the ne~v interval is in h. When t!~e integratio~ rou- 
t ine is re-entered at location IR4, the, necessary initializa- 
t ion is done so that the solution inay proceed to the ne×t 

point. 
The function evaluation is responsible for the following: 
(f) Initi,~lization of the function evaluation program. 

This loop begins at location FR1 and exits to locatkm 
IR2 upon completmn. [he mtt~al values of the y variables 
are in REGI()N Y, time is in t, and the integratio~l inter- 
val is in h when this program is executed. 

(g) Evaluation of the functions given by equations (1) 
using the y variables in REGION Y and the time in t. 
The  computed values .f,, .f~, . . .  , f,, are to be placed in 
DR1, DR2, - .- , DRm, respectively. This program bcgiris 
a t  location t!'i[12 and exit, s to location IR3 upon comple- 

tion. 
(h) Preparation of an output program which punches, 

prints, etc., the desired variables in the proper format. 
The  starting location of this program is FR3, and exit is 
to location IR4 upon completion. This program should 
also determine whe,t the solution has been completed. It 
m a y  be desirable to modify the interval of integratitm i~ 
this program in order that the solution may be computed 
at, a particular value of the independent variable t. l t~ is 
possible to do this when using methods of integratiort stmh 
as Runge Kutta,  but special techniques nmst be applied 
for predictor correcter type methods. 

D i s c u s s i o n  

The problem of determining the solution of the diff er° 
ential equations (1) has been broken up into two sectio~~s, 
and the area of responsibility of each section has been de- 
fined. Itowever, there "~re still a few details which mast be 
specified, but, these depend on the particular machine f0r 
whic, h the program is written. 

The reading in of the initial values is to be programmed 
in the initializing loop of the integration routine. An iupnt 
format  must. therefore be specified so that this prograa 
may  obtMn the data and place it in the proper are~s. 
Once this format has been set, up, the programmer of the 

T h e  ~ r 
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i!i],i  t 

fm~etio~L evaluation must prepare his initial values ac- 
cordi~lgly. 

There are re:my methods of numerical integration which 
lend theraselves nicely to this type of programming, and it 
is recommended that: several different methods be pro- 
grammed compatibly so tha t  they m'~y be used inter- 
changeably with any given function evaluation. I t  is 
then possible to check the various methods on particular 
problems and select lhe program which is most efficient 
in each ease. 

The truncation error checking :is one of the most im- 
portant features of this system. Not  only does it prevent  
an excessive amount  of error in the solution, but  it is also 
helpful in checking out the function evaluation program. 

A common mistake in function evaluation programs is 
the entering of erroneous parameters or points in a table. 
This Lype of error generally shows up as a step function, 
which may be extremely difficult to integrate if the error 
is significant. If this is the ease, the integration routine 
will decrease the interval to such a point that  it will be 
obvious to the programmer that  an error has been made. 
If automatic error checking is not included in the integra- 
tion routine, the tendency is to use a much smaller interval 
than is necessary to gain the desired accuracy. This may  
easily lead to a factor-of-ten increase in computing time, 
and the solution is less likely to be correct. 

The difference between the allowable error and the 
truncation error is an indication of the amount  of machine 
time being wasted. When this difference is computed for 
each of the y variables in the error checking loop, the 
smallest difference should be retained for interval Inodifi- 
cation purposes. Assuming that  the truncation error will 
vary over the next, interval only as a function of h, it is 
not difficult to determine a value of h which gives an error 
difference which is closer to zero than the current one. 
Selecting an interval which would reduce the difference to 
zero is not feasible since, if the errors increase slightly, 
the next point will not be accepted. 

I t  is suggested in (h) tha t  the output  program may want 
to select the integration interval at  times. If Runge Ku t t a  
integration is used, the output  program should be able 
to merely replace h with the desired value. If this pro- 
cedure is to be allowed in the output  program, methods 
which rely on several previous points at an even interval 
will be somewhat inconvenienced. When using a method 
of this type, the interval should be checked in the IR4 
loop. If it has been changed in the output  program, special 
care should be taken to insure tha t  the solution includes 
the point t,~+h, h being the interval selected in the output  
program. Since special starting procedures are required 
for methods of this type, the solution may  be considered 
as a new problem and a restart made in the integration 
routine using an interval that  allows the values at  t~+h 
to be computed. The output  program should not be 

entered again after it has modified the interval until the 
variables have been computed at  the time it has selected. 

The  system which has been described here for solving 
differential equations is by  no means unique. The re- 
sponsibilities of each of the two programs may be varied 
depending on the computer to be used, the type of prob- 
lems to be solved, and the capability of the user from an 
engineering as well as a programming standpoint. I t  may 
be desirable to set up the integration program in more of a 
subroutine fashion than has been outlined here. 

The problem of selecting the best numerical method for 
use in the integration routine is indeed a difficult one. 
There are many different methods which may be used, 
and each method usually has particular applications to 
which it is well suited. One approach is to write several 
integration programs using a different method of integra- 
tion in each program. When a function evaluation pro- 
gram is written for a given set of differential equations, the 
integration routines may be interchanged to determine the 
most efficient combination. 

When using predietor-eorreetor-type methods of inte- 
gration, the truncation error may  be expressed as a func- 
tion of the difference between the predicted and corrected 
values and is thus readily computed. The calculation of 
the truncation error for Runge Ku t t a  integration is not 
as straightforward. A means of computing truncation 
error as well as a flow chart for a Runge Kut ta  integration 
routine are given in the Appendix. 

A p p e n d i x  

The following method for computing Runge Ku t t a  
truncation error appears to be extremely inefficient as it 
requires a minimum of eleven function evaluations over 
two integration intervals. However, an integration routine 
which incorporates this method was found to be more 
efficient, for a majori ty of the problems encountered, than 
a program which uses Milne integration. This was due to 
the average interval ratio being larger than eleven to one. 

R u n g e  K u t t a  T r u n c a t i o n  E r r o r  

For  the purpose of this discussion, consider the differ- 
ential equation 

f] = f ( y , t )  

where y = y0 when t = to. Using the Runge Ku t t a  method 
with an interval of h, the value 

y = y~ 

when 

t = t 0 - t - h  = h 

can be found. With  the initial values (y~,h) the integra- 
tion now proceeds to the point: 

y = y2,1 
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when  

t = t ~ J r  h = t~.  

T h e  v a l u e  of y a t  h is n o w  c o m p u t e d  u s i n g  the ini t ia l  
vMues  (yo,to) w i t h  ~n i n t e r w d  of 2h: 

= y~,~ 

when 

t = to Jr 2h = t~ 

Since Runga Kut ta  is a fourth order method, there is 
fifth order error introduced over each integration step. 

Assuming theft this error is strictly proportional to g' from 
to to tz, the following errors may be defined: 

E r r o r  in ~1 : E:t = g'l~ 
E r r o r  in y~a : Ee., = e r r o r  i n t r o d u c e d  f r o m  t0 to t~ l~lt~s 

e r ro r  i n t r o d u c e d  f r o m  .t, to 4 

/L'~a = 2h~t~ 

E r r o r  in y~,~ : £'=,2 = (2h)~t~ 
I f  t h e  des i r ed  va lue  a t  4 is d e s i g n a t e d  b y  ge ,  the values 

which  h a v e  been  c o m p u t e d  m a y  be w r i t t e n  a s :  

y'~,l = y2 Jr  E2, i  = y'~ + 2h'a]c. 

y~,2 = y2 Jr E2,:~ = y~ Jr 32h~k 

T o  f ind Ee,~ : yz,~ -- Y~,~ = 30h~k = 15E~..,. 

or ; E,.,.~ - y2.e - y~,, 
15 

IRI READ: m, to, h, Yl,o 

Y2, o .... Ym, o. Store 
y values in Region Y 

[- FR1 -1, 
I Initialize Function - ~1 

V q Evaluation. l L_ I 

TURN ON PRINT I 
I NDICATOR. 
SET: i=l 

k=3 

r FR2 '"l T M  

i Evaluate Functions , 
C~ (Equations (i)) A 
I U ............. 

TEST PRINT 
INDICATOR 

i Output I 
r-I ~ o ~  j 

TRANSFER: VALUES 
IN REGION Y TO 
REG. A AND REG. G; 
VALUES IN REGION D 
TO REGION E. 

TURN OFF PRINT 
INDICATOR 

MULTIPLY VALUES IN 
~EG. D B~ ½, ½ OR i, 
FOR k . 3, 2, OR I 
AND STORE IN REG. D. 
ADD THE VALUES NOW 
IN REG. D TO RESPEC- 
TIVE VALUES IN: 
REG. C IF i<o~ 
REG. A IF im o; AND 
STORE SUM IN RESPEC- 
TIVE LOCATIONS IN 
REG. Y. 

. I  biULTIPLY VALUES IN ] 
"1"~.o- D BY 1/3,  2/3, I 

]1/3 or 1/6,  FOR I 
]k • 3,2,1 OR O, AND [ 
[ADD TO RESPECTIVE 

j VALUES IN REG. G AND[ 
- [  STORE SUMS IN REG. G~ 

YES ~ 0 @  

] SET: t = t + ( ½ , 0 , ½ ) h ]  
1 F O ~ .  3,  2 ,  ORl.~ 

¥~.S ~, ] SET: k - k-I | 

F ~ A N D  STORE IN RFD.D ! ~ I ? ~  O ~  Y2:1 ARE IN REG, G; 
÷ NO " y  I[ P~CisioNs A~ 1~ 
[ ~ 1 1  ~ "  P" F0~ Ev=Y 

]TRANSFER VALUES 13( [ ~ [[ VARIABLE CO~fPUTE: 
: ~ ] [ ~ _ Y2,2-Y2,1 ]REG. G TO REG. B; ~ [[ ~_ _ - ~z,z-~2,1 

I~EO. E TO REG. D t, IF, S / .  ~ . ~  I I  
I SET.. t .  t-h II < 1 "  
| ~ h [ ]~ NO [[(Store Y2 in Reg. G.) 

TRANSFER VALUES IN: / U9 ~ 1 ~ 
REG. c TO ~m. ~ ~ ~o 
SET: i =O | 

t =t-h , / 

TRANSFER VALL~S IN- L 
REG. G TO RE(}. Y |~ 
REG. G TO REG. A ] 

IF THE SMALLEST 
U 2 IS: 0.031 OR LESS 

0.125; 
0.375; 
0.625; OR 
0.875 to 1.000 

Multiply h by: 
h.oo; 
2.8h~ 
2.14; 
1.90; 
1.74~ 

RESPECTIVELY 

Fro. 1 

358 Communications of the ACM 

~ % 

ii  ii. 

i I V~%~ 



Th~ error i~ !ha can thus be calculated and subtracted 
frou F~ ~ to get, a bet ter  value of ! h  : 

Y2,2 --  y2,1 

The~'e will still be, in general, some truncation error in 
re. While it will be less thau the calculated value of Ee.,, 
the exact amount will wu'y depending on the function 
beiag iategrated. A. factor of i} has been used and found 
~o be satisfactory. The truncation error in y at t~ is thus: 

1 y~.~ - -  y,~,~ 

3 15 

[f the allowable error per unit of independent variable 
is sp(!(:ificd by A, and the precisiou 1 ) is defined t)y 

1 
P = 

A '  

the2 ~lll()%3~ble e r t ' o r  o v e r  the double, iuterval is 

2h 
2hA - p "  

This er '0' nlay be divide(l into E~ to obtain the ratio 

("~ 2h 45 2h (y~'~ - Y ~ I )  

P 

[~H(ter the above assumptious if (,,r2 is less than one 
ih~ err(~r made in y~ is less thau the allowable error. 

SutMihlting the relation 

i~to the above expression, U becomes 

1) 

Ising (&, yQ as initial values, the integration may now 
I)'~ :~ od to the point (t.~, y.,). However, if Ue is much less 
i{lftIt otle, it is desirable to use "t larger interval from h to 
5 tha~ was used from l~ to t._,. \¥hen :!14 has been computed, 

at that poiut will bc 

P 
U,~ = :c h~ '~t':~ 

0 
where 

Thus 

U4 _ 3 

U.2 P 
- - .  h ~ k  
3 

i 
[t was assumed above that, the truncation error is pro- 

port ional  to h ~ from to to t~. If it; is now assumed tha t  the 
t runcat ion error is proportional to h) ~ from to to t~, then 

a [ / d  

r 4 

o r  

Since the values of h attd U~ are known at t2, the new 
interval h~, may be determined by specifying a desired 
value for U4, The optimum value is one, but since a re- 
run of an interval would be required if' U.t obtained exceeds 
one, a more conservative specification is indicated. A 
value of U4 = 0.5 has been used and found to be satis- 
factory.  The integration interval from & to & is eMeulated 
by 

(0.5'~1" 
t,, = \ N !  h. 

To eliminate the use of a subroutine in evaluating 
(0.5/Ue) Ll4, a table of this function for various values of U2 
may  be stored in the integration routine. This results iu a 
saving of time and storage and is sufiiciently accurate 
considering the assumptions th,~t were made. 

The  folh)wing table has been used and found to be 
sat isfactory:  

z~ (0.5/u~p/, 
0.031 or less 2.00 
O. 125 1.42 
o. 375 1.07 
0.625 0.95 
0.875 to one 0.87 

I t  is felt that  any factor greater than two is not re- 
quired, as tile use of this method should keep the value of 
U in the mid-range, t[owever, this is a function of the 
type  of problems being solved, arid a different table may 
prove more  economical under different circumstances. 

In  the event that  U,z is found to be greater than one 
when the error check is performed, the interval is cut in 
half and the solution computed at h .  The error cheek 
mus t  then  be made at this point to insure the desired 
aecoraey.  

The  flowchart (Fig. 1) demonstrates the manner  in 
which a Runge Kut ta  integration routine might be pro- 
g r a m m e d  for a set of m simultaneous differential equations. 

The  regions: 
A - - - u s e d  for storing initial values y0 for all variables 
B - - u s e d  for storing the values y2,2 for all variables 
C - - u s e d  for storing the values yt for all variables 
E - - u s e d  for storing the values .y0 for all variables 
G - - u s e d  for storing partially computed y,~+~ (defined 

below) for all variables 
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all require m locations and are within R E G I O N  I. The 
other regions and notations are consistent with the text. 
One point, which may be considered a deviation from the 
derivation, is that  the first integration using an interval 
h obtains the point y,~.~. Then the interval is cut in half 
to obtain the points yt and y2,, successively. This is neces- 
sary if the point y, is to be retained for use as y~,~ in the 
event that  the errors are excessive, requiring tha t  the 
interval be again cut in half. 

I t  is noted tha t  IU~,(,ION E may be eliminated if s t o f  
age is a problem. If R E G I O N  E is not used, and extra 
evaluation is required making '~ total of 12 cvMuations 
per step. 

The equations of Runge 7[~utta are 

where 

C, = hf(t~,y,.) 

t h 

( 
C4 = g( t~ ,+h ,  y,~÷Ca). 

THE FUTURE OF AUTOMATIC DIGITAL COMPUTERS 

process is that  the inherently great magnifie'~tion of the 
electron microscope makes the reading of closely packed 
data easy; another advantage is that the reading element 
is an electron beam which can be deflected electrically and 
thus facilitates high speeds of operation. NaturMly the 
advantages of non-destructive read-out are still present, 
as with the magnetic drum. 

Even if this were the only feal,ure of Meyer 's  work it 
would be exciting, but he has also shown [7] how informa- 
Lion may  be written on lo a magnetic medium by means 
of an electron beam. This is achieved by magnetising the 
medium initially by means of an external field, and then 
heating small regions above the Curie point by means of a 
sharply focused electron beam. When the material cools 
below the Curie point again, an inversion effect takes place 
and this enables the electron mirror microscope to detect 
the previously heated spots. Meyer  suggests that  informa- 
tion densities of 10 '~ bits/era ~ will be possible and that  the 
writing speed might  be 105--10 ~ bits/see. 

In the general field of input-output  equipment dearly 
the magnetic tape will come into general use. Xerography, 
too, is likely to be applied both to printing and to replace- 
ment  of punched paper or fihn. A second form of recording, 
"I ) ig i tapc"  biased on "Teledeltos" paper, is, I think, less 
likely to be perpetuated because of its expensive basic 
materiM. Devices for the direct reading of printed charac- 
ters are at present moderately unreliable. The imperfec- 
tions of print, and especially of typewritten print, present 
quite considerable technical difficulties to the designer of a 
machine which, independently of context, will recognise 
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any given printed character with grcai; accuracy. By using: :2; 
context the problem is rendered easier and such an ex t~  i ; ~ ; .  
sion of the basic character reader is Mmost inevitable <~ 
Direct recognition of the spoken word is on the horizo> , ~o 
One possible application is to stocktaking, where a pockv~ I 
rcc()rder and lapel microphone would leave hands free fv~' ,~i 
inspecting the stock. ~:~ 

My feeling on all questions of input-output  is, howev~'r. :4  
the less the better. The ideal use of a machine is not tv ::~.~,>~ ~1 
produce masses of paper with which to encourage Parki> %,,: ,~! 
sonian administrators a.nd to stifle human inventivene> ,d 
but to make all decisions on the basis of its own interned ~ . ~  ~!~ 
operatmns. I 'hus computers of the future will c()nlnluni ~a~" !e=:,;~,ii;{~;.~ i 
directly with each other and human beings will only b~,? 
called on to make those judgements in which aestht~ti~: 
considerations are involved. 
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