Check for
Updates

Comments from a FORTRAN User

John M. Blatt®

i Comments on features of compilers in
general, and Fortran in particular

]
g"lntrr)(luctiuu
I [h(* calculation of the binding energy of the nucleus
, the triton, can only be done numerically, and even
%t ()n it is a quite complicated problem, involving a large
inumhel of three-dimensional integrations and the lo-
eation of the minimum of o funclion of a large number of
?\-'arlahl(\.h. Because of the limited time during which the
actual eoding could be carried out (two months in New
i York)it was decided to use Forarax rather than a coding
i' ~(hemo ¢loger to the basic machine language of the IBM
704, such as SAP. Indeed, a quick reading of the ForTRAN
manual and some comments from Forrrax users indi-
cated that Fortrax would save both time and effort and
wouid be a generally sutislactory scheme to use for this
-problem. Actual expericnee with Forrray coding on this
has converted Paul into Saul: if a
{he author would

Iproblem, however,
‘ simifar problem should come up again,
‘be very reluetant indeed to use ForRTRAN.

It iz the purpose of this papcr to comment on the
features of compilers in general, and ForrraN in par-
‘tieular, that are required by the advanced eoder. 1t is the
'authm “s helief that no satisfactory scheme exists at present,
‘with the possible exception of the Fnglish Avroconn. The
!16‘8%011 for this lack is not that a satisfactory compiler is

thard to write, On the contrary, lt would be much easier to
;\mte than Forrrax. Rather, it has not been written
ibecause the logical and physical .re(_lu'u'ements of a satis-
Hactory compiler for advanced eoders have not been
studied to a sufficient extent.

Although this paper contains some negative comments
on ForTrAN, they are not meant to disparage the very real
aohnevcmmst I(‘pleb(‘llf&?d by ForTrAN. IORTRAN Was #
(panet effort, well whead of other compilers, and is very

U

wd University of New South Wales, Kensington, N.8.W., Aus-
tralis. Supperted in part by a grant from the U, 8. Atomic Fanergy
Commission, Forrran was used to code n fairly elaborzle caleula-~
ton in nuclear physics. Based ou this experience, these comments
e made regarding the requirements of cowmpiling routines for
tompliented problems, in general, and aspects of ToRTRAN, in
particnlar.

|
|

! * Instmltc of Mathematical Sciences, New York University,

suceessful indeed for the uses envisioned by the designers
of the routine. The fact that Fowrrax has shorteomings
when used for a quite different kind of coding is not
surprising and in no sense defracts from the eredit due io
the designers.

The remarks In this paper are just scattered comments,
rather than the results of an extensive study of present
and/or proposed eompiling schemes. They are offered with
the hope that others, more experienced in this field, may
perhaps find some of them useful. From what little the
author has seen of the proposed ALGOL scheme, it would
not be satisfactory in actual use by an advanced coder.

Purposes of Compilers

There are basically two different classes of machine

gers, both of which require compiling routines: (A) users
who haveno, or very little, experience in coding, and whose
problems are short compared to the available machine
storage and machine time; and (B) users who are experi-
enced coders with really big problems, in which machine
storage and machine time must be considered seriously.

We shall denote compilers for these two classes of users
as compilers of type A and B, respectively.

It is not always realized just how seriously the require-
ments of type A and type B compilers differ from each
other. Tn actual fact, they are completely incompatible.
ForTtrAN was designed as a type A compiler, and works
extremely well when used in that way. As a type B com-
piler, it is therefove, necessarily, quite unsatisfactory.

Some of the differences in reguirements relate to:

(1) machine time for actual computation,

(ii) machine time for compiling,

(it} storage space taken by the object program, and
efficient use of storage space for lists of con-
stants,

(iv) access to maachine instructions and/or machine-
like ingtructions,

(v) coupling hetween different subroutines,

(vi) error detection,

{vil) nature of the Manual for the compiler.

These and other points are diseussed below.

Communications of the ACM 501

http://crossmark.crossref.org/dialog/?doi=10.1145%2F367390.367404&domain=pdf&date_stamp=1960-09-01

First, however, we would like to comment on the fre-
quently made statement that advanced programmers do
not require compiling roulines anyway and should use
cither machine language or else a routine such as SAP
which is very close fo machine language, The author
strongly disagrees with this point of view. dMachine lan-
guage, and even SAP, takes much longer to write than a
language such as ForTrax, and many more acbual symbols
must be written down on paper and transferred to cards.
There is no reason to make an advanced programmer do
unnecessary and tedious bookkeeping metcly because he
is an advanced programmer. Furthevmore, the more
actual symbols are written on paper, the more actual
eards are punched and the higher is the probability of
purely trivial errors. These can of cowrse be detected and
eliminated by code-checking, but this takes time and
effort that eould well be devoted to better purpose. The
machine must alwavs be considered the slave of man,
not man the slave of the machine.

Quite apart from the inerease in sheer work and number
of trivial errors connected with machine language or SAl
coding, there is another major point for insisting on
compiling routines—translation to a different machine.
At the present time, machines are being designed in
many places, und new machines are coming out all the
time. If a program is writicn in the seurce language of a
universally recognized compiler, it may be assumed that
the actual compiling routine for each new machine will be
readily available, Translation of the cede for the new
machine is then a simple operation—recompilation. Some
of the efficiency of the original program may be lost, but
enough will remain to make this procedure worthwhile,
especially if the new machine i« much faster than the pre-
vious one, On the other hand, a program coded in machine
Jlanguage, or in SAP, is necessarily tled to one particular
machine and becomes obsolete when the machine becomes
obsolete. Re-writing an euntire major program for a new
machine iz almost ag big a job as writing the original
program. The re-writing job ig usually not even attempted.

Thus type B compilers are necessary. The rest of this
paper is concerned with the requirements which they
must fulfil.

Manual for the Compiler

The manual associated with a compiling routine is an
integral part of the compiling system as a whole; it is one
link in & chain—in the case of Forrraw, {he weakest
link., No matter how good the basie compiling routine
may be, it becomes unusable, or nearly so, if the manual
is had.

Manuals for type B compilers must be quite different
from manuals for type A compilers. The type B user
needs to know, in considerable detail, just what the ob-
ject program is, corresponding to the varisus fypes of
source statements. In particular, he needs to know the
number of storage locations used in the object program,

502 Communications of the ACM

and the computation oo This nfomnation should po
given systemabiendly, al e same polnk 2t which ghe
sOUrce statement in 1 O-Y-I)hlii'led
logieally. In the prosent Powrieas manual much of this
mformation s mssing, and the vest ol i i loeated i

language question

seabtered places throunghout the Iator sections of the
manual.

This requirement of machine detatl for type B manualy
means that a new type of B manual must be writlen for

ach new machine, even though the souece lé\ﬂguagc of
the compiler s unchanged. Although o lype B user wij
nof in general need to kuow the dewiled machine Jgy.
guage and other particular features of the machine gn
which the objeet program is to be run, the type B gser
can never be satisfied merely with understanding the
source language itself. He ix presumably fighting agains
stovage space and machine time lmitations, and he must
be given adequate information aboul the object program
produced by the compiler.

Quite apart from the nature of the iuformation con-
tained in the manual, there is the question of the mammer
in which this information i presented. All too often, the
writing of the manual s doue by the person, or group,
responsible for writing the compiling routine itself. This
is bad policy: Peoaple who are good at talking to machines,
are often not nearly so good when it comes to talking
to people. The requirements are, afler all, quite different:
In talking to people, redundancy, repetition, and emphasis
are essential to sceure understanding. None of this i
required in talking to a machine; in fact redundancy and
repetition are vieces, and emphasis is impossible,” Thus
the best way to produee a compiler manual is to have it
written by a user, with the advice and eonsent of the
authors of the compiling routine. ™

Machine Time for Compiling

The more elaborate and “faney” the compiling roufine,
the more machine time is required for the actual compila-
tion. In the case of type A compilers, this is no problem:
the compiling routine can do most of the code-cheeking,
and once a routive compiles, it almost alwiys works the
way it is intended to work by the type A user. This is by
no means true for type T users. Liven after the trivial
errors have been eliminated from a subroutine, there are
any number of non-trivial errors which may be con.t.aiujed
in the subrouting, and an cven larger number of non-trivial
ervors which arise out of the interaction between dif'Eer.e»llﬁ'
subroutines. No matter how elaborate the compilhg
routine is made, it can never test for such errors. Thus
re-compilation is a frequent occurrence in type B program

' In the aubhor's opinion, this is sufficient reasun that a langt

N . 0

such as FORTRAN or AvuoL can never hegome i ¢OMImion Languag
among mathematicians, Mathematicians are, usually, people.

age

@ Buperscripts in parentheses refer to Editor's related €0
ments on p. H06.

s development, and the muchine time requived for compila-
Hon teeomes & major factor.

Liuring the author’s stay in New York, he notieed the

I frequency with which type B users were making hand-
<punched correetions on the object program (binary deck)
“merely 1o avoid vecompiling, This procedure 1s the reductio
“od absurdum of the whole philosophy of ecommling roulines!
Instead of having simplified things for the user, the
Cgompiling routine (because of the machine time for
? compiling) actually forces the user to learn the basie
| machine language, study in detail the object program
| produced by the eompiler, and correct this program by the
{ most primitive and time-consuming method imaginahle.
| One way ouf of this difficulty would be to leave the
compiter pretty much ag it 1s for the first compilation, but
{speed up re-compilations. lFor example, the compiler
J cowld punch out, in binary form, the information which
[Porrrany now puls on an output tape, and this informa-
‘tion could be read in al the time of the re-compilation.
g;<ernatively, Forrrax eould be made to read the pre-

%\'10115 output tape for any re-compilation (this method

' would necessitate a lot of tape handling).

L These intermediate solutions appear unsatisfactory,
Fhowever. T hey are at best make-shift, compared to the
f{radical solution of the “instantaneous compiler”. We
Csuggest that one essential requirement for a fype-B
compiler 1s that its operation he substantially as fast, or
"nearly as fast, as the speed of reading in the source pro-
fgram. Such a compiler will be called “instantaneous”.
| Clearly, with an instantaneous compiler, re-compilation
s no problem, and no-one need learn to make hand-
jpuniched corrections on the object program deck.

This requirement of instantaneous operation takes
precedence over all others. No matter how desirable a
certain feature of a projected compiling routine may
appear, it should be eliminated ruthlessly if it conflicts
¢with instantancous operation. An example i the optimiza-
i;?{iom of the use of index registers carried out by Forrran.
{This involves a logical tracing of the flow of the whole
iprogram, with branchings determined on a statistical
shasis, 16 all sounds very desirable, and is in fact desirable
for type A users. But it slows down the operation of the
gcompiler to a very appreciable extent, much too much for
itype B users. For {ype B users, it would he both simpler
Land better to allow the user to specify which index is to be
tepresented in the machine by an index register, with
perhaps a list of prioritics in case the objeet machine does
i1ot have enough index registers.”

This radical requirement of instantaneous compilation
‘Li-’s‘ by no means visionary. In [act, Auroconn used ex-
iensively in England is substantially instantuneous., The
wuthor has had no experience with Avroconm and there-
fore cannot comment on its suitability in other respects.

*'The present alternative allowed by Forrran IT i not to op-
timize at all. This is unacceptable for type B programs.

It iz the author's impression, perhaps ineorrect, that
s requirement is belug overlooked in the design of the
Arcor language. Although the author has never written a
compiling routine, he finds it diffleult to imagine how an
lnstantaneous compiler could be written for a language as
complex as Ateor. Thus, in the end, Argon may tun
out to be quite suitable for type A use, and well-nigh
useless for type B coding. The source language for a type B
compaler is severely limited by the requirement of instan-
taneous operation and connot be decided on the basis of
purely mathematical considerations, in splendid asolation
Jrom the very real problems of writing an instantaneous
compiling roubine.

Machine Time for Running Objcct Program

Every advanced programmer knows that there are
{ricks for speeding up a program--tricks which depend
on the particular machine and tricks which are common
to many different machines. One example is provided by
inlegrations using Simpson’s rule. The eoefficients, 1, 2,
and 4, can be generated in a binary machine by shifting
or by altering the exponent of a floating-point number;
this is much faster than machine multiplication. With
IForrraw, the user is denied access to the shifting instrue-
tions of the basic machine language. Actually, multiplica-
tion of a Hoating-peint by a fixed-point number is ex-
plicitly forbidden,

A solution to this problem is provided in Fowrrrax LIL:
the user Is allowed access to the basic machine language
and may use divect machine instructions in sections of
the source program. In our opinion, this solution is not &
forward step but a backward step in the development of
compiling routines. One main reason for using compilers
is the translation problem, discussed above. By going
back to the basic machine language, translation is made
impossible, or at least very difficult,

An alternative, and in our opinion preferable, solution is
to include, as part of the permissible statements of the
source language, statements that are easily translatable
Lo machine operations such as shifting.

To conlinue with this example, there could be source
language statements for “multiply by 2 and for “mul-
tiply by 107, In a binary machine, the first of these
would be compiled as a fast operation, the second as an
ordinary multiplication. In a deeimal machine, the first
would be an ordinary multiplication, the second a fast
operation. Sinee praetically all machines are either binary
or decimal and since the type B user knows which machine
he is writing for, this is sufficient for type B compilers
and avaids the use of basic machine language as far
as shifting operations are concerned.

Another cxample of the inadequacy of ForTrax for
type B operation is the simple problem of computing a
cheek sum for a list of numbers. In Fortran, only two
types of addition are possible: floating point addition,
and addition of truncated (modulo 2'%) fixed point numbers.

Communications of the ACM 503

Both of these are logically unsuitable for chevk sumns, the
first because numbers with small exponents never alter the
checksum, the second because a large fraction of the bits
in the table are excluded from the check. Furthermore,
even if one ignores the logical difficulty associated with
the floating-point addition, each such addition takes
three and one-half times as long as the ordinavy fixed-
poit addition in the machine. Thus the eomputation
time for the checksum beeomes appreciable, mervely
because of properties of the compiler,

It is highly recommended that any type B compiler
include, as part of the source language, the usual arith-
metic and logical commands available in most computers
today. This means both fixed-point (to full precision!) and
floating point arithmetic operations, as well as some of
the simpler logical operations such as collation, negation,
and the like. Since these are all easily translated, their
inclusion does not conflict with the primary requirement
of instantaneous operation.

The eriterion for inclusion of a certain tvpe of “machine-
like” command in the source-language of a type-B
compiler is twofold: () The proposed command must be
useful for saving machine time and/or storage space for
the object program,™ and (i) It must be easily translat-
able into machine language for many machines.

Organization of Storage Space

A type A compiling routine ean be written with the
idea that the storage spaee of the machine s substantially
infinite. No attempt need be made to conserve storage
space. ForTraxN, being a type A compiler, 1s very wasteful
of storage space. When used for type B operation, this
feature becomes a serious problem. In the author’s
routine, it was necessary to read in the program in two
stages, use 7 out of the 10 tapes, and do a considerable
amount of overwriting of lists of numbers in the COMMON
store, in order to get the program into the machine at
all.

For a routine of this type, not ouly is Forrran wasteful
of storage space, but the organization of the COMMON
storage is tremendously awkward and productive of
errors. In Forrran II, constants are either stored within
each subroutine, or they are placed in a COMMON
hist available to all subroutines,

Logically, however, there are at least two, and perhaps
three, different functions of COMMON storage:

(1) Temporary storage, used by several subroutines,
and overwritten in turn by each new subroutine; this is
also known as “working space”.

(ii) Storage of tables of numers uged by several dif-
ferent subrouiines.

Classification (i) may be divided into two subelassifica-
tions: '

(ita) Tubles which are erased during the operation of
the program.

(iib) Permanent tables, which may be computed by a
preliminary interlude and are uot changed thereafter.

504 Cotmunications of the ACM

In writing a complex program it i3 well-nigh impossile
10 determine o advanee the number of items 1o each of .:é\\
these lists. Hinee Formuax lumps all these listg together
uto one COMMON list, the COMMON lit quigs.
heeomes a patchwork quilt of segments from thege threue
classes. 1urthermore, any change in the COMMOY g »
affects ol subroutines and requives ve-compilation of all‘
of them. Since re-compilation with Forrrax is Very time-
consuming, the net effect is o most undesirable eoupling
hetween subroutines which are logienlly and matpe. |
matically quite distinet. ‘

A possible way out would be to provide, in additien o 1
fixed addresses and addresses relocatable with respect 1o
zevo, addresses relocatable with respect to a set of numbers ,
which may be specified by the programimer at the time the 4
object program for the main program is read into the]
machine. There may well be other, and better, ways to
allow the advanced programmer latitude in the organizm-
tion of storage space. All we can do here is to call atten- |
tion to the existence of this problem.®

g,

L

El

Code Checking Facilities

In advanced program development, dynamic code \
cheeking is essential. Posl mortem printouts of the .
contents of the fast store are frequently difficult to - =
terpret, and the tracing of errors by this method is st
best slow and diffieult, at worst impossible. In Forraay o
I1, code checking sequences must be incorporated into
the source language program, since there is no way % ‘
get such information out of the compiled program. Since
this undesirable feature of Forrtran I is corrected in
Forrtran III, no further comment is necessary beyond
saving that any type B compiling routine must contain
this dynamie code check feature.

Another aspect of code checking is the cheeking done:
by the compiler itself during the process of compilation.
Fortrax does a lot of that, and should of course do $
for type A use. For type B use, however, much of .thzs
code checking is more of a nuisance than a help, anq since
it slows down the compiling it is downright undesxrb.bb]e-,
For example, Fortrax checks that every branch int &
computed GO TO staternent leads to actual source pro-
gram statements. In writing the source program, t}}e
author has sometimes included extra, unused branches_ i
such computed GO TO statements, with the iden of usmg
them Iater on for additional branches. 1'ORTRAN then
refused to compile the routine until dummy statements
were made for these {unused) branches.]

Tke main reason against doing extensive cr;de;check}ng
during the compilation process is that it is loglcaﬂy HI“'
possible to find the majority of errors in this W&y'. u
type B programming, the most frequent _173’1.0‘3 of efr;)r
arises from faulty interaction hetween different S
routines, and this type of error eannot be fom:.]d by 2
compiler which necessarily compiles one subrouting ati?
time. Of course, any code checking which does not GO].:
flict with instantaneous operation of the mmpﬂe}'_ £
desirable, and should be incorporated into the compili®

‘mutin(‘ But as soon as the (ode chiceling fealures slow
;dou n the compiling appreciably, they should be eliminated ;
Fpstantancous oper rablon s munh more important than
j’ﬂ;ode—clmukin g during compilation.

; fonclasion

; We hope that the varicus, perhaps rather dicconnected,
;;omfs in the preceding sections will suggest ideas and
“ivenues for exploration to people better versed in the
teld of compiling routines than the author. ‘This paper is
i 1 no sense a blueprint for a type B compiler, just some
fo comments from a machine user,
In conclusion, the author would like to express his
hppleuatlun and gratitude for the extensive and un-
Astinting help given him by the staff of the A. E. C. Com-
]putmg Center, Institute of Mathcmatical Sciences, New
.‘ilork University, in particular Drs. Richtmyer, Isaacson,
{ Goldstein, and Mrs. Bernice Weizenhofer. He also admires,
‘and g grateful for, the patience that all of them cxhibited
%in the face of his irascible nature. The author thanks the
/U8 Alomic Energy Commission for a grant of money
yind machine time which alone made this work possible
: ind, Jast but not least, wants to record his appreciation
jof the labors of his colleagues, Dr. Graham Derrick and
Mr. David Mustard, without whose devoted efforts the
etode would cersainy not have been finished in the allocated
’ tme.

Appendix: Minor Comments on FORTRAN

The lollowing aspects of Forrran gave rise to minor
nuisances in actual coding:; they are all easily corrected,
and perhaps some of them have already been eorrected
iin Fogrrax III (with which the author is not familiar).

{1) Indices must start at 1, that is, an array of numbers
i, must have ag its first member a;. In practically all
idvaneed coding, it is preferable to start such a list with
to, and quite frequently aceasion arises in which the initial
member of the list has a negative subscript,

{ It is of course quite easy for the coder to get around
ihis by defining o dummy index m related to n in such a
vay that m starts with 1. However, these trivial things
sre among the most likely source of errors, and it would
be highly desirable to let the machine do this dummy
ndexing. This is in general line with the philosophy that
I‘Lhe machine should be the slave of man.

i A “compatible” method would be the following kind of

DIMENSION statement:

\

f DIMENSION A(5-19, -14-- -8)
This describes a two-dimensional array A(n, m) with n
‘mnging from 5 to 19, m ranging from ~14 to —8. Further-
itore, we introduce the convention that the initial value
‘lf’f the index may be omitted if it is in fact equal to unity,
le., the dimension statements,

DIMENSION B(1-100) and NDIMENSION B{100)

‘e equivalent. Sinee the latier statement is the type used
or Fortran at the moment, compatibility is assured.

Whenever the initial index value, call it n!, differs from
1, the machine operates internally with the dummy index
n’ = n -~ ny + 1, which dummy index does start with 1.
The programmer, however, is no longer required to do
this boukkeeping.

(2) In iterative loops, organized through the DY)
statemnent of ForTrax, the programmer must not enter
the loop anywhere in its middle; rather, the loop must be
entered at its first instruetion. Furthermore, if the DO
loop is completed (““the DO is satisfied”), the index variable
of the DO is not availuble for further use; the index
variable ¢s available if an exit is made from the loop before
completion of the loop.

Both these restrictions stem from the special way in
which such loops are organized in Forrgan; time is
saved by using inerement fields of instructions, rather than
complete memory positions, to store the value of the loop
index. Tor the same reason, indices are restricted to
values less than 2t8,

Although this is perfectly all right for type A coding,
when applied to type B programming it is a textbook
example of being penny-wise but pound-foolish. In ad-
vanced coding, the triek of entering a loop somewhere in
its middle, and even entering it at different points de-
pending on what is to be done, is used all the time. The
time saved by Forrran’s special method of organizing
DO Ioops is more than made up by the time, and machine
storage space, lost through having to enter each loop at
the beginning and by the nuisance of having to restore
the loop index explicitly if the loop has run to completion.
Trurthermore, the restriction that indices must be less than
2% has been extended in ForTran to encompass all
fixed-point quantities, with highly undesirable results
{see the discussion of cheek sums in section 5). Again, by
this special method of organizing loops, indices in a loop
must necessarily be positive numbers, which is a nuisance
for the programmer.

As a gencral rule for type B compilers, special restric-
tions and conditions on variables and indices should he
avoided like the plague. It takes a long while to accustom
oneself to them, and even at best these special regulations
are copious sourees of coding errars. Tf a really substantial
amount of machine time can be gained by imposing special
restrictions, then the source language of the compiler
should provide tweo source statements, one fast but with
restrictions, the other slower but unrestricted. IFor example,
the statement DO may retain its present meaning and
restrictions, but the additional statement LOOP may be
provided, which docg the same job as DO, but without
the special restrictions on DO statements.

It should be noted that considerations of this type arc
essentially nonmathematical, and it s the author’s im-
pression, perhaps incorrectly so, that such nonmathe-
matical considerations are not being given sufficient
weight in the design of the Avaor language.

Communications of the ACM 305

Editor’'s Comments on Compilers

The following comments are ;meant to provide additional -
formation and not to detract from the value of Dr. Blatt's
complaints (see Opinions, p. 801} which, while specilving
Forrran, reler to wany others as well. Certaiuly it s about
time that more compiler builders started designing trauslators
for the good programmer.—AJP.

) Actually manv sueh eompiler manuals have been written by
users, though they have not been widely distributed, e.g., »
Forrran manual by Westinghouse, and an IT manual by Texas
Instruments. However, to accent the author’s complaint, most
of these manuals are intended to [urther isolate the occasional
user from the machine. Ts it noi obvious that in the next lew vears
—if not already—there will be a large educated audience who will
be able to use—and probably insist upon—more control over the
manipulation of their eodes originally composed in an Arcor-like
form.

(8 Actually there has been a large number of compilers built
which used the stated principle as the design motivaiion, e.g.,

LETTERS (continued)

Recommendations of the Spare Argor Committee, Comm.
Asgsoe. Comp. Mach. 2 (Oct. 1959), 25-26.

4. The absence of the return statement as defined in ALcor 58
necessitates the usc of an artifice such as a labeled dummy
statement, in the event that the last written statement in a
procedure body 1s not neccssarily the Jast executed statement.
We believe that the committee should offer some justification for
its action in this matter.

5. We notice that there is no stop statement in Arcorn 60.
Admittedly, “stop” may mean all things to all transiators, byt
there should be some standard method for denoting the termina-
tion of a dynamie statement sequence.

6. Section 4.7.6 appears to be incomplete and unnecessarily
complex, by virtue of the following reasoning:

{a) If a quantity is non-local to a procedure body, it must
be local to some block which includes the procedure body, else
the procedure body s not completely defined,

{b) Hence, “a procedure statement written outside the scope
of any non-local quantity of the procedure hody™ is fpse facio
vutside the scope of the procedure bedy, and is accordingly un-
defined. (The scope of a procedure body may be defined analo-
guosly to the scope of a label, where the procedure identifier in
the heacding and the same identifier in a statement correspond
respectively to a particular label and a reference to it.)

Thus, section 4.7.0 seems to be a special cage of the principle
of seope, and might be emended to read as follows:

“A procedure statcment is defined if and only if it occurs
within the scope of the procedure body, and the procedure body
is completely defined.”

7. We regret that no provigion for the specification of initial
dats wus made. If ALeor was designed primarily for the com-
munication of algorithis rather than for machine implementa-
tion, then we concede that such a provision is unmecessary.

8. Section 5.4.4 implies that a funetion designator may oceur
only as the left part of an assignment statement, lest the pro-

506 Conmimunications of the ACM

IT, Roxcrres, GAT, and Conrucars for the IBM 650, ang MAD
for tho IBM 704, to vame an admittedly partial list, Conrpaary
permirs modifications to the object code tn source language wi
ouly these modifications retranslated, An Aucon translator i¢
being built at Oak flidge, and in several centers in Ftl‘l]‘(}pe, tc
funetion as type B eompilers. Indeed, one al Maing translates ui
the paper tape input speed and the object code commences running
when the tape has been completely read. Ironically there haye
been some complaints that ALgor—as o langunge—has beer
heavily organized so as to permit type B transiators to be built,

© The tanslator Guxie, being built at the Rice Instituie, s ar
example of a system where certain machine properties can be
exploited in codes written in GeNIE. In general, they do uot appeas
to be too diflicult to translate inta actions o other machines thar
the one for which Gexte was designed.

‘9 The anthor here refers to the assembly problem, many o
whose aspecis are independent of the form of the source code
Systems suech as the anthors would like to see are currently being

built, e.g.. the ACT system designed for the Signal Corps,

cedure be activated recursively. Was this the intention of th
Committee?
Any comments from the Committec members or from in

torested bystanders would be welcomed.
H. Isnrrz
Rurdn ANDERSON
E. Book H. ManrLowir
H. Brarmaw Soxya BuAPRO
Systern Development Corporation
Santa Monice, California

W. Dobrusky
D). Excruwp

Note of Amplification
E. F. Coon

In parts 1 and 2 of the paper “Multiprogra
Scheduling” (June 1960 issue, pp. 347-350), the ten
“space-shared” is used. It seems desirable to clarify i
scope of this term, particularly as in one instance the ter:
was altered to “space-{memory)-shared.”

The term “space-shared” applies not only to the inter
storage (e.g., core) but also to auxiliary storage and npt
output devices (e.g., drums, disks, tape units, card reaciﬂr
and printers). In the case of (ape units, all tapoe units of
given type vonstilute a single (composite) space-share
facility for which the natural unit of gpace is a single
unit. A similar remark applies to card readers and P"m‘m

It should be emphasized that the scheduling algortt%h‘
described in Part 3 of the paper handies in one operaht
any number of different facilities and s not a scheme fi
internal storage alone.

