
0piniens

Comments from a FORTRAN User

John M. Blatt*

i ' I n t rodue t ion

'1 The calcuhttion of the binding energy of the nucleus
H ~, the lriion, cat~ only be dime mmmrically, and even

t then it is a quite complicated problem, involving "x large

t number of thre(>dimensional integrations and the lo-
• cation of the minhnum of a function of a large number of
Ivariables. Because of the linfited time during which the
~lactual coding eould be carried out (two months in New
i York), it was decided to use likmTaAN rather than a coding
scheme closer to the basic machine language of the IBM

'704, such as SAP. Indeed, a quick reading of the t) 'o,rraix
manual and some comments from F()[¢TI~AN users indi-
cated that FOaTICaX would save both time and effort and

would be a generally satisfactory scheme to use for this
problem. Actual experience with l:O1tTmtX coding on this
problem, however, has converted Paul into Saul: if a
similar problem should come up again, the author would
be vet T reluctant indeed to use I[ORTRAN.

It is the purpose of this paper to comment on the
features of compilers it, general, and FOaTnaX in par-
titular, that a r t required by the advanced coder. I t is the
~mthor's helief that no satisfactory scheme exists at present,
with the possible exception of the English AUTOCOD~. The
)eason for this lack is not tha t a satisfactory compiler is
hard to write. On the contraw, it would be much easier to

write than FoaT:[U~x. l lather, it has not been writ ten
~because the logical and physical requirements of a saris-
!factory compiler for advanced coders have not been
studied to a sufl-icient extent.

Although this paper contains some negative comments
on I"oa'raAx, they arc not meant to disparage the very real
achievement represented by FORTRAN. FORTRAN WaS a
fionecr efforl, well ahead of other compilers, and is very

J * Institute ef Mttthem,~lieal Sciences, New York University,
and Universilv of New South W,des Ketlsington, N.S.W., Aus-
tralia. Supported in part hy a grttnt from the U. S. Atomic Energy
Commission, Fo writ a N was used t o code a f'fi rlv el'itborate ealcuht-
lion in nuclear physics. Ba.sed on this experience, these comments

" a re m a d e regttrding the requirements ef compiling routines for
e0mplicalcd problems, in general, ,rod aspects o[F()R'rR:*N in
P'u'tieular.

[

Comments on features of compilers in
general, and Fortran in particular

successful indeed for the uses envisioned by the designers
of the routine. The fact that Fom 'aax has shortcomings
when used for a quite different kind of coding is not
surprising and in no sense detracts from the credit due to
the designers.

The remarks in this paper are just scattered comments,
rather than the results of an extensive study of present
and/or proposed compiling schemes. They are offered with
the hope that others, more experienced in this field, may
perhaps find some of them useful. From what little the
author has seen of the proposed ALGOL scheme, it would
not be satisfactory in actual use by an advanced coder.

Purposes of Compilers

There are basically two different classes of machine
users, both of which require compiling routines: (A) users
who have no, or very little, experience in coding, and whose
problems are short compared to the available machine
storage and machine time; and (B) users who are expert-
enced coders with really big problems, in which machine
storage and machine time must be considered seriously.

We shall denote compilers for these two classes of users
as compilers of type A and B, respectively.

I t is not always realized just how seriously the require-
ments of type A and type B compilers differ from each
other. In actual /'act, they are completely incompatible.
FOmU~AN WaS designed as a type A compiler, and works
extremely well when used in that way. As a type B com-
piler, it is therefore, necessarily, quite unsatisfactorv.

Some of the differences in requirements relate to:
(i) machine time for actual computation,

(it) machine time for compiling,
(iii) storage space taken by the object program, and

efficient use of storage space for lists of con-
slants,

(iv) access to machine i~structions and/or machine-
like instructions,

(v) coupling between different subroutines,
(vi) error detection,

(vii) nature of the Manual for the compiler.
These and other points are discussed below.

Conununications of the ACM 501

http://crossmark.crossref.org/dialog/?doi=10.1145%2F367390.367404&domain=pdf&date_stamp=1960-09-01

{i ~ ~ i ~!i

i~, ~ ~ ~ i

i~ii ~!~' ~'~ ~,: i ~

? ' ~ ii'~ !

i ~ ;!iil ~

: i ¸̧ ;i} !

• i[!iill !~!!

!;i~ii

i~i+ili!!i

First, however, we would like to (:eminent on the fre-
quently made statement th'~ adva,eed programmers do
no~ require compiling routines anyway m~d should use
either machine language or else a rotttinc such as SAil'
which is very close to machine lauguage. The author
strongly disagrees with this point of view. Machine lan-
guage, and even SAP, takes much longer to write than a
language such as I?OL~TtC~X, and many more ac(,ual syinbots
must be writ ten down on pqper and transferred to cards.
There is no reason to make an advanced programmer do
unnecessary arid tedious bookkeeping merely because he
is an advanced programmer, t:urthermore, the more
actual symbols are written on paper, the more actual
cards are punched and the higher is the probability of
purely trivial errors. These can of course be detected and
eliminated by code-checking, but this takes time and
effort that Gould well be devoted to better purpose. The
machine must always be considered the slave of man,
not man the slave of the machine.

Quite apart from the increase in sheet' work and nmnber
of trivial errors comleeted with machine language or SAP
coding, there is another major point for insisting on
compiling routines-- translat ion to a different machine.
At; the present time, machines are being designed in
many places, and new machines are coming out all the
time. If a program is written in the source language of a
universally recognized compiler, it may be assumed that
the actual compiling routine for each new machine will be
readily available. Translation of the code for the new
machine is then a simple operation---recompilation. Some
of the efficiency of" the original program may be lost, but
enough will remain to make this procedure worthwhile,
especially if the new machine is much faster than the pre-
vious one. On the other hand, a program coded in machine
language, or in SAP, is neeessarily tied to one particular
machine and becomes obsolete when the machine becomes
obsolete. Re-writing an entire major program for a new
machine is almost as big a job as writing the original
program. The re-writing job is usually not even attempted.

Thus type B compilers are necessary. The rest of this
paper is concerned with the rectuirements which they
must fulfil.

M a n u a l fo r t h e C o m p i l e r

The mam|al associated with a compiling routine is an
integral par t of the compiling system as a whole; it is one
link in a chain-- in the ease of t:oftTmtx, the weakest
link. No mat ter how good the basic eompiling routine
may be, it becomes unusable, or nearly so, if the manual
is bad.

Manuals for type B compilers must, be quite different
from manuals for type A compilers. The type B user
needs to know, in considerable detail, just what, the ob-
ject program is, corresponding to the various types of
source statements. In particular, he needs to kl~ow the
tmrnber of storage locations used in the object program,

502 C o m m u n i c a t i o n s o f the ACM

and the eomputa*io, time. T}~is i~d-r*u~,/ion should be .v.
gixen systematic~ l / aI t}w ~ame p. i~t at; which the ~t
source langtmge slatem('l~l il~ (It~¢'sii(m is explained ~
logically. It/ th(, pr(,se ~l I"()I¢'I'IL\N ,m~mat much of this e(
infornu'ttion is missi,g, a~,t ilte rest of it is located in II

el scattered places t}trougb.out the luler sections of the!
manual.

This requil'emelii of nlachin(> detail f()r type 13 n~anuals ~s
means that a new type of t~ lllal/ttal ntltst be writtea for ~
each new maehine ex'e~) though the s()ttree language of it[
the compiler is unchanged. Xllhottgh :~ t.yl)e 13 user will a
not. in general nee(t to /,:t|oxx the detailed machi~e lmi-
guage and other particular featur('> of the machine on
which the object program is to be rut,, the type B user
can never be satisfied nierely+, with understanding the
source tangtmge itself', t ie is presunlal)ly fighting ggaillsl;
storage space and machine time limitati()ns, and he must
be given adequate infornmtion at)out the object program
produced by the compiler+

Quite apart fronl the llature of the information e011-
rained in the manual, there is the question of the rnam+er
in which this information is presented. All too often, the
writing of the mamml is done by the person, or group,
responsible for writing the eontpiling routine itself. This
is bad pol icy:People who are good at talking to machines,
are often not. nearly so good when it, comes to talking
to people. The requirements are, after all, quite different:
In talking to people, redundancy, repetition, and emphasis
are essential to secure understanding. None of this is
required in talking to a niachine; in fact redundancy and
repetition are vices, and emph'tsis is impossible? Thus
the best. way to produce a compikw manual is to have it
written by a user, with the advice and consent of the
authors of the compiling routi| |e. (,~)

M a c h i n e T i m e for C o m p i l i n g

The more elaborate and " fancy" the compiling routine,
the more machine time is required for the actual compila-
tion. In the case of type A compilers, this is no problem:
the compiling r(mtine can do most of the code-checking,
and once a routine compiles, it almost always works the
way it is intended to work by the Iype A user. This is by
no means true for type, B use, rs. Even after the trivial
errors have been eliminated from ~ sul)routine, there are
any rmmber of non-trivial errors which may be contait~ed
in the subroutine, an(l an even larger nttmber of non-trivial
errors which arise out of the i | tteraction between different
subroutines. No mat ter how elaborate the compiling
routine is made, it can never test for such errors. Thus
re-compilation is a frequent oc(:urrence in type B program

t In the author's opinion, this is sufticient, re~son t.hat a hmgu~tge
SUe}~I a S F O t U I ' R A N O F A I , (~ () L CDAI H o v e r become It C O H I I / I O I I [t ~ l l g ~ / a g e

among mathematicians. Mathenm~iciatis .~re, usually, people.
(~; Superscripts in parcnth(~.ses refer to Editor's rel~tted com-

ments (mp. 506.

!dcvclOl~)m(mt, at~d the machine time required for compila-
i*~ tior~ t:ccomes a major factor.

During the author's stay in New York, he noticed the
ii~il frequency wi(h x~hich type B users were making hand-

,~punch(d corrections on the object program (binary deck)
merely to avoid reeompiling. This proce&~re ~s the reductio

; ad absw'dum oj" the whole philosophy q]" compiling rotttines!
1 of having simplified things for the user, the
ing routine (because of the machine time for
ing) actually forces the user to learn the basic
te language, study in detail the object program
ed by the compiler, and correct this program by the
,rimitive and time-consuming method imaginable.
way out of this difficulty would be to leave the
?r pret ty much as it is for the first compilation, but
up re-compilations. For example, the compiler
)unch out, in binary form, the information which
~x now puts on an output tape, and this informa-
uld be read in at the time of the re-compilation.
Ltively, FoaTa:tx could be made to read the pre-
)utput tape for any re-compilation (this method
necessitate a lot of tape handling).
e intermediate solutions appear unsatisfactory,
r. They are at best make-shift, compared to the
solution of the "instantaneous compiler". We
that one essential requirement tbr a type-B

..r is that its operation be substantially as fast;, or
~s fast, as the speed of reading in the source pro-
~uch a compiler will be called "instantaneous".
, with an instantaneous compiler, re-compilation
~roblem, and no-one need learn to make hand-
t corrections on the object program deck.
requirement of instantaneous operation takes

nee over all others. No matter how desirable a
feature of a projected compiling routine may
it should be eliminated ruthlessly if it conflicts

;tantaneous operation. An example is the optimiza-
bhe use of index registers carried out by FORTRAN.
volves a logical tracing of the flow of the whole
~, with branchings determined on a statistical

all sounds very desirable, and is in fact desirable
; A users. But it slows down the operation of the
r to a very appreciable extent, nmch too much for
users. For type B users, it would be both simpler
ter to allow the user to specify which index is to be
~ted in the machine by an index register, with
a list of priorities in case the object machine does

e enough index registers."
radical requirement of instantaneous compilation
o means visionary. In fact, AwTocom,: used ex-
g in England is substantially instantaneous. The
~as had no experience with AUTOCODE and there-
,not comment on its suitability in other respects.

)resent alternative allowed by FORTRAN II is not to op-
all. This is unacceptable for type B programs.

I t is the author's impression, perhaps incorrect, that
this requirement is being overlooked in the design of the
ALC~OL language. Although the author has never written a
compiling routine, he finds it difttcult to imagine how an
instantaneous compiler could be written for a language as
complex as AL(~OL. Thus, in the end, ALV~OL may turn
out to be quite suitable for type A use, and well-nigh
useless for type B coding. The sonrce lattguage for a type B
compiler is severely limited by the requirement of instan-
taneous operation and cannot be decided on the basis of
purely mathematical considerations, in splendid isolation
from the very real problems of writing an instantaneous
compiling "r()utine. (b >

M a c h i n e T i m e for R u n n i n g Objec t P r o g r a m

Every advanced progr'~mmer knows that, there are
tricks for speeding up a program---tricks which depend
on the particular machine and tricks which are common
to many different machines. One example is provided by
integrations using Simpson's rule. The coeiticients, 1, 2,
and 4, eat, be generated in a binary machine by shifting
or by altering the exponent of a floating-point number;
this is much faster than machine nmltiplication. With
FORTItAN, the user is denied access to the shifting instruc-
tions of the basic machine language. Actually, multiplica-
tion of a floating-point by a fixed-point nmnber is ex-
plicitly forbidden.

A solution to this problem is provided in FOWrRAN III :
the user is allowed access to the basic machine language
and may use direct machine instructions in sections of
the source program. In our opinion, this solution is not a
forward step but a backward step it, the development of
compiling routines. One main reason for using compilers
is the translation problem, discussed above. By going
back to the basic machine language, translation is made
impossible, or at least, very difficult.

An alternative, and in our opinion preferable, solution is
to include, as part, of the permissible statements of the
source language, statements that are easily translatable
to machine operations such as shifting.

To continue with this example, there could be source
language statements for "multiply by 2"" and for "mul-
tiply by 10 n''. In a binary machine, the first, of these
would be compiled as a fast, operation, the second as an
ordinary multiplication. In a decimal machine, the first
would be an ordinary multiplication, the second a fast
operation. Since practically all machines are either binary
or decimal and since the type B user knows which machine
he is writing for, this is sufficient for type B compilers
and av(aids the use of basic machine language as far
as shifting operations are concerned.

Another example of the inadequacy of FORTRAN for
type B operation is the simple problem of computing a
cheek sum for a list of numbers. In FoaTaAX, only two
types of addition are possible: floating point addition,
and addition of truncated (modulo 2 .5) fixed point numbers.

Communications of the ACM 503

i~ i ¸̧ (

i: ~ ii ~ ~ii

i I ~ii ~

!

i/;~ ~i!i i~ii~ I !ii
i! ~ ~! ~ i~ ~

i l l i!~ ~!~

, i ~ ,~

i:i! ii~i

Both of these are logically unsuitable for cEeck sums, the
first because numbers with small expo~ents never alter the
checksum, the second because a large fraction of the bits
in the table are excluded from the check. Furthermore,
even if one ignores the logical difficulty associated with
the floating-point addition, e~teh sucE addition takes
three and one-half times as long as the ordinary fixed-
point addition in the machine. Thus the computation
time for the checksum becomes appreciable, merely
because of properties of the compiler.

It, is highly recommended that any type B compiler
include, as part of the source language, the usual arith-
metic and logical commands available in most computers
today. This means both fixed-point (to full precision 1) and
floating point arithmetic operations, as well as some of
the simpler logical operations such as collation, negation,
and the like. Since these are M1 easily translated, their
inclusion does not conflict with the primary requirement
of instantaneous operation.

The criterion for inclusion of a certain type of "machine-
like" command in the source-language of a type-B
compiler is twofold: (i) The proposed command must be
useful for saving machine time and/or storage space for
the object program, (°) and (ii) It must be easily translat-
able into machine language for many machines.

Organization of Storage Space

A type A compiling routine can be written with the
idea that the storage space of the machine is substantially
infinite. No attempt need be made to conserve storage
space. FORTRAN, being a type A compiler, is very wasteflfl
of storage space. When used for type B operation, this
feature becomes a serious problem. In the author's
routine, it was necessary to read in the program in two
stages, use 7 out of the 10 tapes, and do a considerable
amount of overwriting of lists of numbers in the COMMON
store, in order to get the program into the machine at
all.

For a routine of this type, not only is FOnTRAX wasteful
of storage space, but the organization of the COMMON
storage is tremendously awkward and productive of
errors. In ForVrRAN II, constants are either stored within
each subroutine, or they are placed in a COMMON
list available to all subroutines.

Logically, however, there are at least two, and perhaps
three, different functions of COMMON storage:

(i) Temporary storage, used by several subroutines,
and ovm~vritten in turn by each new subroutine; this is
also known as "working space".

(ii) Storage of tables of numers used by several dif-
ferent subrouthms.

Classification (ii) may be divided into two subelassifiea-
lions:

(iia) Tables which are erased during the operation of
the program.

(lib) Permanent tables, which may be computed by a
preliminary interlude and are not changed there~ffter.

504 C o m m u n i c a t i o n s of the ACM

h~ writing a complex program it is well-nigh impossible ~lt
to determine i1~ a(tw~nce the Immber of items in each 0f 0/~
these lists. Sim'.e t?oa'rmx lumI> ~dl these lists together .st
into one C()MMON }is(, the COMMON list quickly Id
becomes a pa:tchwork quilt of segmeld,s from these three }
classes, t?ttrlherulore, ~/.ny oh'rage ill tile COMMON list 01
affects <,ll subrouiines ,'rod requires re-compilation of all
of them. Sin(x' re-compilation wit.it 1)'O[{Tt{AN is very time- ~i:
eonsumiI~g, the net effect is a most undesirable coupling e
between subroutines which are logicMly and mane-~I,
matically quite dislinet.

A possible way out, woukl be (o provide, in addition to i(
fixed addresses and addresses relocatable with respect to
zero, addresses reloeat~d)le wi(:h respect to a set of numbers !)}
which may be specified bv the programmer at the time the)ii
object program for the main program is read into he 'u
machine. There may well be other, and better, ways to f
allow the advanced progr'mmmr l'd;itude in the organiza-
tion of storage space. All we can do here is to call atten-
tion to the existence of this problem. (a)

Code Checking Facilities
In advanced program development, dynamic code

checking is essential. Post mortem printouts of the
contents of the fast store are frequently difficult to in-
terpret, and the tracing of errors by this method is at
best slow and difficult, at worst impossible. In FORTR.&N
II, code checking sequences must be incorporated into
the source language program, since there is no way to
get such information out of the compiled program. Since :
this undesirable feature of Fo~'rm~x II is corrected in
Fo~'ra:kN III, no further comment is necessary beyond
saying that any type B compiling routine must contain
this dynamic code cheek feature.

Another aspect of code checking is the checking done
by the compiler itself during the process of compilation.
Fore'nAN does a lot of that, and should of course do so
for type A use. For type B use, however, much of this
code checking is more of a nuisance than a help, and since
it slows down the compiling it is downright undesirable.;
For example, FoaTmtX checks that every branch in a
computed GO TO statement leads to actual source pro-
gram statements. In writing the source program, the
author has sometimes included extra, unused branches in
such computed GO TO statements, with the idea of using
them later on for additional branches. FOaTmtN then
refused to compile the routine until dummy statements
were made for these (unused) branches.

The main reason against doing extensive code-checking
during the compilation process is that it is logically im-
possible (o find the majority of errors in this way. In
type B programming, the most frequent type of error
arises from faulty interaction between different sub-
routines, and this type of error cannot l)e found by a
compiler which necessarily compiles one subroutine at a
time. Of course, any code checking which does not con-
flict with instantaneous operation of the compiler is
desiraMe, and shouM be incorporated into the compiling

II0 ~'I!!
ram Si~

, Iroutine. But as soon as the code-checking features slow
i lown the compiling appreciably, they should be eliminated;

i illstanta~eous operation is much more important than
~ode-checking din'trig compilation.

Conclusion

We hope tha~ the various, perhaps rather disconnected,
!~oints in the preceding sections will suggest ideas and
/avenues for exploration Co people better versed in the
field of compiling routines than the author. This paper is

l ln no sense a blueprint for a type B compiler, just some
odd coinments from a machine user.
. In conclusion, the author would like to express his
t appreciation and gratitude for the extensive and un-

[stinting help given him by the staff of the A. E. C. Cont-
puling Center, Insti tute of Mathelnatlcal Smetmes, New
]'ork University, in particular Drs. Riehtmyer, Isaaeson,
@oldstein, and Mrs. Bernice Weizenhofer. He also admires,
~nd is grateful for, the patience that all of them exhibited
in the face of his irascible nature. The author thanks the

~[;S Atomic Energy Commission for a grant of money
and machine time which alone made this work possible
~nd, last but not least, wants to record his appreciation

i0f the labors of his colleagues, Dr. Graham Derrick and
!,~Ir. David Mustard, without whose devoted efforts the
Ieode would eertainy not have been finished in the allocated
i~time.

'~ Appendix: M i n o r C o m m e n t s on F O R T R A N

The following aspects of FORTaAN gave rise to minor
nuisances in actual coding; they are all easily corrected,
~nd perhaps some of them have already been corrected
in FORTRAN III (with which the author is not familiar).
i (1) Indices must start at 1, that is, an array of numbers
an must have as its first member a,. In practically all
advanced coding, it is preferable to start such a list with
a0, and quite frequently occasion arises in which the initial
aember of the list has a negative subscript.

I t is of course quite easy for the coder to get around
ibis by defining a dummy index m related to n in such a

I ~vay that m starts with 1. However, these trivial things
~re among the most likely source of errors, and it would
Ibe~ highly desirable to let the machine do this dummy
'¢.ndexing. This is in general line with the philosophy that
the machine should be the slave of man.

i A "compatible" method would be the following kind of
DIMENSION statement:

DIMENSION A(5-19 , -14 - -8)

?his describes a two-dimensional array A(n, m) with n
i~,ay. In ~ranging from 5 to 19, m ranging from -14 to -8. Further-
0ii~;r ;~lore, we introduce the convention that the initial value

of the index may be omitted if it is in fact equal to unity,
i.e., the dimension statements,

ibii~ii: I)IMENSION B(1-100) and DIMENSION B(100)

~lii! is iare equivalent. Since the latter statement is the type used
n~0iiig :~f0r I OaTRaN at the moment, compatibility is assured.

!

Whenever the initial index value, call it n ~, differs from
1, the machine operates intcrnMly with the dummy index
n' = n - no + 1, which dummy index does start with 1.
The programmer, however, is no longer required to do
this bookkeeping.

(2) In iterative loops, organized through the DO
statement of FORTRAN', the programmer must not enter
the loop anywhere in its middle; rather, the loop must be
entered at its first instruction. Furthermore, if the DO
loop is completed ("the DO is satisfied"), tile index variable
of the DO is not aw~ilable for further use; the index
variable is available if an exit is made from the loop before
completion of the loop.

Both these restrictions stem from tile special way in
which such loops are organized in ii'otn'mtx; time is
saved by using increment fields of instructions, rather than
complete memory positions, to store the value of the loop
index. For the same reason, indices are restricted to
values less than 2 ~5.

Although this is perfectly all right for type A coding,
when applied to type B programming it is a textbook
example of being penny-wise but pound-foolish. In ad-
vanced coding, the trick of entering a loop somewhere in
its middle, and even entering it at different points de-
pending on what is to be done, is used all the time. The
time saved by FO~TICaN'S special method of organizing
DO loops is more than made up by the time, and machine
storage space, lost through having to enter each loop at
the beginning and by the nuisance of having to restore
the loop index explicitly if the loop has run to completion.
Furthermore, the restriction that indices must be less than
2 ~5 has been extended in FOP~TRAN to encompass all

fixed-point quantities, with highly undesirable results
(see the discussion of check sums in section 5). Again, by
this special method of organizing loops, indices in a loop
must necessarily be positive numbers, which is a nuisance
for the programmer.

As a general rule for type B compilers, special restric-
tions and conditions on variables and indices should be
avoided like the plague. I t takes a long while to accustom
oneself to them, and even at best these special regulations
are copious sources of coding errors. If a really substantial
amount of machine time can be gained by imposing special
restrictions, then the source language of the compiler
should provide two source statements, one fast but with
restrictions, the other slower but unrestricted. For example,
the statement DO may retain its present meaning and
restrictions, but the additional statement LOOP may be
provided, which does the same job as DO, but without
the special restrictions on DO statements.

I t should be rioted that considerations of this type are
essentially nonmathematieal, and it is the author's im-
pression, perhaps incorrectly so, that such nonmathe-
matieal considerations are not being given sufficient
weight in the design of the ALaOL language.

Communica t ions of the ACM 505

Editor's Comments on Compilers

The following comnmnts are meant to provide addition'fl in-
formation and not to detract from the v'due of Dr. Bla t t ' s
complaints (see Opinions, p. 50l) which, while specifying
FORTRAN, refer to many others as well. Certainly it is about
t ime tha t more compiler builders started designing translators
for the good programmer.--A.J.P.

(") Actually many such compiler manuals have been written by
users, though they have not been widely distril)uted, e.g., a
l)'owrRAx manual by Westinghouse, a.nd an IT manual by Texas
Instruments. However, to accent the author's complaint, most
of these manuals are intended to further isolate the oeeasioIml
user from the maehine. Is it imt obvious that, in the next few years
- - i f not already--there will be a large educated audience who will
be able to use--and probably insist upon--more control over the
manipulation of their eodes originally composed in an AL~OLdike
fornI.

(b) ActuMly there has been a large number of compilers built
whieh used the stated principle as the design motivation, e.g.,

FF, II[x([~na% (;AT, and Com~E(;aTl~: for the IBM 650, and MAE
for the IBM 704, to name ~m admittedly partial list,. C(mREGA'rE
permits modifications [o the object code in source language wit[c
only these modifieatioas retranslated. An Al,(a)t, translator ie
being built at (}ak Ridge, and in several centers in Europe, tc
function as type B compilers. Indeed, one at Mainz translates al
t he p'q)er tape input, speed and the object code commences runnin~
when the t'tpe has been completely read. [ronicMly there have
been some complaints that AL(~oL--as a language--has beer
heavily organized so as to permit type B translators to be built.

(¢) The t.ranslator GI,:N t~:, being/mil t at t he Riee Institute, is ar
example of t~ system where certa.in machine properties can b(
exploited in codes written in GENIE. In general, they do not appea~
to be too difficult to translate into actions on other machines that
the one for which (}~:xr~,: was designed.

(a) The author here refers to the assembly problem, many o
whose aspects are independent of the form of the source e0de
Systems such "ts the authors would like to see are currently bein~
built, e.g., the ACT system designed for tim Signal Corps.

LETTERS (continued)
Recommendations of the SHARE ALC~OL Committee, Comm.
Assoc. Comp. Mach. 2 (Oct. 1959), 25-26.

4. The absence of the return statement as defined in ALGOL 58
necessitates the use of an artifice such as a labeled dummy
statement, in the event that the last written statement in a
procedure body is not necessarily the last executed statement.
We believe that the committee should offer some justification for
its action in this matter.

5. We notice that there is no stop statement in ALGOl, 60.
Admittedly, "stop" may mean all things to all translators, but
there should be some standard method for denoting the termina-
tion of a dynamic statement sequence.

6. Section 4.7.6 appears to be incomplete and unnecessarily
eomplex, by virtue of the following reasoning:

(a) If a quantity is non-looM to a procedure body, it nmst
be local to some block which includes the procedure body, else
the procedure body is not completely defined.

(b) Hence, % procedure statement written outside the scope
of any non-local quanti ty of the procedure body" is ipso facto
outside the scope of the procedure body, and is accordingly un-
defined. (The scope of a procedure body may be defined analo-
guosly to the scope of a label, where the procedure identifier i:n
the heading and the same identifier in a statement correspond
respectively to a particular label and a reference to it..)

Thus, section 4.7.6 seems to be a special case of the principle
of scope, and might be emended to read as follows:

"A procedure statement is defined if and only if it occurs
within the scope of the procedure body, and the procedure body
is completely defined."

7. We regret that no provision for the specification of initial
data was made. If ALGOL was designed primarily for the com-
munication of algorithms rather than for machine implementa-
tion, then we concede that such a provision is unnecessary.

8. Section 5.4.4 implies that a function designator may occur
only as the left part of an assignment statement, lest the pro-

506 C o m m u n i c a t i o n s o f t h e ACM

eedure be act ivated reeursively. Was this the intention of th,
Committee ?

Any comments h'om the Committee members or from in
terested byst 'mders would be welcomed.

It . Isnn 'z W. DOBRUSK'~"
RUT/r ANDEgSON D. ENGLUND
E. BOOK H. MANELOWIT
H. BRA'r~AN SONYA SHAPIRO
System Development Corporation
Santa Monica, California

Note of Amplification
E. F. CoD[~

In p a r t s 1 and 2 of the p a p e r "Multiprogral
S c h e d u l i n g " (June 1960 issue, pp. 347--350), the terl
"spaee-shared" is used. I t seems desirM)le to clarify tt
scope of th is te rm, p a r t i c u l a r l y as in one instance the ter:

was a l t e r ed to " space - (memo ry) - s h a r e d . "
Ti le t e r m " s p a c e - s h a r e d " app l ies no t only to the intern:

s to rage (e.g., core) b u t also to a u x i l i a r y s torage and inpu
output , devices (e.g., d r u m s , d isks , t ape units , card reader
a n d p r in t e r s) . In the ease of t ape un i t s , all t ape units of
g iven t y p e eons t i t u t e a single (compos i te) space-share

f ac i l i ty for which the n a t u r a l utfit of space is a single ta[
unit . A s imi lar r e m a r k appl ies to ca rd readers and printer

I t should he e m p h a s i z e d t h a t the schedul ing algorithi
desc r ibed in P a r t 3 of the. p a p e r hand l e s in one operatic

a n y n u m b e r of d i f ferent hwi l i t ies and is not a seheme f'

in te rnM s to rage akme.

