
, m e T h o u g h t s o n

t r a l l c | P r o c e s s i n g

LYNN [) . YA t~I~J{()U(~tI

North America ~p~ .Jt ~iation Inc., [nglewood, (lag@

))I ,-
:i In the past two vears or so [have seen a numt)er of
{papers and hCar(t ~ m:m, ber of talks describing the char-
;iaeteristies~,- of (m~d ~:he wonders inherent in) certain com-
puters like Gamma 60, Ln,~c, H-8(X), STm!:TC,, and
others. Of course, all these machines share a capacity for
parallel asynehronous multiple processing. Now this is a
'~truly marvelous property, especially from the point of

ii ;view of the common variety of "my-job's-on-the-machine-
(" . , ..,,

keep-your-c ~tton-pmkm -hands-off programmer.
However, it appears to rne that the application of the

i multi-program technique, in any manner which ap-
proaches the true capacity of the hardware, creates some

• • • } . • r ~ , - headaches of imposing magmtude. [tm most obwous
problem is how to prevent one code from mutilating not
0nly itself but any of the other half-dozen or so programs
currently sharing the main memory.

Although much has been said and written about the
i solution of this and other problems (e.g., accounting and

I scheduling) associated with such multi-proeessors, I have
yet to heat' of anyone who has found a reasonable solution

h~lt o l the problem of mutual code-mutilation, or even has
raueh faith that a solution actually exists on a particular

i computer.
! Furthermore, I do not believe that the policy of restriet-

,i 'in" " " , "r" " " " :I g multi-processing aet~x l t y to produetmn programs is
~i a wholly satisfaetory solution. Being an experienced
i programmer, I know how hard it, is to get all the bugs out

of a large program, and I know of very few large programs
that will not run wild when particular (incorrect) data
sets are submitted to them. So I say there always exists
the spectre, however faint, of even "produetion" programs
killing each other.

Therefore I offer the following hardware scheme, for
what, it is worth. It does riot solve all the problems, but I
believe it does move the solutions to the biggest ones
within the reach of the programmer.

i Assume a system of n processors, operating in parallel
and sharing a common fast-access memory with binary
address logic.

Allow one processor, called the Monitor (M), access to
i all of storage. Then allocate storage to the remaining
n - 1 processors (A, B, C, " . .) according to the following
iiseheme: Assign tit(; leftmost n - 1 bits of the address as
allocation selectors so that it tim. ith bit i s a l , the ith
p'toeessc;;s,.n, has access to th'tt (tell, and it' that bit is a O,

that cell is not availltble to the ith processor.
] For example,/t 32-K memory would be used by ibm"
)ilpr°cessors in the following t'ashion:

-t-K Module Processors us ing this module

000 M
001 M, A
010 M, B
011 M, A, B
100 M, C
101 M, A, C
110 M, B, C
1 l l M, A, B, C

Consequences of this scheme would be:
1. One module of storage would be unassailable by

processors A, B, C. Similarly, one module accessible to A
could not be ruined by programs on processors B and C;
and so forth.

2. Each of A, B, C would have access m half of storage.
3. Any of the processors could communicate with any

others through the appropriate module.
4. Any priority method (that I have been able m dream

up) can be handled easily within this scheme. (But of
course I don't have a really objective point of view.5

5. The scheme would, I believe, allow parallel execution
of programs which use dynamic storage allocation (e.g.,
list togie) without resorting to the use of the Monitor as
referee, and wi~h a minimum of headaches.

A variant of this scheme would be to allow free use of
memory for readout, and use the memory allocation
seheme to restrict writing only. This would keep the
safety features intaet and allow freer communication
between processors, but would complicate to some degree
the task of storage assignment programs such as Com-
pilers and Assemblers.

There are problems in this scheme (such as address
eomputation involving eomplements) which I have not,
even attempted to solve. My hope is that the presentation
of this seheme, complete with fallacies, will jar someone
into finding a really good solution.

ACM Compiler Symposium

On Thursday and Friday, November 17-18 an
Open Tutorial Symposium on Compiler Construction
will be held at the National Bureau of Standards,
Washington, D. C. under the sponsorship of the
ACM Programming Language Committee.

Wri te r s of scientific- and bus iness-or iented language com-
pi lers will p resen t de ta i led explanat ions of the more in-
t e r e s t ing fea tures of the i r compilers, and new techniques
will be discussed. T h e papers are in t ended pr imar i ly for
exper ienced p rogrammers who are interest, ed in compiler
design. M1 papers will be pub l i shed e i the r in an ACM
m o n o g r a p h or in the Communications.

No registrat.ion fee; attendees please make own
housing arrangements. Programs available upon re..
quest to J. Wegstein, NBS

C o m n n l n i c a t i o n s o f t i l e XCM 539

~ i ̧ i; ̧!

l

http://crossmark.crossref.org/dialog/?doi=10.1145%2F367415.367426&domain=pdf&date_stamp=1960-10-01

