Check for
Updates

Some Thoughis on

Parallel Processing

Lyny D YanBROUGH

North American Aviation Inc., Inglewood, Calif.

[n the past 1wo years or so | have seen a number of
papers and heard & number of talks describing the char-

jaeteristics of (and the wonders inherent in} certain com-

iputers like Gamma 60, Lare, H-800, Sveercd, aod

fgthers, Of eourse, all these machines share o capacity for
;parallei asynchronous multiple processing. Now this is a
Aruly marvelous property, especially from the point of
‘view of the compmon variety of “my-job’s-on-the-machine-
_keep-your-cotton-pickin’-bands-off” programmer.

f However, it appears to me that the application of the
‘multi-program teehnique, in any manner which ap-
proaches the frue eapacity of the hardware, creates some
‘headaches of tmposing magnitude, The most obvious
problern is how to prevent one code from mutilating not
jonly iteelf but any of the other half-dozen or so programs
currently sharing the main memory.

Although much has been said and written about the

solution of this and other problems (e.g., accounting and
scheduling) associated with such multi-processors, T have
s vet to hear of anyone who hag found a reasonable solution
{to the problem of mutual code-mutilation, or even has
- much faith that a solution actually exists on a particular
| romputer.
I Turthermore, I do not believe that the policy of restrict-
{ing multi-processing activity to “production” programs is
ta wholly satisfactory solution. Being an experienced
programmer, [know how hard it is to get all the bugs out
of a large program, and I know of very few large programs
that will not run wild when particular {incorrect) data
sets are submitted to them. So I say there always exists
the spectre, however faint, of even “production” programs
killing each other.

Therefore I offer the following hardware scheme, for
what it is worth, It does not solve all the problems, but I
believe it does move the solutions to the biggest ones
within the reach of the programmer.

Assume a systemn of 7 processors, operating in parallel
jand sharing a common fast-aceess memory with binary
faddress logie.

Allow one processor, called the Monitor (M), access to
all of storage. Then allocate storage to the remaining
it — I processors (A, B, C, --) according to the following
scheme: Assign the leftmost n — 1 bits of the address as
allocation selectors so that if the ¢th bit is a 1, the ith
iProcessor has access to that cell and if that bit is & 0,
ithat cell is not available to the ith processor.

For example, a 32-K memory would bhe used by four
Processors in the following fashion:

4-K Module Urocessors using this module

000 M
00} M, A

010 M, B

011 M, AL B
100 M, C

101 M, A, C
110 M, B,
111 M, A B, C

Consequences of this scheme would he:

I. One module of storage wounld be unassailable by
processors A, B3, €. Bimilarly, one module accessible to A
could not be ruined by programs on proecessors B and C
and so forth.

2. Each of A, B, C would have access to half of storage.

3. Any of the processors could communicate with any
others through the appropriate module.

4. Any pricrity method {that I have been able to dream
up) can be handled easily within this scheme. (But of
course [don’t have g really ohjective point of view.)

5. The scheme would, I believe, allow parallel execution
of programs which use dynamic storage allocation (e.g.,
list logie) without resorting to the use of the Monitor as
referee, and with a minimum of headaches.

A variant of this scheme would be to allow free use of
memory for readout; and use the memory allocation
scheme to restrict writing only. This would keep the
safety features intact and allow freer communication
between processors, but would complicate to some degree
the task of storage assignment programs such as Com-
pilers and Assemblers.

There are problems in this seheme (such as address
computation involving complements) which I have not
even attempted to solve. My hope is that the presentation
of this scheme, complete with fallacies, will jar someone
into finding a really good solution.

ACM Compiler Symposium

On Thursday and Friday, November 17-18 an
Open Tutorial Sympostum on Compiler Construetion
will be held at the National Bureau of Standards,
Washington, D. C. under the sponsorship of the
ACM Programming Language Committee.

Writers of seientific- and business-oriented language com-
pilers will present detailed explanations of the more in-
teresting features of their compilers, and new techniques
will be discussed. The papers are intended primarily for
experienced programmers who are interested in compiler
design. All papers will be published either in an ACM
monograph or in the Communicalions,

No registration fee; attendees please make own
housing arrangements. Programs available upon re-
quest to J. Wegstein, NRBS

N =
Communications of the ACM 339

http://crossmark.crossref.org/dialog/?doi=10.1145%2F367415.367426&domain=pdf&date_stamp=1960-10-01

