
Computer-Drawn Flowcharts*

DONALD E. KNUTH
California Institute of Technology
Pasadena, California

To meet the need for improved documentation of written
computer programs, a simple system for effective communica-
tion is presented, which has shown great promise. The pro-
grammer describes his program in a simple format, and the
computer prepares flow charts and other cross-referenced list-
ings from this input. The description can be kept up-to-date
easily, and the final output clearly explains the original pro-
gram. The system has also proved to be a valuable debugging
and coding aid.

I n t r o d u c t i o n

Perhaps the greatest problem in computing today, al-
though little has been writ ten about it, is the need for
bet ter documentation of programs. This problem arises in
many ways, but basically it boils down to the question:
"How can a computer programmer write down the al-
gorithm he has used so tha t somebody else will readily be
able to understand i t?"

This problem arises at any computer center where the
standard programs have to be documented for future refer-
ence. I t is especially acute when a computer users group or
computer manufacturer distributes programs among in-
stallations. I t is also important for intercommunication
among several programmers working on the same project.

Every group of programmers has of course been faced
with this problem and has developed some policy designed
to circumvent the difficulties. In most cases, each pro-
grammer of the group is expected to follow a set of stand-
ard rules for documenting all programs; these rules com-
monly involve preparat ion of flow charts. Such a system
usually works fairly well (at least as far as the manager of
the group is concerned!), but people are beginning to
realize more and more tha t there are shortcomings in the
flow chart System:

1. Obsolescence. Although the flow chart might have
described the computer program at one time, a common
comment is, "Any resemblance between our flow charts
and the present program is purely coincidental." Another
frequent remark: "Some day we will update the flow
charts ." I t is expensive to maintain flow charts, yet every
change to a program makes the charts obsolete. In fact,
busy programmers often retain only the flow chart they
used for coding, without incorporating any of the changes
which occurred during the debugging stages.

* The preparation of this paper was supported in part by the
Burroughs Corporation, and in part by the Evergreen Corpora-
tion. The design of the system described was enhanced by dis-
cussions with W. C. Lynch and Joseph Speroni.

2. Lack of readability. After looking at dozens of sets
of flow charts for system programs, I find I have been able
to understand only about 25 per cent of them. Apparent ly
brevi ty is a virtue, and each person tends to make up his
own cryptic notation for writing down the information.
Elaborate subscripting, superscripting, and Greek letter
conventions are created, which are usually quite useless
to anyone but the author. This is caused largely by the
form of a flow chart itself: there simply isn't room to say
very much inside those boxes. Another factor is tha t flow
charts have two purposes: the creative flow chart, for help-
ing the programmer get his thoughts in order when initially
setting up the algorithm, and the expository flow chart, for
elucidating the algorithm to someone else. There is no
reason tha t both types of flow charts should be the same;
the problem is that the distinction is not clear, and crea-
tive ftow charts are often passed off as being expository.
One frequently hears of computer programs for which
"complete flowcharts" are available; fine, you write for
and receive copies, but they tell you virtually nothing.

3. Time consumption. Programmers have spent many
hours with template in hand, drawing beautiful charts on
vellum. The fact that this requires a good deal of t ime
tends to provoke a hurried job and a less careful one; thus
the obsolescence and lack-of-readability problems are in-
tensified. Even when the charts are drawn by someone
else, a great deal of t ime is required of the programmer,
for preparing and proof-reading the copy.

4. Level of detail. A wide variat ion is possible in flow
charts. Here, for example, is a flowchart for a compiler,

T
where a lot of the detail has been suppressed. At the other
extreme we find a flow chart with approximately as many
boxes as machine-language instructions. To present an
efficient exposition, actually several levels of detail are
necessary; no one level is sufficient for any but the shortest
programs.

Many people have felt tha t problem-oriented languages,
such as ALGOL, COBOL, and FORTRAN, take the place of
flow charts. Although programs expressed in this way are
somewhat easier to read, it is still a fact tha t much more
information is necessary for someone other than the origi-
nal programmer to understand the method used. For
example, it may take several hours of s tudy to discover how
some of the ALGOL algorithms (see Algorithms depar tment
of the Communications of the ACM) work. This is not a fault
of the ALGOL language, of course; it is due to the fact tha t
compiler languages are too detailed a level of description
for this purpose.

How can we avoid these problems? A logical approach
would be to let the computer help us. The computer can at

Volume 6 / Number 9 / September, 1963 Communications of the ACM 555

http://crossmark.crossref.org/dialog/?doi=10.1145%2F367593.367620&domain=pdf&date_stamp=1963-09-01

least handle the more mechanical, clerical details; only the
basic ideas should be required of the programmer.

A simple system along these lines was tried on an ex-
perimental basis (luring the summer of 1962. The ideas
used were by no means ingenious or completely new; they
were merely a combination of several notions which have
already appeared in the literature. However, when the
system was put into operation, it seemed to "click," and
it was extraordinarily successful--much more useful than
expected. Therefore we feel it may be the start of some-
thing valuable, and it is published here with the hope it
will stimulate others to try the system and perhaps to de-
velop it further.

Computers are, of course, widely used today for drawing
charts, especially for helping to automate the design of
other computers. Circuit diagrams have been prepared by
machine for quite a few years [3]. Weather charts, holiday
greetings, etc. are produced on the printers attached to
computers. An application to program-flowcharts was
given by Lois Haibt in 1959 [1]; this is an ambitious pro-
gram attempting to go from machine language to flow
charts automatically, and it is currently in use.

Perhaps the greatest difficulty encountered, if we at-
tempt to have a computer draw flowcharts, is the lack of a
large character set. IBM distributes special print wheels
designed to help print circuit diagrams (on special order),
and perhaps there are other similar devices; but the idea
here is to try to do a good job using only equipment which
is already available at one's computer center. Although a
more extensive character set would be quite helpful, it has
not proved to be necessary. A question mark "?" is an
especially useful symbol on flow charts, but techniques to
avoid using it are not hard to discover. Today's trend is to
larger and larger character sets on the new output devices,
so things will be !improving in this area; the system to be
described will, however, work satisfactorily on systems
with alphabetic, numeric, and some special characters,

such as a FORTRAN cha rac te r set. The original system
runs on a UNIVAC Solid State computer, whose character
set includes no equal sign, but a colon, semicolon, and
apostrophe; these more exotic characters were useful but
not essential .

Th is paper begins with a discussion of a three-level
system for effective documentation, then describes a
simple fo rma t for writing algorithms such that a computer
can do the rest of the work. Two appendixes appear at
the end of the text, for those interested in pursuing the
details further: A p p e n d i x 1 is a s t a t e m e n t of the precise
rules of the original fiowcharting system, and Appendix
2 is an algorithm by which the reader can set up his own
system.

Three Levels of Documentat ion

Let us try to find a w a y to present algorithms as effec-
t i ve ly as possible. A h in t of this appears in a brief article
written in 1959, " F l o w O u t l i n i n g - - A Subs t i t u t e for F low
Charting" [2]. The author, W . T. Gan t , says the pro-
g r a m m e r s at Shell Oil Corporation found this system
"superior to flowcharting, because it is less time-consuming
to prepare, easier to code from, and permits more detailed
remarks where needed." A flow outline is s imply a step-by-
step, English language description of the algorithm, where
every step is numbered or otherwise named.

The difference between a flow outline and a flow chart
is essentially that the flow outline is one-d imens ional , the
flow cha r t is two-d imens iona l . F o r some reason, a two-
d imensional , graphical presentation greatly helps to clarify
an exp lana t ion for human readers. "A picture is worth
1000 words , " etc. Therefore, although flow outlines
obviously have merit, we canno t expec t to do away with
flow charts entirely, if we are to have the most effective
communication.

A n interesting method has appeared in some Russ i an
publications (see, e.g., [5, p. 37]). I n this case, the algorithm

(. . . . ~ N - - -) * ~ ,

1 *

O O ~ 6 1 *
• A I -

A I , INITIALIZE t
• _-___- o $

I $

O (e , , , , , o o . , , , , , , . , , , , , , o •

0 0 1 2 l ! • A 2 .

A2. GET MIDPOINT) NO! * . t ' ' . ' ' . . " .JOT *
(. - .) T *

OK I I !

OUI9 It , • &3,
. - - - ) EQt o t . . . * * o ° . . ExIT •

t A } . T I M) I K E y) I *
(- - - - - - - - - - - - ) GRI , , o , , o t , , , , . ,) O *

• - • I • AS*
I A4. FIX LOWER , • ^ *

0 (~ , , o ~ , ° , , • , , , . , , . ° 1 ° , , o , , , 0 $

OOd7 ! ~
t

I A S . F I X UPPER l • . . ° . o • ° o .) ~ •

F I G . 1. Flow chart and flow outline for binary search

SERCHo
THIS SUBROUTINE SEARCHES THRouGH TABLE T
TO SEE IF IT CAN FIND AN ENTRY MATCHING
A GIVEN KEY.
INITIALIZE
START OUT ~Y SETTING *LOWERI TC I *
t U P P E R I T O iO00e
THE T&BLE I S T O 0 0 I THROUGH TZOCO A N D I S IN
ASCENDING SEQUENCE.
GET M I D P O I N T
SET t H ' Te (L G W E R ÷ J P P E R) / 2 , 'N~ WILL THUS
APPROXIMATE THE MIDPOINT OF TpE INTERVAL
WHERE WE HAVE P | N m o I N T E D THE SEARCHo
I F *U~PERe I ~ LESS THAN ILOWERet THE KEY
4 5 NOT IN THE TABLE=
T (M } I K E Y
COMPARE T (H) WITH THE SEARCH K E Y .
I F EQUAL, WE E X I T .
I= GREATER. TO A~.
~IX LhWER
SET 'LOWER" IQ M+ImAS T(M) IS TO0 SMALL.
TO A2.
=IX UmPE~
SET ~UPPER ~ TO H - L t AS T (H | I S TOO B I G .
TO A~o

CODING [)KTAILS: AT ENTRY RB2 CONTAINS THE ExIT
LOCATION AND RA CONTAINS THE KEYWORD.
I¢ ~OUNO~ THE PLACE FOUND IS lh RX.
I ¢ NOT IN TABLE. ExIT OCCURS TC LocATION'NOTI

556 Communica t i ons of t h e ACM Volume 6 / Number 9 / Sep tember , 1963

is explained in a written flow outline, with an accompany-
ing flow chart. The surprising feature is tha t each box on
the flow chart contains nothing but a single number,
referring to a step of the same number in the text. No
words or other symbols appear iu the flow chart; it shows
the flow, pictorially, nothing more.

Experience has shown tha t a modification of this method
is very effective. In this version, the steps in a flow outline
are not only numbered, but a short title is also given,
which summarizes the basic process described in tha t
step. This title or headline should be five words or less
(preferably less); its purpose is to indicate briefly what
happens at this step in general terms.

A flow chart accompanies this flow outline. On the flow
chart, only the step number and title appear, and also the
conditions for branching which distinguish between differ-
ent exits of the same block. The other details are sup-
pressed from the flow chart.

Looking at flow charts from this point of view, we see
~hat the graphical, two-dimensional effect is being used
to its full advantage; for the effectiveness of charts tends
to be inversely proportional to their complexity.

In fact, the reader needs to examine the more lengthy
information (given in the flow outline) only once or twice;
from then on, the title of the step alone is enough to signify
all the details of each step. The flow chart itself, although
only the titles appear, then su~ces to illustrate the mean-
ing of the situation.

Figure 1 gives an example of such a flow outline, with
an accompanying flowchart. The algorithm described is a

0000
OOOl TO001
0002 LOWER
0003 UPPER
0 0 0 4 KEY
0 ~05
(,U06 ~006 8B8 0 60 BOl t ~010 SERCH
0007 ~010 ~BB 0 25 4012 ~Olq
0008 ~011$ B~B 0 60 801A ~018
0009 ,|018 8~8 0 37 0300 ~02~
0010 40~U 8~8 0 60 B02~ ~028 1
0011 ~028 8~B 0 70 801~ ~033
0012 ~033 B~B 0 77 q033 ~036 3
0013 ~036 8~B 0 85 403~ ~015
O01U ~015 B~8 0 05 O00A ~019
0015 ~019 89B 0 30 BOIA ~023
0016 ~023 89B 0 87 4026 ~ 2 2 6
0017 ~226 B~B 0 82 402~ ~029
0018 4026 6RB 0 70 ~22~ O00A 2
0019 ~228 B~B 0 25 0990 ~001
00~0 ~001 ~ 8 0 ~0 80~A ~005
00~1 4005 B~8 I 82 0000 4009
00~2 ~009 8~B 0 87 ~212 ~a12
OOZ~ ~ 1 2 89B 0 25 O00C ~016
OOaU 4016 B~8 0 70 ~218 @031
OOa5 4021 Bq8 0 60 BOIA ~025
OOZ6 ~025 ~B 0 70 B02~ ~033
0027 ~212 B~B 0 25 000~ 4216 2
00~8 ~216 8~8 0 75 q~l~ ~024
00~9 ~18 B~B 0 O0 000| 0000
00~0
00~-

simple "binary search" of a sorted table. Notice how each
step in the flow outline has a few key words serving as the
title, and this title• appears on the flow chart.

Another important point to observe is the type of
description appearing in the flow outline. Because the
size limitation imposed by boxes is now gone, a clearer
explanation of each step is possible. In the flow outline,
the programmer should not specify merely what is done
at tha t step; it is highly desirable to have some iudication
of why it is being done. Information relating this step to
the program as a whole can be given, as well as a descrip-
tion of the current state of affairs and current subgoals at
the t ime this step is reached. One should not merely say,
" J is replaced by J + l , " for usually this does not imply
much to the reader unless he is keenly aware what J
means at this point. Better, perhaps, would be something
like this: "We are finished processing the J t h i tem of
TABLE, therefore J is increased by 1, in preparat ion for
a new i tem."

A great variat ion in detail is possible here; in general
it is preferable to include several related steps in a single
flow-outline step. I t is even valuable to include some
alternative conditions in a single step, e.g. "I f N is even
then square M, but if N is odd, subtract one from N and
double M." The test whether N is even or odd need not
e v e n appear in the flow chart. Such abbreviations are
quite often desirable, since a two-dimensionM flow is not
necessary to clarify such a simple test which can be
described in plain terms. On the other hand, there are
many applications in which a greater level of detail is

~t.O
m.R lO00
EQU ROIA
EOU BO2A
EQU BO]A
HHH
STA KEY
LDA# 00000
STA LOWER
$HL 0300
STA UPPER
ADD LOWER
ATL
MUL# 00000
LDX RA
LOL LOWER
TGR 2F
TEO 2~
ADO
LDA TO000
LDL KEY
TE02 0000
TGR 2~
LDA RX
ADO# 00000
STA LOWER
AOO UPPER
LDA RX
SUB
cON 00000

H

HHH

FiG. 2. Assembly language corresponding to Figure 1

1999
A, SERCHo

lO000

IF

3F

O00A5

A I , INITIALIZE

A2, GET MIDPOINT

NOT
RA

A], T(M)IKEY

tO000

3B

18
tO000

A~, FIX LOWER

A5. F IX UPPER

V o l u m e 6 / N u m b e r 9 / S e p t e m b e r , 1963 C o m m u n i c a t i o n s o f t h e ACM 557

desirable for the flowchart, and the programmer is free to
choose which he prefers for each case.

A third level of detail is also necessary in a well-docu-
mented program, namely the formal, precise language
which was input to the computer. In the original system,
an assembly language serves as this detailed description,
although a compiler language or any other well-defined
language would serve as well. Figure 2 shows an assembly
language program corresponding to the algorithm in
Figure 1. (The computer in this case is the UNivac Solid
State computer.)

Notice tha t the same titles and step numbers appear on
the assembly language listing as in the flow chart and flow
diagram. Furthermore, the numbers just above each box
on the flow chart represent the line number of the same
step in the assembly language listing. Thus, complete
cross-referencing is automatically provided.

I t is unnecessary to specify all of the details of a pro-
gram in the flow outline; only the important ones need
appear there. After all, the assembly listing provides the
final level of detail, and the flow outline is an informal
description. At the beginning of a fairly complicated
program, for example, t he title in a flow chart box might
say, "A1. I N I T I A L I Z E . " The flow outline might give the
additional comment, "Set all pertinent temporary storage
locations and counters to zero." The name of all these loca-
tions would appear only on the assembly listing.

The example just given should clarify the relationships
between the three levels of detail discussed here. The three
levels :

(1) formal language
(2) flow outline
(3) flow chart

in increasing order of generality, work together as a team
to provide efficient man- to-man communication of algo-
rithms. Experience has confirmed the practical value of
this method.

P r o g r a m m e r ' s F o r m a t

The reader may very well ask how all this is going to

save him time, if three levels of documentation are now

required rather titan the one or two now being used. In

this section we describe a simple format for writing flow

outlines in a way that the computer can readily draw the

FLO A.
TOOOl ~LR 1000 1) 9 9
LOWER EOU BOIA
UPPER EQU BOZA
KEY EOU BO3A

HHH H
5~RCH STA KEY A I .

LDA~OOOOO lOOO0
S~A LOWER
SHL 0~00 IF
STA UPPER
^DD LOWER 3F

3 ATL A2,
MUL~O0000 OOOA5
LDX RA
LDL LOWER
TGR 2F NOI
TEQ 2F NOT
ADD RA GKI
LDA TOO00 A } .
LDL KEY
T E Q 2 0 0 0 0 EOI
TGR 2F GRi
LDA RX LSI
AOO~O0000 I 0 0 0 0 Aq.
STA LOWER
AOD UPPER ~8
~OA RX AS.
SUB IB
CON O000O I0000

NOT
TEST
- T

~,T

HHH
HLT
LIRA 0000 T
I IRI 0001
ADD RA
5TAZTO000
I I R I OOOO
ADD - T
CON 9 9 9 0 0 0 0 ~ 0 0

SE"CH.
THIS SUBROUTINE SEARCHES THROUGH TABLE T
TO SEE IF IT CAN ~INO AN ENTRY MATCHING
A GIVE~ KEY,

INITIALIZE
STAPT hUT BY SETTING ~LOWER* TO I ,
*UPPER'TO IOO0.
THE TAnl_E I S TOOOl THROUGHTIUO0 AND ~S IN
ASCE~OTNG SEQUENCE.

GET MIDPOINT
S E T ' M , TO (LOWER+UPPER}X2. ' N ' WILL THUS
AP=ROxtMATE THE MIDPOINT OF THE INTERVAL
WHERE ~ HAVE PINPOI~TEQ THE SEARCH,
IF ,UPOcR ' IS LESS THAN *LOWER', THE KEY
ISUNOT IN THE TABLE,

T (M) I K E Y
COMPARE T I N) WITH THE SEARCH KEY,
IF ECUAL, WEREXIT,
IF ARE^TFR, TOnAS,

F I X LOIER
SET ~LhWER I TO M + I i A S T(M} IS TOO SMALL. •
TOeA2*
F I X UPmER
SET IUmPERt TO M-Is AS TIM) IS TOO BIG,
IOWA2.

CODING OET~ILSI AT ENTRY RB2 CONTAINS THE EXIT
X LOCATION AND RA CONTAINS THE KEYWORD,
X IF FCUNn l THE ~.ACE FOUND IS IN RX.

IF NOT IN TABLEi EXITOCCURS TO LOCATION*NOT' I;. TEST.
SET UP T
F I L L TABLE Tt PUTTING 2 I IN T (1) ,

LDA#OO01O 0 0 0 0 0 T2* SERCH IOO-
L I R 2 SERCH USE TH r SEAR(.H ROUTINE TO SEE IF 100 I S IN .
AO0~O0000 10000 T~. SEqCH lO l l
L I R 2 & T SERCH SEARCH ALSO FOR 1 0 1 1 H I C H ISNNOT IN THE TAMLE
END TEST
F I N

iF~G. 3. Input as punched on cards

flOW diagrams automatical ly and can also provide the
cross-referencing. The net effect is to save considerable
time, while greatly increasing the clarity of the final
documentation.

The programmer 's first step is to divide the program
into logical sections; each section will yield one flow chart.
A typical way to make the breakdown is to indicate one
section for each subroutine, and one section for each major
division of the program. An alphabetic letter is assigned
to each section, for reference. (The subroutine in Figure
1, for example, has been designated section A.) The steps
in section A are labeled A1, A2, • • • , A99.

Each section of the program is an independent unit.
I f the program is large enough to require more than five
sections, a special "preamble section" is given, which
explains the basic structure of the program, perhaps gives
the format of the files and tables, and shows how data is
packed into words. Then a table of contents is given,
listing the key-letter and the name of each section. The
flow charts and flow outlines of each section follow the
introductory information.

(- - - I N ) *
I •

I •

O U J 5 I *

I T I , S E T U P 1, I
• - - - . - , t

0 0 ~ 2 I •
• . o #

I T2o SERCH 100, I •

,

O 0 ~ g I
• - - -- - - - - • $

I T 3 ® S E R C H 1 0 1 , , I , , , , , , * , , , , , , • , • • , • , , • , • * , - - , • N O T $
• - _ _ , $

FIG. 4. Another flow chart produced from the

T • T E S r ,
T I , 'SET U P T

~ I L L T A B L E T i P U T T I N G 21 I N T (1) •

T 2 • H E R C H 1 0 0 ,
U S E T H E S E A R C H R O J T I N E TO S E E I F 1 0 0 I S I N •

T3. SERCN 101•
SEA~CH ALSO FOR 101 WHICH IS NCT IN THE TABLE

input of Figure 3

558 C o m m u n i c a t i o n s o f the ACM Volume 6 / Number 9 / September, 1963

As in Figure 1, each section usually begins with a
description of its generM function and some of the assump-
tions made. At the close of each section another explana-
tory paragraph regarding the more important coding
details often appears.

Figure 3 shows the input as it was punched on cards
before feeding it into the present system. Figures 1, 2 and
4 represent part of the output resulting from this input.
Only the right-hand side of the input is of concern to us
here; the left-hand side is writ ten in assembly language.

There are two fields on the documentat ion form; the
first, consisting of four columns in this ease, serves to
control the operation, and it is called the "documentat ion
key" field, or DK-field. The remaining field, 45 card
columns in this particular implementation, is the "title
and remarks" field. In Figure 3, the DK-field can be
located as those four columns containing "A.", "A2.",
"OK:", etc.

The rules regarding the DK-field are rather simple:
(1) At the beginning of each new section, the letter

indicating that section, followed by a period, is put in the
DK-field, and the remarks field contains the name of the
section. (By the way, this section name will appear on all
listings, and it also causes page ejection on all listings so
tha t each new section begins at the top of a page.)

(2) At the beginning of each step, the step number is
given in the DK-field, in the form "An." or "Ann.". Then
the remarks field contains the title of tha t step. This title
appears on all listings; in this case a title was limited to
a maximum of 20 characters, which was always found to
be adequate (except for a few eases where 21 characters
would have been preferable!).

(3) The DK-field is also used to give names of condi-
tions. Examples of this in Figure 3 are '%-o:", "OK:",
"EO :", "GI~:", and '%s :". These conditions are transferred
directly to the flowchart (see Figure 1), just as they
appear in the DK-field.

The final rule for the formatt ing is the way in which the
successor of each step is specified. A special character, in
this ease the number-sign %, is reserved for this purpose
and it may not be used in any other way. This special
character is punched just preceding the name of the step
following the present one. An arrow leading to tha t step
will be drawn on the flow chart. Examples of this in Figure
3 are " ~ EXIT" and " % A 5 " in step A3. Notice tha t the

-sign has been deleted from the actual listing of the flow
outline in Figure 1. The name of a successor begins with
the first character after the ~-sign and continues until
the first character which is not a letter or digit, up to a
maximum of five characters.

If the only exit from a step is to the step following, no
condition is given and no %-sign is used. (This occurs,
e.g., in step A1.) I f the only exit from a step is to another
pIaee, not the step following, no condition is given and
the %-sign is used to specify the succeeding step. (This
occurs, e.g., in steps A4 and A5.) I f there are several suc-
cessors of a step, condition names are given to distinguish

between branches, and a special shape of box is generated
on the flow chart. For each condition name, a successor is
specified using the ~-sign. I f no #-s ign appears for a
condition, the "next step in sequence" is implied. (For
example, consider step A3, where three conditions are
given; "EQ:" and "Gn:" have out-of-sequence successors
specified, while "LS:" refers to the next step. Notice the
different t rea tment given to these condition names in
Figure 1.)

I f the successor name is of the form "An" or "Ann",
where A is the key letter of the current section, the successor
is somewhere in the same flow chart, and an internal branch
line is drawn in the chart. If the successor name has any
other form, it is merely placed at the right with a line
leading out to it. For example, "NOT" and "EXIT" are
such external references in Figure 1, while the references
to A2, etc. have been done with internal branch connec-
tions.

To summarize this section, we have two main rules:
(1) The DK-field is used for (a) a key letter indicating

a new section, (b) a step number, indicating the title line
of a new step, or (c) a condition name.

(2) Place a $ -sign in front of the name of the successor
to a step, unless the successor is simply the next step.

C o n c l u s i o n s

We now report on the use of the original system. As
stated before, it saved much more t ime and gave far
bet ter results than were anticipated.

One of the greatest triumphs, perhaps, was tha t one of
the users who frankly disliked documenting programs and
usually did so somewhat grudgingly and cryptically,
confessed tha t it was actually fun to document programs
by this new method, and he turned out very readable
flow charts (for perhaps the first t ime in his life !).

While t rying the system, we used several different
approaches. In the original applications, the program was
writ ten and checked out first, and then the documentation
was writ ten and added to the program. This was in accord
with the original in ten t - -mere ly to save the labor of draw-
ing flow diagrams and keeping them up to date.

But a surprising feature developed. Although the entire
plm~ was oriented towards the preparation of expository
flow charts, we found that they actually served many
purposes of creative flow charts. A large number of bugs
in the programs were detected during this documentation
process, thus saving check-out t ime on the computer. The
following two approaches were found to be most fruitful:

1. First prepare a (sloppy) creative flow chart if you
wish, then prepare the code for the program. Before
debugging the program, draw the flow outline description
for the final documentation, using the handwrit ten com-
puter code as the source material. Then run this flow out-
line through the computer, and debug the flow charts
produced by the flow-charting program. Nearly all of the
mistakes in the program are caught in this manner, and
it is immediately clear when the flow chart makes no sense.

VoIume 6 / Number 9 / September, 1963 C o m m u n i c a t i o n s o f the ACM 559

Since this method is designed for effective man-man
communication, it works very well for "man-himself"
communication.

2. A second method would be to draw the flow outline
and debug it (using the computer-drawn charts) before
writing any of the code, then code from the resulting
diagrams. Clearly a combination of techniques 1 and 2
can also be used.

Thus we found tha t our program, which was written
purely to help solve the documentat ion problem, gave us
unexpected help in another problem area (namely rapid
desk-checking of algorithms) as a free bonus.

Another advantage of the system was tha t it took little
t ime to prepare. Perhaps it would be of value to give
some quanti tat ive time considerations here: We had
approximately seven man-months in which to write a
FowrRAN I I compi].er and a complete library of ari thmetic
and input-output subroutines. These were to be fully
documented. (Since we actually worked 12-14 hours per
day, seven days a week, the time scale given here is some-
what unrealistic, and perhaps 15 man months would be a
truer figure for the total t ime in terms of an ordinary
working schedule; but the actual t ime spent will be given
here.) Absurd as it may seem, we decided to write a com-
plete assembly program as well, and the assembly pro-
gram was to include an extra pass for drawing these
flow diagrams. The times taken for the various stages
of the project, including planning, coding and debugging,
are approximately:

Card- to- tape and t ape- to - tape pass for 2 man-weeks
assembler

Basic assembly features 3 man-weeks
F low-char t ing por t ion of the assembler 2 man-weeks

(2 passes)
FORTRAN transla tor 8 man-weeks
FORTRAN loader and storage al locator 4 man-weeks
FORTRAN l ib ra ry subrout ines 7 man-weeks
Ut i l i ty rout ines for debugging, etc. 2 man-weeks

Each pass of the flow-charting portion required less than
600 lines of coding.

The two man-weeks spent preparing the flow-chart
routine were saved many times over; al though we cannot
be sure, it is likely tha t we would never have finished if
we had not spent nearly one-third of the allotted t ime
preparing auxiliary programs, and the flow-charter in
particular. I t was very gratifying to see our flow charts
pouring out of the printer a t 600 lines per minute. All of
the programs in the above list are completely documented;
the FORTRAN translator has 26 flow charts with accom-
panying flow outline descriptions. These have been pub-
lished in limited distribution [4].

Design of the flow-charter changed several times during
the course of the summer, until it now has the form indi-
cated in Figures 1 to 4. Since the flow chart program was
not our main goal, we did not take the time to dress it up
with many frills, or to make major changes in it after it
began to work.

There is one feature in particular tha t we would now
change, based on experience in use. Notice tha t the condi-
tion names, which are writ ten in the DK-field (Fig. 3),
are suppressed on the final flow outline (Fig. 1). This
occasionally caused peculiar wording to occur in the
resulting flow outline, because the programmer forgot to
restate the condition in the text. As the system is now
(see e.g. step A3), each condition must effectively appear
twice, once in abbreviated form in the DK-field, and
again in the text. I t would have been preferable to repro-
duce the condition names on the final listing, perhaps
separated from the text; by an additional blank column.

A further suggestion for future systems is tha t the
flow chart language be divorced from the assembly lan-
guage, and actually punched on separate decks of cards.
Only a DK-field, containing the key letter of a new section
and the step nmnber of each step in its proper place,
would need to appear on the assembly language cards.
The flow chart program would carry out the necessary
merging process, or could be used independently for
preparing the charts and outlines only, with no formal
language description.

The only disadvantage of this dichotomy would be a
slightly increased tendency to neglect changing the flow
description whenever a change is made in the program.
However, the advantages are more significant, as the same
basic flow charting program can be made to work with
assemblers, compilers and any other formal language
system present at an installation.

The flow charts produced by our system are, of course,
not as beautiful as those done by a draftsman, but they
seem to be quite adequate for their purpose. In order not
to be accused of putt ing good draftsmen out of work,
however, we should perhaps add tha t these diagrams are
at least suitable for submission to a draftsman, so tha t if
there is at some point in t ime very little chance for a
flow chart to become obsolete, it can be redrawn in the
best professional manner.

A very simple-minded scheme was used for drawing
the flow charts: all boxes are in a single column, and all
connector lines are found to their right. Actually we found

(

1
(A) (B)

560 C o m m u n i c a t i o n s of t h e ACM V o l u m e 6 / N u m b e r 9 / S e p t e m b e r , 1963

this to be quite sufficient, but future systems may wish
to add some more topological sophistication. In particular,
a fairly common occurrence is something like (A) and in
our system the resulting chart is rather clumsily expressed
as in (B). A test for special cases of this type might be
desirable, as it has been done in [1]. I t would not be
extremely difficult to incorporate this into the algorithm
given in Appendix 2.

I t should be noted that even though this system will
produce improved documentation, there is still an art to
creating an extremely effective presentation. I t is possible
for a programmer to do a sloppy job with this system
if he is so inclined; there is no guarantee of good results.
But now that he has a more effective medium for expressing
himself, our experience has indicated that he will there-
fore strive harder to do a better job, thus getting more
satisfaction from the result.

We realize, of course, that our system is just a first step,
but we feel that it has been taken in the right direction.
We also realize that this system will not be widely used
unless computer manufacturers create and distribute such
flow-charting programs to their customers. But in this
article it is hoped that a few groups will be tempted into
trying the ideas on their own (after all, it is really rather
easy to write the program, and a method is given in Ap-
pendix 2). Because of our encouraging success, we are
sure this will go a long way towards relieving the current
documentation headaches.

A P P E N D I X 1

A few more rules were made regarding the DK-field in
our original system; these were not sufficiently important
to mention in the main text, and they may be improved
upon in future systems.

The DK-field could take the following forms:

1. Blank. No special significance.
2. K. Beginning of a new section, with key letter X.
3. Kn. Beginning of a new step, with this step number.

o r

Knn. Step numbers within a section must be in ascend-
ing order but not necessaryily in sequential order.

4. X Same as blank, except that the entire left*hand
part of the card is deleted from the assembly
listing (as in lines 31, 32 in Figure 2).

5. G The remarks in this card are not part of the flow
outline, they are machine-oriented or coding-
oriented details which are to appear only on the
assembly listing itself.

6. TABL Treated as blank; these are the first letters of
or "TABLE OF CONTENTS" and "CODING
CODI DETAILS", respectively, and were allowed in

the DK-field primarily for better-looking output.
7. Other A condition name. Although all the condition

names in Figure 1 have colons, this is by no means
a requirement. It would have been nicer to have
allowed five columns for the DK-field, to allow
longer condition names.

I t is possible to assemble with or without drawing flow
charts. When flowcharting is not in operation, the DK-

field and remarks are simply treated as a standard com-
ments area on an ordinary assembly program listing. When
flow charting, most of the comments are suppressed from
the assembly listing (see Figure 2). This makes the assem-
bly listing more readable, but it also makes it much harder
to make corrections to the decks when changes are neces-
sary. Therefore we found it wise to assemble both with
and without flow charting, marking our corrections on
that listing which included all the punches on the cards.
This is another reason why it would be wise to separate
the documentation information from the assembly infor-
mation: corrections will be more simply made.

NOTE. The assembly program described here is for a
rather unusual machine configuration (Solid State II-80,
with 8800-word drum, 1280-word core, and 6 tape units),
and it was designed merely to help create the FORTRAN I I
compiler rather than for distribution of the assembler
itself. Therefore the assembly and flow-charting system
are not a part of the UNIVAC Solid-State Library.

A P P E N D I X 2

If this method for explaining algorithms has any merit
at all, we should at least use it in this article to explain
the flow-charting algorithm itself. Due to lack of space,
however, a somewhat abbreviated description of the
algorithm must appear here. We describe a method which
is independent of an assembly program, as suggested in
the last portion of the text; the only connection with other
programs is that we assume a reference number may be
available for each step, indicating a line number on some
other listing.

The algorithm proceeds in two passes. The first pass
digests the information and edits it into a convenient
form, then the second pass produces the actual listing.
In the present system, the listing contains the flow chart
at the left, and the flow outline reproduced at the right.
For simplicity, we will only describe a program to print
the flow charts; the rest of the program, which simply
copies the input but suppresses the ~-signs, is a straight-
forward addition (the only complication being to properly
terminate a chart when both halves of the listing are
finished). A simpler alternative would be to print the
flow outline listing during pass 1, and to print only the flow
charts in pass 2. This was not done in our system since
we printed the assembly listing during the first pass.

Some intermediate language must be devised for any
two-pass algorithm, in order to communicate the informa-
tion from one pass to the other. In this case, as in many
others, it is convenient to make this an interpretive type
of language. The first pass "compiles" into this interpretive
pseudocode, and the second pass is merely an interpretive
routine, executing the pseudocode instructions.

The instructions in this pseudocode have the general
form (op, ADDRESS), although other information is also
intermixed with operators, as will be evident in the dis-
cussion which follows. The details of the operators are as

Volume 6 / Number 9 / September, 1963 Communications of the ACM 561

fo l lows :

(1,n) Prepare a square box for s tep :Kn. (K denotes the key
let ter of the current section.) The next line of code is the line
reference number corresponding to the formal language listing.
The following five lines contain 25 alphabetic characters to insert
in the flow chart box.

(2,n) This instruct ion is exactly the same as (1,n), except a
branch-shaped box is produced rather than a square box.

(3,0) Terminate this flow chart , and get ready to begin another.
(4,0) Terminate this flow chart , and then stop everything.
(5,n), (6,n), (7,n) Draw a branch to step Kn. The next line

contains a five-character condition name to identify the branch.
OP 7 is used for the f irst branch if there are more than one; OP 5
is used for the last branch, if there are more than one, and OP 6
is used for any other branches. If n = 0, an extra line of code
appears, giving the name of the place branched to (the branch is
to a step external to the present section).

(8, 0) Label the branch to the next box; the following line has
the condition name to be used as a label.

(9,n) Draw an unconditional branch to step n. If n = 0,
the next line has the appropriate successor name.

T h i s code c a n be e x p l a i n e d m o s t c l ea r ly b y e x h i b i t i n g

t h e p s e u d o c o d e c o r r e s p o n d i n g to F i g u r e 1 :

Location Instruction Location Instruction

01 : (1,1) 26 : bbbbb
02: 0006 27 : (7,0)
03 : bAl .b 28 : bEQ :b
04 : I N I T I 29 : b E X I T
05: ALIZE 30: (5,5)
06 : bbbbb 31 : bGR :b
07 : bbbbb 32: (8,0)
08 : (2,2) 33 : bLS :b
09 : (}012 34: (1,4)
10: bA2.b 35 : 0024
11 : GETbM 36: bA4.b
12: IDPOI 37 : F I X b L
13 : NTbbb 38 : OWERb
14: bbbbb . 39: bbbbb
15: (6,9) 40: bbbbb
16 : bNO :b 41 : (9,2)
17 : bbNOT 42: (1,5)
18 : (8,0) 43 : 0027
19 : bOK :b 44 : bA5.b
20 : (2,3) 45 : F I X b U
21 : 0019 46 : P P E R b
22: bA3.b 47 : bbbbb
23 : T (]VI) : 48 : bbbbb
24 : K E Y b b 49 : (9,2)
25 : bbbbb 50 : (3,0)

I n a d d i t i o n to t h i s p s e u d o e o d e , a t a b l e LREF w i t h 99

e n t r i e s is t r a n s m i t t e d to t h e s e c o n d pass , w h e r e LREF(n)

is zero if no b r a n c h l ines o c c u r t o s t e p K n , o t h e r w i s e

LREF(n) is t h e l o c a t i o n of t h e i n s t r u c t i o n on w h i c h t h e

v e r t i c a l l ine c o n n e c t i n g to box K n is t o be d i s c o n t i n u e d .

I n t h i s case we h a v e LREF(n) = 0 e x c e p t LREF(2) = 49,

LREF(5) : 42.

A r m e d w i t h t h i s i n f o r m a t i o n , t h e s e c o n d p a s s will n o t

n e e d to look a h e a d , a n d i t c a n p r i n t t h e i n f o r m a t i o n a t

h i g h speed .

Pass 1. The Mgorithm for the first pass could be wri t ten as shown
in Figure 5.
A1. I N P U T N E X T CARD

Read in the next card image. (If there are no more cards left,

[A?. COMPILE ~CC~SSOP, ~+YES-(Ae,. ANY # 2 ~ . ~ AS. COMPILE CONDmor~

(~ - - ~ A1. tNPtJT NE~T CAI~D O-K, FIELD?)
I

A,'~. ~tRtSt-t 'PP.EV, S E C T I O N] A4. COM]>ILE (l,n)
]

FIG. 5. Flow diagram for first pass of algorithm in Appendix 2

compile a (4,0) instruction, then dump out the LREF table and
all the pseudocode for the previous section, and t ransfer to the
second pass of the program.)

A2. WHAT D K - F I E L D ?

If the DK-field is of the form "I'2." go to step A3; if it has the form
" K n . " or " K n n . " , go to step A4; if it is blank, go to step A6;
otherwise the DK-field is assumed to contain a condition name,
and we go to step AS.

A3. F I N I S H P R E V SECTION

Compile a (3,0) instruct ion, and dmnp out the LREF table plus alI
the pseudocode for the previous section onto tape; this will be
sent to the second pass. (This step is bypassed the very first t ime,
since there was no previous section.) Then :record the new key
let ter , set the entire LREF table to zero, and get ready to begin a
new section. Go back to step A1.

A4. COMPILE (1,n)

We are at the beginning of a new step. If the preceding step had ~.
condition name branching to here (i.e., not followed by any suc-
cessor indication), compile (8,0) followed by the condition name.
In any event, compile a (1,n) operation, followed by the line
reference number and the five words of alphabetical information
in the t i t le of this step. If LREF(n) is not zero, set LREF(n) equai
to the location of this (1,n) operation code. Return to step A1.

A5. COMPILE CONDITION

If a condition preceded and had no named successor, save i ts
condition name (which will be used later to form an (8,0) opera-
tion the next t ime step A4 occurs). Increase the last operation
code by 1. This will change 1 to 2, 5 to 6, or 6 to 7. If the last opera-
t ion had been a 1, compile (6,0), else compile (5,0), followed by
the condition name. These manipulat ions will cause the following
sequence of operation codes in the pseudocode:

If there arc no conditions: 1;
If there is one condition: 2,6;
If there are two conditions: 2,7,5;
If there are three conditions: 2,7,6,5;
If there are four conditions: 2,7,6,6,5; etc.

The different numbering of branch operation codes 5,6,7 is used
to control where the condition name is placed on the charts by
the second pass.

A6. ANY ~ ?

Search the remarks field to see if the character " # " occurs. If not ,
re turn to step A1.

A7. COMPILE SUCCESSOR

If the preceding operation code is 1, this is an unconditional
branch, and so a (9,0) instruct ion is now compiled. Determine the
successor name (the characters following the t¢ sign). If it has the
form Kn or Knn, where K is the current key let ter , change the
address of the previous pscudocode instruct ion to n, and set
LREF(n) equal to the location of tha t instruct ion. Otherwise,

562 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 6 / N u m b e r 9 / S e p t e m b e r , 1963

compile the successor name into the pseudocode. Return to step
A1.

Pass 2. As mentioned before, pass 2 is a type of interpret ive
system. For simplicity, assume tha t the character set is tha t used
in Figure 1.

The only complexity in this pass consists of controlling the
lines to be drawn. This is handled by considering 15 sets of 2-
column pairs; each pair is set to "ON" or "OFF" or 'tSPECIAL." The
operation of "ON" and "OFF" varies depending on whether a bor-
izontal line is crossing this column or not:

OFF ON

horizontal line . . . :
no horizontal line bb b:

The meaning of "SPECIAL" is tha t one of the following 2-character
pairs is used

)0 .0 .V .A
and tha t a horizontal line is suppressed to the right of this column.
Furthermore, this column is to be set to OFF or ON for the following
line.

Besides these 15 columns, there is a vertical line for connecting
a box to tha t below it; this is also said to be either OFF or ON.

A subroutine called ASSIGN is used to handle horizontal lines.
If an external reference is to be made (e.g. to "EXIT"), a hori-
zontal line is simply run all across the page. Otherwise an internal
reference is being made, e.g. to Kn. First the subroutine checks
whether one of the 15 columns is already in use for Ku. If not,
a new column is chosen (the first available column of the set
1,5,9,13,3,7,11,15,8,14,2,12,4,10,6 in tha t order of preference) and
it is given the SPECIAL status ")0". If a column has already been
assigned, however, check LREF(n) to see if this is the place where
the vertical line is to be stopped. If so, the SPECIAL status ")0"
is given to this column; otherwise either " .V" or " .A" is given,
depending upon whether 'f low is current ly going down or up this
line.

The ASSIGN subroutine is used when a condition name is to be
processed: a column is ASSIGNed, and a horizontal line is run up to
this column. The ASSIGN subroutine is also used when bringing
a horizontal line into the flow, except here the special s ta tus ".0"
overrides the status chosen by the algorithm in the preceding
paragraph.

Tim subject of the last two paragraphs is hard to explain briefly,
but the example of Figure 1 should help in clarifying the situation.
At the beginning, all 15 columns are in the OFF status. Then at
line 9 of tha t chart , the ASSIGN subroutine is first used to choose
a column for step A2. Column 1 is chosen, and it is given the
special s tatus ")0" which is later overridden to be " .0" since it
is an input line. After line 9, colunm 1 remains in the ON status.
In line 19 the ASSIGN subroutine is used to select a column for
step A5. Column 5 is chosen, and given the s ta tus ")0", remain-
ing ON afterwards. In line 24 the ASSIGN subroutine is used for
step A2; column is already assigned for A2, and therefore the
s ta tus " .A" is given to this column here (the flow is going up-
wards). In lines 27 and 30, the ASSIGN subroutine is used again,
for steps A5 and A2 respectively, and in both cases the tREE
table indicates tha t the eolmnn is to be OFF after tha t reference.

A line-by-line description of the procedure followed for the
operators (1,n) or (2,n) follows:
First line (input node): If t R E E (n) = 0 there are no branch lines

leading into this node, and no special action occurs. If LREF(n)

0, the box-connector line is set to ON, and the ASSIGN subroutine
is used as described above to run a horizontal line to it.

Second line (cross reference number): On this line the cross-
reference number is obtained from the pseudocode and put onto
the listing.

Third line (top line of box): The top line of a box is created. If
this operation is (1,n), turn ON the box-connector line, and
draw a square box; if this is the operation (2,n), turn OFF the
box-connector line, and draw a rounded box. If the next opera-

tion in the pseudocode is of the form (7,n), this condition name
is also processed for this line.

Fourth line (alphabetics): The alphabetic ti t le is put into the
box. If the next operation in the pseudocode is of the form
(6,n), this condition name is also processed for this line. If the
next operation is of the form (9,n) an unconditional branch is
made (as if the condition name were ". ") and the box
connector line is turned OFF.

Fifth line (bottom line of box): The bot tom line of a box is created.
If the next operation is of the form (5,n), this condition name
is processed. If the next operation is of the form (6,n) there
were more than four conditions; extra lines are added, one con-
dition per line, until a condition of the form (5,n) is finally

processed.
Sixth line (possible label): If the next operator is of the form

(8,0) the label is inserted now and the box connector hne is

turned ON.
Transfer to next operation: If the bot tom of the page is danger-

ously near, print lines which are blank (except for the vertical
lines which are current ly ON) until the top of the next page is
reached. Then oxamine the next line of the pseudocode: the
operator must be less than or equal to 4, or else an error has

occurred. Process the next operator.

Comparison with Figure 1 will illustrate this procedure.
The essential feature of the algorithm is that it processes
each line by itself and then prints the line, rather than
consuming memory space to store a whole flow chart
before printing it out.

R E F E R E N C E S

1. HAIBT, LoIs M. A program to draw multilevel flow charts.
Proc. Western Joint Comp. Conf., 1959, 131-137.

2. GANT, W. T. Flow-out l ining--a subst i tute for flow charting.
Comm. A C M 2 (Nov. 1959), 17.

3. AARONSON, DAVID A., AND KINNAMAN, CLARISSA g. Produc-
tion of large and variable size logic block diagrams on a
high speed digital computer. AIEE paper CP 61-1116, Oct.
1961. (This paper includes a valuable bibliography of the

subject.)
4. FORTRAN II routine block chart (annotated). Document

UP-3843.1, Univac Div. Sperry Rand Corp., 1963. (To ade-
quately unders tand this document, the reader should be
familiar with the FORTRAN II input language of this particu-
lar implementat ion, and with the UNIVAC Solid-State com-
puter machine language.)

5. ERSHOV, A. P. Programming Programme for the BESM
Computer. Tr. from Russian by M. Nadler, Pergamon Press,
1959.

6. Towards bet ter documentat ion of programming languages, a
series of eight papers, Comm. A C M 6 (Mar. 1963), 76-92.
These articles are primarily concerned with the documenta-
tion of languages and computer systems for the user, ra ther
than with the documentat ion of the techniques used in the
programs themselves as described here.

7. IBM 7090/7094 IBSYS-IOEX Programming System Analysis
Guide. IBM Form C28-6299, IBM Corp., 1963. This document,
which has just come to the a t tent ion of the author, includes
flowcharts pr inted in a pleasing format by computer. Unfor-
tunately no mention is made of the input language for this

program.

Volt, me 6 / N u m b e r 9 / S e p t e m b e r , 1963 C o m m u n i c a t i o n s of t h e ACM 563

