then was executed in the following manner. The Hollerith
string of length NCHARS, starting with the Jth character
of WORD1 was scanned. If the Hollerith string of N
characters, that is represented above by dots (and which
was an external name) was found in this scan, joined by
an equality symbol to a numerical field, then the contents
of that field was stored as the new value of VALUE,
and LINK was set to 1. Otherwise VALUE was left
unchanged, and LINK was set to 0. It was permissible
to interpose one or more fields of the form *... ="" be-
tween the equality symbol, following the external name,
and the numerical value in the input, where any Hollerith
string not containing the equality symbol and not starting
with a signed or unsigned digit could appear in place of
the dots. Thus the input

Kl =K2=K3=17

was recognized by CVNOFT as equivalent to K1 = 7
and K2 = 7 and K3 = 7. The form of conversion (integer
or floating-point) depended only on the presence or ab-
sence of a decimal point in the input.

The original version of CVNOFT, which was used for
some four years, has not been distributed, as a shorter
version now can be constructed using IGD, FLD and a
simple FoRTrRAN coded scanning routine.

Acknowledgments. The authors would like to thank
Dr. J. W. Moskowitz for the benefit of helpful discussion.
The work that is reported here was supported in part by
grant GM 10-430 of the National Institutes of Health.

REFERENCES

1. Ramsay, W. B. Input (BCD, OCTAL, or DECIMAL) under
sense light control. SHARE Distrib. No. 1025.

2. LuBEck, 8. P., anp SmitH, R. B. General symbolic input
routine (FORTRAN). SHARE Distrib. No. 1294.

3. MitcueLn, M. F. Flexible decimal and alphabetic input
routine for FORTRAN II. SHARE Distrib. No. 1469,

4. Hassit, A. Format-free input allowing the use of the FOR-
TRAN list statement. SHARE Distrib. No. 1473.

5. YarBorougH, L. D. Input data organization in FORTRAN.
Comm. ACM, 5§ (1962), 508.

6. BarnETT, M. F. The evaluation of molecular integrals by
the zeta function method. Methods of Computaiional Physics,
Vol. II, p. 148, Academic Press, 1963.

7. BaiLey,M.J. A freeformatinput routine toread FORTRAN
variables and specified portions of arrays. Cooperative
Computing Lab. Tech. Note No. 30, MIT, 1963, SHARE
Distrib. 1432.

8. FurreELLE, R. P., aNp BarneTr, M. P. A FORTRAN sub-
routine to convert input data of arbitrary format. Solid
State and Molecular Theory Group, Programming Note
No. 22, MIT, 1958. :

9. BarveETT, M. P., AND FUTRELLE, R. P. Syntactic analysis
by digital computer. Comm. ACM & (1962), 515, also SHARE
Distrib. 1401,

10. BaiLey, M. J., BurLeson, P. B., CarteEr, E. J. D., anp
KerLLey, K. L. A BCD manipulation package for use within
FORTRAN. Cooperative Computing Lab. Tech. Note No.
12, MIT, 1962; also SHARE Distrib. 1371.

11. BarneETT, M. P. LoOWw level language subroutines for Use
FORTRAN. Comm. ACM 4 (1962), 492.

608 Communications of the ACM

Variable Width Stacks

Naomi RoTENBERG AND AscHER OPLER
Computer Usage Company, Inc., New York, N. Y.

Character addressabie, variable field computers permit
ready establishment and manipulation of variable width stacks.
Single machine commands may push variable field items down
into such stacks or pop them up. The availability of a variety of
field delimiters allows the machine to push down or pop up
more than one variable width item with one command. Since
these stacking operations can be made the basis of compiler
decoding algorithms, the proper use of machines of this class
for compilation has advantages over machines with fixed-
length words.

With the increased usage of character addressable
computers and the dominance of algebraic compilers in
scientific computing, many compilers are being written
for this type of computer. Since the majority of compilers
have been constructed for fixed-word length machines, a
belief that character addressable, variable length field
machines are inferior for compiling purposes has developed.
It is the intention of this report to indicate how the logical
design of such computers can be used to advantage in
compiling algebraic expressions.

The principal characteristics of these machines are the
assignment of an address to every single character in
memory and the ability to manipulate contiguous char-
acter fields by addressing one character and having the
operation extend to successive characters until a field
terminator is encountered. Several such machines allow
the field to extend either to the right or to the left of the
addressed character. Furthermore, the field size may be
controlled by a choice of several termination mechanisms.

During the process of compilation the elements of the
source language to be manipulated are usually variable.
A reference to the source language manual for most
procedure-oriented systems will verify this. For most
systems the manipulation required as part of the statement
decomposition exchanges variable length elements for
fixed-length elements or pads these to a fixed-length
equal to either the machine word size or to the size of the
longest allowable element.

Using the natural features of a character addressable
machine, it is possible to establish and manipulate variable
width pushdown lists which then obviates the necessity of
either substitution or expansion of language elements.
To demonstrate the principle, we describe an exceedingly
simple method for scanning algebraic expressions. The
scheme makes use of three pushdown stacks. One of these
is a variable width stack and the other two are character
stacks. A variable width stack is a sequential list of items
which are stored in a first-in, last-out manner, and each
item is variable in the number of characters it contains.

Yolume 6 / Number 10 / October, 1963

http://crossmark.crossref.org/dialog/?doi=10.1145%2F367651.367659&domain=pdf&date_stamp=1963-10-01

A character stack has the same general definition except
that each item consists of only one character.

The algebraic scan is earried out in a single right-to-left
sweep. Prior to this scan, a single left-to-right sweep
validity checks and edits the expression. The decomposi-
tion applies the rules as given by Forrran. That is, it
recognizes the role of nested parentheses, operator hier-
archy and the left-to-right grouping of nonparenthesized
operators of equal hierarchy. Functions and subscripts
are allowed in the expression according to the FoRTRAN
rules.

The edit scan that precedes the decomposition examines
each character and identifies and flags each operand and
each operator. In addition, significant separators in-
cluding commas, parentheses and equal signs are identified
and, in certain cases, replaced with an appropriate field
termination sign.

The method of decomposition is as follows. An index
sweeps across the edited expression item-by-item and,
according to the algorithm stated below, it either pushes
down the item into the variable width stack or pops
up items from the stack and delivers them to a post
processor in the form of a string. The character stacks
serve auxiliary functions in the scanning process. The
hierarchy stack is used to push down and pop up operators
as they are encountered in the scan. The mode stack is
used to store a symbol which corresponds to the mode of
the operand as it is pushed down into the main stack. The
use of the auxiliary stacks is deseribed below.

The control of all three stacks is parallel—whenever
one stack is pushed down, all stacks are pushed down;

1 EXAMPLE |
Y = AA+ B*CCCC«+DDD
MAIN HEIRARCHY MODE
B [F
* * F
cccce + F
* *
DDD
+*

OUTPUT STRING = B*xCCCC+*DDD—TEMP |

Y = AA+ TEMPI

AA + F
+ F F

TEMPI +
*

OUTPUT STRING = AA+ TEMP | —Y

ALL STACKS EMPTY

Volume 6 / Number 10 / October, 1963

whenever one stack is popped up, all stacks are popped
up. Not only are the directions (up or down) parallel, but
the control of the length of the sequence pushed or popped

EXAMPLE 2

Y = X + 372.146E12»VECTOR(IROW,JCOL) / ((3.5*«KEXP)+SINF(A,B+42.03) }

B
+
2.03
)
)
F OUTPUT STRING = B+ 2.03—TEMP !

=X+ 372.i4GEIZ*VECTOR(IROW,JCOL)/((3.MEXP)+SINF(A,TEMPI))
)

H——4
H—w—mam

()

A))
TEM@ + +

)

)

3

QUTPUT STRING = SINF(A,TEMP |})— TEMP 2

Y =X + 372146E12 «+VECTOR(IROW,JCOL}/((3.5#+KEXP) +TEMP 2)

3.5
*n
KEXP
)
+
TEMP2
)
:;:; QUTPUT STRING = 3.5%* KEXP—TEMP 3

H -+ - =
H~m - xm

Y =X+ 372.146EI12+VECTOR (IROW,JCOL) / (TEMP 3 + TEMP 2)

TEMP3 +
+)

TEMP2 t

)

+

F
F
)
T

OUTPUT STRING = TEMP 3 + TEMP2 —~TEMP 4

Y =X+ 372.146EI12+VECTOR(IROW,JCOL) 7 TEMP 4

H
+H nmm

X + F
+ £ F

TEMPS +
+

OQUTPUT STRING = X + TEMP 5 ~=+Y

ALL STACKS EMPTY

Communications of the ACM 609

is exercised in parallel according to the location in the
stack of the corresponding delimiter.

The production of coding from a variable length string
(eg, A+ B+ C+ D + E — Y) can produce more
efficient code than that produced from sequences of
triples (e.g. A +B—T,; Ti+C—Ts; To+ D— T
T; + E — Y) unless a separate optimizing pass is per-
formed.

To illustrate the use of the variable width stack, two
examples are given. The first is rather trivial but should
familiarize the reader with the general technique. The
second example illustrates the handling of some practical
problems.

Decomposition Algorithm

An index moves from right to left examining each
field:

1. If the field is an operand, it is placed in the main stack and its
mode is placed in the mode stack.

2. If the field is a delimiter, action is taken as follows:

a. If it is a terminator, it is placed in all three stacks.

b. If it is a right parenthesis, it is placed in all three stacks.

c. If it is a comma used to separate the arguments of a funec-
tion, it is placed in all three stacks.

d. If it is a left parenthesis, the stack is cleared to the first
right parenthesis encountered.

e. If it is an “‘equal”’ sign, the stack is cleared.

3. If the field is an operator, either it is placed in the main stack
and in the hierarchy stack or it causes the issuance of strings
to the post processor.

a. If the operator standing at the top of the hierarchical stack
has greater power than the encountered operator, then the
operands and operators in the main stack are issued to the
post processor down to the first operator of equal or lower
power.

b. If an operator appears between commas or between a comma
and a right parenthesis (i. e., if arithmetic is per-
formed within an argument of a function), then when the
next comma or function left parenthesis is encountered, the
main stack is popped up to produce strings for the post
processor down to the next comma or right parenthesis.

c. As coding is issued from the main stack under control of
the hierarchy stack, the mode stack output is checked for
consistency according to the FORTRAN rules. This out-
put is also used for selection of the proper exponentia-
tion sub-routine entry.

4. All strings that are produced except the final one are of the
general form e, op; e; 0py 3 -+ — temporary. The name of the
temporary field replaces the issued subexpression in the stack.

Summary

We have found that performing the decomposition of
statements written in source languages can be greatly
facilitated by taking proper advantage of the natural
features of character addressable computers. Manipula-
tion of elements of the source language as variable width
fields that may be scanned, stacked and manipulated as
code producing strings saves both space and time in
compilation. Our experience has verified that extremely
rapid processors can be constructed developing these
techniques.

610 Communications of the ACM

An Experiment in Automatic
Verification of Programs

G. M. WeINBERG AND G. L. GrREssETT*
IBM Systems Research Institute, New York, N.Y.

How effective is a compiler at replacing explicit verification,
and what is the cost of this technique?

With present-day techniques, the process of program-
ming usually involves a step of transcription of hand-
written programs into some machineable form, such as
cards or paper tape. Such a transcription has a finite
probability of error; and therefore validation techniques
are often used, the two most common ones heing double-
keying (as in key-verifying cards) and sight reading
against the original documents. Key verifying is generally
acknowledged to be the more reliable method, but its
greater direct expense accounts for the frequent use of
sight verifying techniques.

In the transeription of programs, the data (written
instructions) will ordinarily be subject to a number of
examinations by the originator (programmer) and cor-
respondingly to a number of opportunities for making
(expected) corrections. In addition, the instructions are
ordinarily scrutinized by a processor (compiler) which
has edit checks built into it for catching nontranseription
errors but which incidentally cateh a certain proportion
of transcription errors as a byproduct. As a consequence,
we find a number of programmers and installations who
have decided to bypass any explicit verification procedure
on the transeription of their programs. If this technique
is at least as effective as either of the other two verification
procedures, it may be that many other programmers
will wish to adopt it.

Actually, the motivation for the study leading to this
paper came from the consideration of a somewhat different
problem: the design of a low-cost terminal (one of multiple-
terminals) for remote operation of a large computer
system. In this case, the transcription device also serves
as a transmission terminal, so that the addition of some
key-verification capability or provision for sight verifica-
tion and correction could add considerably to both the
initial equipment cost and the unit production costs.

An equally important consideration in such remote
operations is the probability of a meaningful test run at an
early trial. The frustration of having programs returned
without execution because of some trivial error is magnified
when the user is far away and feels a lack of control.

For either purpose, the same questions have to be
answered: How effective is a compiler at replacing explicit
verification and what is the cost of this technique?

* Parts of this work were done in fulfillment of requirements
for graduation from the IBM Systems Research Institute.

Volume 6 / Number 10 / October, 1963

