
then was executed in the following manner.  The Hollerith 
string of length NCHARS,  start ing with the J t h  character 
of WORD1 was scanned. I f  the Hollerith string of N 
characters, tha t  is represented above by  dots (and which 
was an external name) was found in this scan, joined by  
an equality symbol to a numerical field, then the contents 
of tha t  field was stored as the new value of VALUE,  
and L I N K  was set to 1. Otherwise VALUE was left 
unchanged, and LINK was set to 0. I t  was permissible 
to interpose one or more fields of the form " . . .  ="  be- 
tween the equality symbol, following the external name, 
and the numerical value in the input, where any Hollerith 
string not containing the equality symbol and not start ing 
with a signed or unsigned digit could appear  in place of 
the dots. Thus the input 

K1 = K2 = K3 = 7 

was recognized by  C V N O F T  as equivalent to K1 = 7 
and K2 = 7 and K3 = 7. The form of conversion (integer 
or floating-point) depended only on the presence or ab- 
sence of a decimal point in the input. 

The original version of CVNOFT,  which was used for 
some four years, has not been distributed, as a shorter 
version now can be constructed using IGD,  F L D  and a 
simple FORTRAN coded scanning routine. 
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Variable Width Stacks 

NAOMI ROTENBERG AND ASCIIER OPLER 

Computer Usage Company, Inc., New Yorl% N. Y. 

Character addressable, variable field computers permit 
ready establishment and manipulation of variable width stacks. 
Single machine commands may push variable field items down 
into such stacks or pop them up. The availabil i ty of a variety of 
field delimiters allows the machine to push down or pop up 
more than one variable width item with one command. Since 
these stacking operations can be made the basis of compiler 
decoding algorithms, the proper use of machines of this class 
for compilation has advantages over machines with fixed- 
length words. 

With the increased usage of character  addressable 
computers  and the dominance of algebraic compilers in 
scientific computing, m a n y  compilers are being wri t ten 
for this type of computer.  Since the major i ty  of compilers 
have been constructed for fixed-word length machines, a 
belief tha t  character addressable, variable length field 
machines are inferior for compiling purposes has developed. 
I t  is the intention of this report to indicate how the logical 
design of such computers can be used to advantage in 
compiling algebraic expressions. 

The principal characteristics of these machines are the 
assignment of an address to every single character in 
memory  and the ability to manipulate contiguous char- 
acter fields by  addressing one character and having the 
operation extend to successive characters until a field 
terminator  is encountered. Several such machines allow 
the field to extend either to the right or to the left of the 
addressed character.  Furthermore,  the field size m a y  be 
controlled by  a choice of several terminat ion mechanisms. 

During the process of compilation the elements of the 
source language to be manipulated are usually variable. 
A reference to the source language manual  for most  
procedure-oriented systems will verify this. For most  
systems the manipulat ion required as par t  of the s ta tement  
decomposition exchanges variable length elements for 
fixed-length elements or pads these to a fixed-length 
equal to either the machine word size or to the size of the 
longest allowable element. 

Using the natural  features of a character addressable 
machine, it is possible to establish and manipulate  variable 
width pushdown lists which then obviates the necessity of 
either substitution or expansion of language elements. 
To demonstrate  the principle, we describe an exceedingly 
simple method for scanning algebraic expressions. The 
scheme makes use of three pushdown stacks. One of these 
is a variable width stack and the other two are character 
stacks. A variable width stack is a sequential list of items 
which are stored in a first-in, last-out manner,  and each 
i tem is variable in the number  of characters it contains. 
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A character stack has the same general definition except 
that  each item consists of only one character. 

The algebraic scan is carried out in a single right-to-left 
sweep. Prior to this scan, a single left-to-right sweep 
validity checks and edits the expression. The decomposi- 
tion applies the rules as given by FORTRAN. That  is, it 
recognizes the role of nested parentheses, operator hier- 
archy and the left-to-right grouping of nonparenthesized 
operators of equal hierarchy. Functions and subscripts 
are allowed in the expression according to the FORTRAN 
rules. 

The edit scan that  precedes the decomposition examines 
each character and identifies and flags each operand and 
each operator. In addition, significant separators in- 
cluding commas, parentheses and equal signs are identified 
and, in certain cases, replaced with an appropriate field 
termination sign. 

The method of decomposition is as follows. An index 
sweeps across the edited expression item-by-item and, 
according to the algorithm stated below, it either pushes 
down the item into the variable width stack or pops 
up items from the stack and delivers them to a post 
processor in the form of a string. The character stacks 
serve auxiliary functions in the scanning process. The 
hierarchy stack is used to push down and pop up operators 
as they are encountered in the scan. The ;node stack is 
used to store a symbol which corresponds to the mode of 
the operand as it is pushed down into the main stack. The 
use of the auxiliary stacks is described below. 

The control of all three stacks is parallel--whenever 
one stack is pushed down, all stacks are pushed down; 

E X A M P L E  I 

Y = A A +  B * C C C C * D D D  

MAIN HEIRARCHY MODE 

I! 
OUTPUT STRING = B * C C C C * D D D  TEMP I 

L 
Y = AA -I- T E M P  I 

I 
::t: OUTPUT = A - I - T E M P I  - ~ " Y  

whenever one stack is popped up, all stacks are popped 
up. Not  only are the directions (up or down) parallel, but  
the control of the length of the sequence pushed or popped 

EXAMPLE 2 

g = X + 372. 146EI2*VECTOR([ROW, JCOL)/((3.5**KEXPIJ,-SINP(A,B4.2.03)) 

  /OOTPOT ; 

• = X + 372. i46EI2*VECTOR (IROW, JCOL)/((3.5**KEXP)+SINF(A,TEMPI) ) 

OUTPUT STRING = SINF(A,TEMP I)--~- TEMP 2 

Y = X + 372.146 El2 *VECTOR(IROW, JCOL)/((5.5**KEXP) +TEMP 2) 

l i t : : :  t OUTPUT STRING = 3 .5 * *  KEXP--~-TEMP :3 

Y = X + 372.146EI2*VECTOR (iROW, JCOL) / (TEMP 3 +TEMP2 ) 

I:i i i 
~'-~OUTPUT STRING = TEMP3+TEMP2---, , . -TEMP4 

Y = X -t- 372.146EI2*VECTOR{IROW=JCOL) TEMP4 

* / 
VECTOR (IROW, J C ~  

~ : ~ : P ~  OUTPUT STRING = ~72.146 E 12 *VECTOR ( IROW, J C eL) / T EMP4--..t..TEMP5 

Y = X + TEM.P 5 

ALL STACKS EMPTY 
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is exercised in para l le l  according  to  the  loca t ion  in t he  
s t ack  of the  cor responding  de l imi ter .  

The  p roduc t ion  of coding f rom a va r i ab le  l eng th  s t r ing  
(e.g., A + B + C '4- D + E --~ Y) can  p roduce  more  
efficient code t h a n  t h a t  p r o d u c e d  f rom sequences of 
t r ip les  (e.g. A + B - +  T1; T i  -Jr C ---~ T2 ;  T2 ~ D ---~ ~ 3 ;  

T3 + E ~ Y) unless  a s epa ra t e  op t imiz ing  pass  is per-  
formed.  

To i l lus t ra te  the  use of the  va r i ab le  w id th  s tack,  two 
examples  are  given.  T h e  first is r a the r  t r iv ia l  b u t  should  
famil iar ize  the  reader  wi th  the  genera l  t echnique .  T h e  
second example  i l lus t ra tes  t he  hand l ing  of some p rac t i ca l  
p rob lems .  

D e c o m p o s i t i o n  A l g o r i t h m  

A n  index moves  f rom r ight  to  lef t  examin ing  each  
field: 

1. If the field is an operand, it is placed in the main stack and its 
nmde is placed in the mode stack. 

2. If the tield is a delimiter, action is taken as follows: 
a. If it  is a terminator, it  is placed in all three stacks. 
b. If it is a right parenthesis, it  is placed in all three stacks. 
c. If it is a comma used to separate the arguments of a func- 

tion, it  is placed in all three stacks. 
d. If it  is a left parenthesis, the stack is cleared to the first 

right parenthesis encountered. 
e. If it is an "equal" sign, the stack is cleared. 

3. If the field is an operator, either it  is placed in the main stack 
and in the hierarchy stack or it causes the issuance of strings 
to the post processor. 
a. If the operator standing at the top of the hierarchical stack 

has greater power than the encountered operator, then the 
operands and operators in the main stack are issued to the 
post processor down to the first operator of equal or lower 
power. 

b. If an operator appears between commas or between a comma 
and a right parenthesis (i. e., if arithmetic is per- 
formed within an argument of a function), then when the 
next comma or function left parenthesis is encountered, the 
main stack is popped up to produce strings for the post 
processor down to the next comma or right parenthesis. 

c. As coding is issued from the main stack under control of 
the hierarchy stack, the mode stack output is checked for 
consistency according to the FORTRAN rules. This out- 
put is also used for selection of the proper eiponentia- 
tion sub-routine entry. 

4. All strings that  are produced except the final one are of the 
general form el opl  e2 op2 ea • • • ~ temporary. The name of the 
temporary field replaces the issued subexpression in the stack. 

S u m m a r y  

W e  have  found  t h a t  pe r fo rming  the  decompos i t i on  of 
s t a t e m e n t s  wr i t t en  in source languages  can  be g r e a t l y  
fac i l i t a t ed  b y  t a k i n g  p rope r  a d v a n t a g e  of t he  n a t u r a l  
fea tures  of cha rac te r  addressab le  compute r s .  M a n i p u l a -  
t ion  of e lements  of  the  source l anguage  as va r i ab le  w i d t h  
fields t h a t  m a y  be  scanned,  s t acked  and  m a n i p u l a t e d  as 
code p roduc ing  s t r ings  saves  b o t h  space and  t ime  in 
compi la t ion .  Our  experience has  verif ied t h a t  ex t r eme ly  
r ap id  processors  can  be  cons t ruc ted  deve lop ing  these  
techniques .  

An Experiment in Automatic 
Verification of Programs 

G. M.  WEINBERG AND G. L. GRESSETT* 

I B M  Systems Research Institute, New York, N.Y.  

How effective is a compiler at replacing explicit verification, 
and what is the cost of this technique? 

W i t h  p r e s e n t - d a y  techniques ,  the  process  of p r o g r a m -  
ming  usua l ly  involves  a s tep  of t r a n sc r i p t i on  of h a n d -  
w r i t t e n  p r o g r a m s  iuto  some mach ineab le  form, such as  
cards  or  p a p e r  t ape .  Such a t r a n sc r i p t i on  has  a finite 
p r o b a b i l i t y  of er ror ;  and  there fore  v a l i d a t i o n  t echn iques  
are  of ten  used,  the  two mos t  c o m m o n  ones being double-  
key ing  (as in key -ve r i fy ing  cards)  and  s ight  r ead ing  
aga ins t  the  or iginal  documents .  K e y  ver i fy ing  is genera l ly  
acknowledged  to  be the  more  rel iable  me thod ,  b u t  i ts  
grea te r  d i rec t  expense accounts  for the  f r equen t  use of 
s ight  ve r i fy ing  techniques .  

I n  t he  t r ansc r ip t ion  of p rograms ,  the  d a t a  (wr i t t en  
ins t ruc t ions)  will  o rd ina r i ly  be sub jec t  to  a n u m b e r  of  
examina t ions  b y  the  or ig ina tor  (p rog rammer )  a n d  cor-  
r e spond ing ly  to  a n u m b e r  of oppor tun i t i e s  for m a k i n g  
(expected)  correct ions .  I n  add i t ion ,  the  ins t ruc t ions  are  
o rd ina r i ly  sc ru t in ized  b y  a processor  (compiler)  which  
has  ed i t  checks bu i l t  in to  i t  for ca tch ing  n o n t r a n s c r i p t i o n  
errors  b u t  which  inc iden ta l ly  ca tch  a ce r t a in  p r o p o r t i o n  
of t r ansc r ip t i on  errors  as a b y p r o d u c t ,  As  a consequence,  
we find a n u m b e r  of p r o g r a m m e r s  and  ins ta l l a t ions  who  
have  dec ided  to  bypas s  a n y  expl ic i t  ver i f ica t ion  p rocedure  
on the  t r ansc r ip t i on  of the i r  p rograms .  I f  th is  t e chn ique  
is a t  leas t  as effective as e i ther  of the  o the r  two ver i f ica t ion  
procedures ,  i t  m a y  be t h a t  m a n y  o the r  p r o g r a m m e r s  
will  wish to  a d o p t  it .  

Ac tua l l y ,  the  m o t i v a t i o n  for the  s t u d y  l ead ing  to  th i s  
p a p e r  came f rom the  cons ide ra t ion  of a s o m e w h a t  d i f ferent  
p rob l em:  the  design of a low-cost  t e r m i n a l  (one of mu l t i p l e -  
t e rmina l s )  for r emote  ope ra t ion  of a large c o m p u t e r  
sys tem.  I n  th is  case, the  t r a n sc r i p t i on  device  also serves  
as a t r ansmiss ion  t e rmina l ,  so t h a t  t he  a d d i t i o n  of some 
key-ver i f i ca t ion  c a p a b i l i t y  or  p rov is ion  for s ight  ver i f ica-  
t i on  and  cor rec t ion  could a d d  cons ide rab ly  to  b o t h  t he  
in i t i a l  e q u i p m e n t  cost  and  the  un i t  p roduc t i on  costs.  

A n  equa l ly  i m p o r t a n t  cons ide ra t ion  in such r e m o t e  
opera t ions  is the  p r o b a b i l i t y  of a mean ingfu l  t e s t  run  a t  a n  
ea r ly  t r ia l .  T h e  f ru s t r a t i on  of hav ing  p r o g r a m s  r e t u r n e d  
w i thou t  execut ion  because  of some t r iv i a l  e r ror  is magni f ied  
when  the  user  is far  a w a y  and  feels a l ack  of control .  

F o r  e i ther  purpose ,  the  same  ques t ions  have  to  be  
answered :  H o w  effective is a compi le r  a t  r ep lac ing  expl ic i t  
ver i f ica t ion  and  w h a t  is the  cost  of th is  t echn ique?  

* Parts of this work were done in fulfilhnent of requirements 
for graduation from the IBM Systems Research Institute.  
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