
then was executed in the following manner. The Hollerith
string of length NCHARS, start ing with the J t h character
of WORD1 was scanned. I f the Hollerith string of N
characters, tha t is represented above by dots (and which
was an external name) was found in this scan, joined by
an equality symbol to a numerical field, then the contents
of tha t field was stored as the new value of VALUE,
and L I N K was set to 1. Otherwise VALUE was left
unchanged, and LINK was set to 0. I t was permissible
to interpose one or more fields of the form " . . . =" be-
tween the equality symbol, following the external name,
and the numerical value in the input, where any Hollerith
string not containing the equality symbol and not start ing
with a signed or unsigned digit could appear in place of
the dots. Thus the input

K1 = K2 = K3 = 7

was recognized by C V N O F T as equivalent to K1 = 7
and K2 = 7 and K3 = 7. The form of conversion (integer
or floating-point) depended only on the presence or ab-
sence of a decimal point in the input.

The original version of CVNOFT, which was used for
some four years, has not been distributed, as a shorter
version now can be constructed using IGD, F L D and a
simple FORTRAN coded scanning routine.

Acknowledgments. The authors would like to thank
Dr. J. W. Moskowitz for the benefit of helpful discussion.
The work tha t is reported here was supported in par t by
grant G M 10-430 of the Nat ional Inst i tutes of Health.

REFERENCES

i. RAMSAY, W.B. Input (BCD, OCTAL, or DECIMAL) under
sense light control. SHARE Distrib. No. 1025.

2. LUBECK, S. P., AND SMITH, R. B. General symbolic input
routine (FORTRAN). SHARE Distrib. No. 1294.

3. h~TCHEm~, M. F. Flexible decimal and alphabetic input
routine for FORTRAN II. SHARE Distrib. No. 1469.

4. HASSIT, A. Format-free input allowing the use of the FOR-
TRAN list statement. SHARE Distrib. No. 1473.

5. YARBOROUGH, L.D. Input data organization in FORTRAN.
Comm. ACM, g (1962), 508.

0. BARNETT, M. 1='. The evaluation of molecular integrals by
the zeta function method. Methods of Computational Physics,
Vol.//, p. 148, Academic Press, 1963.

7. BAILEY, M.J. A free format input routine to read FORTRAN
variables and specified portions of arrays. Cooperative
Computing Lab. Tech. Note No. 30, MIT, 1963, SHARE
Distrib. 1432.

8. FUTRELLE, R. P., AND BARNETT, M. P. A FORTRAN sub-
routine to convert input data of arbitrary format. Solid
State and Molecular Theory Group, P~:ogramming Note
No. 22, MIT, 1958.

9. BARNETT, M. P., AND FUTRELLE, R. P. Syntactic analysis
by digital computer. Comm. ACM g (1962), 515, also SHARE
Distrib. 1401.

10. BAILEY, M. J., BURLESON, P. B., CARTER, E. J. D., AND
KELLEy,]~. L. A BCD manipulation package for use within
FORTRAN. Cooperative Computing Lab. Tech. Note No.
12, MIT, 1962; also SHARE .Distrib. 1371.

11. BARNETT, M. P. Low level language subroutines for Use
FORTRAN. Comm. ACM $ (1962), 492.

Variable Width Stacks

NAOMI ROTENBERG AND ASCIIER OPLER

Computer Usage Company, Inc., New Yorl% N. Y.

Character addressable, variable field computers permit
ready establishment and manipulation of variable width stacks.
Single machine commands may push variable field items down
into such stacks or pop them up. The availabil i ty of a variety of
field delimiters allows the machine to push down or pop up
more than one variable width item with one command. Since
these stacking operations can be made the basis of compiler
decoding algorithms, the proper use of machines of this class
for compilation has advantages over machines with fixed-
length words.

With the increased usage of character addressable
computers and the dominance of algebraic compilers in
scientific computing, m a n y compilers are being wri t ten
for this type of computer. Since the major i ty of compilers
have been constructed for fixed-word length machines, a
belief tha t character addressable, variable length field
machines are inferior for compiling purposes has developed.
I t is the intention of this report to indicate how the logical
design of such computers can be used to advantage in
compiling algebraic expressions.

The principal characteristics of these machines are the
assignment of an address to every single character in
memory and the ability to manipulate contiguous char-
acter fields by addressing one character and having the
operation extend to successive characters until a field
terminator is encountered. Several such machines allow
the field to extend either to the right or to the left of the
addressed character. Furthermore, the field size m a y be
controlled by a choice of several terminat ion mechanisms.

During the process of compilation the elements of the
source language to be manipulated are usually variable.
A reference to the source language manual for most
procedure-oriented systems will verify this. For most
systems the manipulat ion required as par t of the s ta tement
decomposition exchanges variable length elements for
fixed-length elements or pads these to a fixed-length
equal to either the machine word size or to the size of the
longest allowable element.

Using the natural features of a character addressable
machine, it is possible to establish and manipulate variable
width pushdown lists which then obviates the necessity of
either substitution or expansion of language elements.
To demonstrate the principle, we describe an exceedingly
simple method for scanning algebraic expressions. The
scheme makes use of three pushdown stacks. One of these
is a variable width stack and the other two are character
stacks. A variable width stack is a sequential list of items
which are stored in a first-in, last-out manner, and each
i tem is variable in the number of characters it contains.

608 Communications of the ACM Volume 6 / Number 10 / October, 1963

http://crossmark.crossref.org/dialog/?doi=10.1145%2F367651.367659&domain=pdf&date_stamp=1963-10-01

A character stack has the same general definition except
that each item consists of only one character.

The algebraic scan is carried out in a single right-to-left
sweep. Prior to this scan, a single left-to-right sweep
validity checks and edits the expression. The decomposi-
tion applies the rules as given by FORTRAN. That is, it
recognizes the role of nested parentheses, operator hier-
archy and the left-to-right grouping of nonparenthesized
operators of equal hierarchy. Functions and subscripts
are allowed in the expression according to the FORTRAN
rules.

The edit scan that precedes the decomposition examines
each character and identifies and flags each operand and
each operator. In addition, significant separators in-
cluding commas, parentheses and equal signs are identified
and, in certain cases, replaced with an appropriate field
termination sign.

The method of decomposition is as follows. An index
sweeps across the edited expression item-by-item and,
according to the algorithm stated below, it either pushes
down the item into the variable width stack or pops
up items from the stack and delivers them to a post
processor in the form of a string. The character stacks
serve auxiliary functions in the scanning process. The
hierarchy stack is used to push down and pop up operators
as they are encountered in the scan. The ;node stack is
used to store a symbol which corresponds to the mode of
the operand as it is pushed down into the main stack. The
use of the auxiliary stacks is described below.

The control of all three stacks is parallel--whenever
one stack is pushed down, all stacks are pushed down;

E X A M P L E I

Y = A A + B * C C C C * D D D

MAIN HEIRARCHY MODE

I!
OUTPUT STRING = B * C C C C * D D D TEMP I

L
Y = AA -I- T E M P I

I
::t: OUTPUT = A - I - T E M P I - ~ " Y

whenever one stack is popped up, all stacks are popped
up. Not only are the directions (up or down) parallel, but
the control of the length of the sequence pushed or popped

EXAMPLE 2

g = X + 372. 146EI2*VECTOR([ROW, JCOL)/((3.5**KEXPIJ,-SINP(A,B4.2.03))

 /OOTPOT ;

• = X + 372. i46EI2*VECTOR (IROW, JCOL)/((3.5**KEXP)+SINF(A,TEMPI))

OUTPUT STRING = SINF(A,TEMP I)--~- TEMP 2

Y = X + 372.146 El2 *VECTOR(IROW, JCOL)/((5.5**KEXP) +TEMP 2)

l i t : : : t OUTPUT STRING = 3 .5 * * KEXP--~-TEMP :3

Y = X + 372.146EI2*VECTOR (iROW, JCOL) / (TEMP 3 +TEMP2)

I:i i i
~'-~OUTPUT STRING = TEMP3+TEMP2---, , . -TEMP4

Y = X -t- 372.146EI2*VECTOR{IROW=JCOL) TEMP4

* /
VECTOR (IROW, J C ~

~ : ~ : P ~ OUTPUT STRING = ~72.146 E 12 *VECTOR (IROW, J C eL) / T EMP4--..t..TEMP5

Y = X + TEM.P 5

ALL STACKS EMPTY

Vo lume 6 / N u m b e r l0 / O c t o b e r , 1963

ALL STACKS EMPTY

C o m m u n i c a t i o n s o f t h e ACM 609

is exercised in para l le l according to the loca t ion in t he
s t ack of the cor responding de l imi ter .

The p roduc t ion of coding f rom a va r i ab le l eng th s t r ing
(e.g., A + B + C '4- D + E --~ Y) can p roduce more
efficient code t h a n t h a t p r o d u c e d f rom sequences of
t r ip les (e.g. A + B - + T1; T i -Jr C ---~ T2 ; T2 ~ D ---~ ~ 3 ;

T3 + E ~ Y) unless a s epa ra t e op t imiz ing pass is per-
formed.

To i l lus t ra te the use of the va r i ab le w id th s tack, two
examples are given. T h e first is r a the r t r iv ia l b u t should
famil iar ize the reader wi th the genera l t echnique . T h e
second example i l lus t ra tes t he hand l ing of some p rac t i ca l
p rob lems .

D e c o m p o s i t i o n A l g o r i t h m

A n index moves f rom r ight to lef t examin ing each
field:

1. If the field is an operand, it is placed in the main stack and its
nmde is placed in the mode stack.

2. If the tield is a delimiter, action is taken as follows:
a. If it is a terminator, it is placed in all three stacks.
b. If it is a right parenthesis, it is placed in all three stacks.
c. If it is a comma used to separate the arguments of a func-

tion, it is placed in all three stacks.
d. If it is a left parenthesis, the stack is cleared to the first

right parenthesis encountered.
e. If it is an "equal" sign, the stack is cleared.

3. If the field is an operator, either it is placed in the main stack
and in the hierarchy stack or it causes the issuance of strings
to the post processor.
a. If the operator standing at the top of the hierarchical stack

has greater power than the encountered operator, then the
operands and operators in the main stack are issued to the
post processor down to the first operator of equal or lower
power.

b. If an operator appears between commas or between a comma
and a right parenthesis (i. e., if arithmetic is per-
formed within an argument of a function), then when the
next comma or function left parenthesis is encountered, the
main stack is popped up to produce strings for the post
processor down to the next comma or right parenthesis.

c. As coding is issued from the main stack under control of
the hierarchy stack, the mode stack output is checked for
consistency according to the FORTRAN rules. This out-
put is also used for selection of the proper eiponentia-
tion sub-routine entry.

4. All strings that are produced except the final one are of the
general form el opl e2 op2 ea • • • ~ temporary. The name of the
temporary field replaces the issued subexpression in the stack.

S u m m a r y

W e have found t h a t pe r fo rming the decompos i t i on of
s t a t e m e n t s wr i t t en in source languages can be g r e a t l y
fac i l i t a t ed b y t a k i n g p rope r a d v a n t a g e of t he n a t u r a l
fea tures of cha rac te r addressab le compute r s . M a n i p u l a -
t ion of e lements of the source l anguage as va r i ab le w i d t h
fields t h a t m a y be scanned, s t acked and m a n i p u l a t e d as
code p roduc ing s t r ings saves b o t h space and t ime in
compi la t ion . Our experience has verif ied t h a t ex t r eme ly
r ap id processors can be cons t ruc ted deve lop ing these
techniques .

An Experiment in Automatic
Verification of Programs

G. M. WEINBERG AND G. L. GRESSETT*

I B M Systems Research Institute, New York, N.Y.

How effective is a compiler at replacing explicit verification,
and what is the cost of this technique?

W i t h p r e s e n t - d a y techniques , the process of p r o g r a m -
ming usua l ly involves a s tep of t r a n sc r i p t i on of h a n d -
w r i t t e n p r o g r a m s iuto some mach ineab le form, such as
cards or p a p e r t ape . Such a t r a n sc r i p t i on has a finite
p r o b a b i l i t y of er ror ; and there fore v a l i d a t i o n t echn iques
are of ten used, the two mos t c o m m o n ones being double-
key ing (as in key -ve r i fy ing cards) and s ight r ead ing
aga ins t the or iginal documents . K e y ver i fy ing is genera l ly
acknowledged to be the more rel iable me thod , b u t i ts
grea te r d i rec t expense accounts for the f r equen t use of
s ight ve r i fy ing techniques .

I n t he t r ansc r ip t ion of p rograms , the d a t a (wr i t t en
ins t ruc t ions) will o rd ina r i ly be sub jec t to a n u m b e r of
examina t ions b y the or ig ina tor (p rog rammer) a n d cor-
r e spond ing ly to a n u m b e r of oppor tun i t i e s for m a k i n g
(expected) correct ions . I n add i t ion , the ins t ruc t ions are
o rd ina r i ly sc ru t in ized b y a processor (compiler) which
has ed i t checks bu i l t in to i t for ca tch ing n o n t r a n s c r i p t i o n
errors b u t which inc iden ta l ly ca tch a ce r t a in p r o p o r t i o n
of t r ansc r ip t i on errors as a b y p r o d u c t , As a consequence,
we find a n u m b e r of p r o g r a m m e r s and ins ta l l a t ions who
have dec ided to bypas s a n y expl ic i t ver i f ica t ion p rocedure
on the t r ansc r ip t i on of the i r p rograms . I f th is t e chn ique
is a t leas t as effective as e i ther of the o the r two ver i f ica t ion
procedures , i t m a y be t h a t m a n y o the r p r o g r a m m e r s
will wish to a d o p t it .

Ac tua l l y , the m o t i v a t i o n for the s t u d y l ead ing to th i s
p a p e r came f rom the cons ide ra t ion of a s o m e w h a t d i f ferent
p rob l em: the design of a low-cost t e r m i n a l (one of mu l t i p l e -
t e rmina l s) for r emote ope ra t ion of a large c o m p u t e r
sys tem. I n th is case, the t r a n sc r i p t i on device also serves
as a t r ansmiss ion t e rmina l , so t h a t t he a d d i t i o n of some
key-ver i f i ca t ion c a p a b i l i t y or p rov is ion for s ight ver i f ica-
t i on and cor rec t ion could a d d cons ide rab ly to b o t h t he
in i t i a l e q u i p m e n t cost and the un i t p roduc t i on costs.

A n equa l ly i m p o r t a n t cons ide ra t ion in such r e m o t e
opera t ions is the p r o b a b i l i t y of a mean ingfu l t e s t run a t a n
ea r ly t r ia l . T h e f ru s t r a t i on of hav ing p r o g r a m s r e t u r n e d
w i thou t execut ion because of some t r iv i a l e r ror is magni f ied
when the user is far a w a y and feels a l ack of control .

F o r e i ther purpose , the same ques t ions have to be
answered : H o w effective is a compi le r a t r ep lac ing expl ic i t
ver i f ica t ion and w h a t is the cost of th is t echn ique?

* Parts of this work were done in fulfilhnent of requirements
for graduation from the IBM Systems Research Institute.

610 Comnlun i ca t i ons of t he ACM Volume 6 / Number 10 / October , 1963

