Check for
Updates

ALGORITHM 93

GENERAL ORDER ARITHMETIC
MrLarp H. PERSTEIN

Control Data Corp., Palo Alto, Calif.

procedure arithmetic (a, b, ¢, op);

integer a, b, c, op;

comment This procedure will perform different order arithmetic
operations with b and ¢, putting the result in a. The order of the
operation is given by op. For op = 1 addition is performed. For
op = 2 multiplication, repeated addition, is done. Beyond these
the operations are non-commutative. For op = 3 exponentiation,
repeated multiplication, is done, raising b to the power ¢. Beyond
these the question of grouping is important. The innermost
implied parentheses are at the right. The hyper-exponent is
always ¢. For op = 4 tetration, repeated exponentiation, is
done. For op = 5,6, 7, etc., the procedure performs pentation,
hexation, heptation, etc., respectively.

The routine was originally programmed in ForTrAaN for the
Control Data 160 desk-size computer. The original program
was limited to tetration because subroutine recursiveness in
Control Data 160 ForTraN has been held down to four levels in
the interests of economy.

The input parameter, b, ¢, and op, must be positive integers,
not zero;

begin own integer d, ¢, f, drop;
if op = 1 then
begina :=b +¢; gotol
endifop = 2 thend := 0;
elsed :=1; e:=¢;drop :=op — 1;
forf :=1step 1l untiledo
begin arithmetic (a, b, d, drop);
d:=a
end;
1: end arithmetic

ALGORITHM 94

COMBINATION

JEroME KURTZBERG

Burroughs Corp., Burroughs Laboratories, Paoli, Pa.

procedure COMBINATION (J, N, K); value N, K; integer
arrayJ; integer N, K;

comment This procedure generates the next combination of N
integers taken K at a time upon being given N, K and the pre-
vious combination. The K integers in the vector J(1) - J(K)
range in value from 0 to N — 1, and are always monotonically
strictly increasing with respect to themselves in input and
output format. If the vector J is set equal to zero, the first

combination produced is N—K, --- , N—1. That initial combina-
tion is also produced after 0,1, --- , N—1, the last value in that
cyele;
begin integer B, L;
B:=1;

344 Communications of the ACM

e]

H.J. WEGSTEIN, Edi

tor
mainbody: if J(B)=B then begin A := J(B) — B-1;
forL :=1stepluntil BdoJ(L.) := L4 A;
go to exit end;
if B = K then go to initiate;
B := B + 1; go to mainbody;
initiate: forB :=IstepluntilKdoJ(B) :=N-K—-1+B
exit: end COMBINATION

ALGORITHM 95

GENERATION OF PARTITIONS IN PART-COUNT
FORM

FRANK STOCKMAL

System Development Corp., Santa Monica, Calif.

procedure partgen(c,N,K,G); integer N,K; integer array c;
Boolean G;
comment This procedure operates on a given partition of the
positive integer N into parts £ K, to produce a consequent
partition if one exists. Each partition is represented by the
integers ¢[1] thru ¢[K], where ¢[j] is the number of parts of the
partition equal to the integer j. If entry is made with G = false,
procedure ignores the input array ¢, sets G = true, and pro-
duces the first partition of N ones. Upon each successive entry
with G = true, a consequent partition is stored in ¢[1] thru ¢[K].
For N = KX, the final partition is ¢|K] = X. For N = KX+,
1 £ r £ K—1, final partition is ¢[K] = X, ¢[r] = 1. When entry
is made with array ¢ = final partition, ¢ is left unchanged and G
is reset to false;
begin integer a i,j;
if = G then go to first;
=2
a = C[l];
test: if a < j then go to B;
cli] := 1+ ¢fjl;

c[l] :=a — j;

zero: fori:= 2stepluntilj — 1
do cfi] := 0;
go to EXIT;

B: if j = K then go to last;
a:=a+]Xc|j;
=i+
go to test;

first: G := true;

c[l] := N;
ji=K+1;

go to zero;
last: G := false;
EXIT: end partgen

ALGORITHM 96

ANCESTOR

RoserT W. FLoYD

Armour Research Foundation, Chicago, Il

procedure ancestor (m, n); value n; integer n; Boolean
array m;

http://crossmark.crossref.org/dialog/?doi=10.1145%2F367766.368160&domain=pdf&date_stamp=1962-06-01

comment Initially m [¢, j] is true if individual 7 is a parent of
individual j. At completion, m [z, 7] is true if individual 7 is an
ancestor of individual j. That is, at completion m[Z, j] is true
if there are k, [, etc. such that initially m[e, k], mlk, 1], - - -, m|p, j]
are all true. Reference: WarsnaLL, S. A theorem on Boolean
matrices, J.ACM 9(1962), 11-12;

begin

integer 1, j, k;

for i := 1 step 1 until n do

for j := 1 step 1 until n do

if m {j, i] then

for k := 1 step 1 until n do

if m [i, k] then

m [j, k] := true

end ancestor

ALGORITHM 97

SHORTEST PATH

RoBERT W. FLOYD

Armour Research Foundation, Chicago, 1l

procedure shortest path (m,n); valuen; integern; arraym;
comment Initially m[i, j] is the length of a direct link from
point ¢ of a network to point j. If no direct link exists, m [7, j] is
initially 1010. At completion, m [z, j] is the length of the shortest
path from 7 to j. If none exists, m [7, 5] is 1010. Reference: WaRr-
SHALL, 8. A theorem on Boolean matrices. J, ACM 9(1962), 11-12;
begin

integer i, j, k; real inf, s; inf := 1010;
fori := 1 step 1 until n do
for j := 1 step 1 until n do

if m [j, i] < inf then

for k := 1 step 1 until n do
if m [i, k] < inf then

begin s := m [j, il + m [i, kJ;
if s < m [j, k] then m [j, k] :
end

end shortest path

Il
@»n

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communications, February, 1960) except that ALGOL 60
notation should be used (see Communications, May 1960).
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Laboratory, National Bureau of Standards,
Washington 25, D. C. Algorithms should be in the Reference
form of ALGOL 60 and written in a style patterned after the
most recent algorithms appearing in this department. For
the convenience of the printer, please underline words that
are delimiters to appear in boldface type.

Although each algorithm has been tested by its contrib-
utor, no warranty, expressed or implied, is made by the con-
tributors, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the algo-
rithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the editor, or the
association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

ALGORITHM 98

EVALUATION OF DEFINITE COMPLEX LINE
INTEGRALS

Jouw~ L. Pravrrz

Syracuse University Computing Center, Syracuse, N. Y.

procedure COMPLINEINTGRL(A, B, N, RSSUM);
value A, B,N; real A, B,N; array RSSUM;
comment COMPLINEINTGRL approximates the complex line
integral by evaluating the partial Riemann-Stieltjes sum
St f(z)z: — 2] where @ £ ¢t £ band 2 € (201, 2.). The
programmer must provide 1) the procedures GAMMA (T, Z) to
caleulate z(¢) on I, and FUNCT(Z, F) to calculate function
values, and 2) the end points A and B of the parametric interval
and N the number of subintervals into which [a, b] is to be
partitioned;
begin integer I; real T, DELT; real array 47T, ZTL, DELZ,
ZK, PART[1:2]; RSSUMJ1] := 0.0; RSSUMI2] := 0.0;
DELT := (B — A)/N; T := A;
line: GAMMA(T, ZT);
if T = A then go to next;
for I := 1 step 1 until 2 do
begin
DELZ[I} := ZT[I] — ZTL[I]; end;
for I := 1 step 1 until 2 do
begin
ZK([] := ZTL[1] 4+ DELZ[1]/2.0;
FUNCT (ZK, FZ);
PARTI1] := FZ[1] X DELZ[1] — FZ[2] X DELZ[2];
PARTI2] := FZ[1] X DELZ[2] 4+ FZ[2] X DELZ[1];
for I := 1 step 1 until 2 do
begin
RSSUM(I] := RSSUMII] + PARTII]; end;
if T < B — (0.25 X DELT) then go to next else go to
. exit;
next: for I := 1 step 1 until 2 do
begin
ZTL{I] := ZT[I];
T:=T + DELT;
go to line;
exit: end COMPLINEINTGRL.

end;

end;

ALGORITHM 99

EVALUATION OF JACOBI SYMBOL
STEPHEN J. GARLAND AND ANTHONY W. KNaprp
Dartmouth College, Hanover, N. H.

procedure Jacobi (n,m,r);
integer n, m, r;
comment Jacobi computes the value of the Jacobi symbol (n/m),
where m is odd, by the law of quadratic reciprocity. The param-
eter r is assigned one of the values —1, 0, or 1 if m is odd. If m
is even, the symbol is undefined and r is assigned the value 2.
For odd m the routine provides a test of whether m and n are
relatively prime. The value of r is 0 if and only if m and n have
a nontrivial common factor. In the special case where m is prime.
r = —11if and only if n is a quadratic nonresidue of m;
begin
integer s;
Boolean p, q;
Boolean procedure parity (x); value x; integer X;
comment The value of the function parity is true if x is
odd, false if x is even;
begin
parity 1= x + 2 X 2 # x
end parity;

value nm;

Communications of the ACM 345

if — parity (n) then beginr := 2; go to exit end;

p = true;
loop: n:=n—n-+mXm;
q := false;

if n £ 1 then go to done;
even: if — parity (n) then

begin
q:= " q;
n:=n -+ 2;

go to even
end n now odd;
if q then if parity ((n12 — 1)+8) then p := — p;
if n = 1 then go to done;
if parity ((m—1) X (n—1) + 4) then p := - p;
$:=m; m:=n; n:=s; gotoloop;
done: r:=ifn = 0 thenOelseif p then 1 else —1;
exit: end Jacobi

ALGORITHM 100

ADD ITEM TO CHAIN-LINKED LIST

Purnip J. Kiviar

United States Steel Corp., Appl. Research Lab., Monroe-
ville, Penn.

procedure inlist (t,info,m,list,n first,flag,addr listfull);

integer n,m first,flag,t; integer array infolist,addr;

comment inlist adds the information pair {£,info} to the chain-
link structured matrix list (z,7), where ¢ is an order key = 0, and
info(k) an information vector associated with t. info(k) has di-
mension m, list(z,57) has dimensions (n X (m+43)). flag denotes
the head and tail of list(7,5), and first contains the address of the
first (lowest order) entry in list(z,7). addr(k) is a vector con-
taining the addresses of available (empty) rows in list(Z,5).
Initialization: list(i,m+2) = flag, for some i = n. If list(7,5) is
filled exit is to listfull;

begin integer i, j, linkl, link2;

0: ifaddr[1] =0; then gotolistfull; i:=1;

1: iflist [i,1] £ ¢

then begin if list [i,2] # 0 then begin linkl := m+2;

link2 := m+3; go to2end; else begin if
list [i,m+2] = flag then begin i := flag;
linkl := m+3; link2 := m+2; go to 3 end;

else begini := i41; go to1 end end end;
else begin linkl := m+3; link2 := m+42 end;
2: if list i,link2] # flag
then begin k :=1i; i := list [i 1ink2]
if (link2 = m+2 A list [1] =tV
(link2 # m+2 A list [i,1] > t) then go to 4;
else go to 1 end;
else begin list [i,link2] :=
3:] := addr [1]; list [j,linkl] := i;
list [},)ink2] := flag; if link2 = m+2 then
first := addr [1]; go to 5;
4: j := addr [1]; list {j,link1] := list [i,link1];
list [i,link1] := list [k,link2] := addr [1];
list, [j,link2] :=
5: list [j,1] :=t; fori := 1 step 1 until m do
list [j,i+1] := info [i]; fori:= 1step 1 untiln—1do
addr [i] := addr {i+1]; addr[n]:=0
end inlist

addr [1] end;

346 Communications of the ACM

ALGORITHM 101

REMOVE ITEM FROM CHAIN-LINKED LIST

Paivie J. Kiviar

United States Steel Corp., Appl. Res. Lab., Monroeville,
Penn.

procedure outlist (vector,m list,n first,flag, addr);
integer n,m,first,flag; integer array vector,list,addr;
comment ()uthst removes the first entry (information pair with
lowest order key) fromn list(7,7) and puts it in vector(k);
begin integer i;
fori:= 1step 1 until m+1 do vectorli] := list [first,i];
fori:= n—1 step —1 until 1 do addr li+1] := addr [il;
addr (1] := first;
if list [first,m+3] = flag then
begin list [I,m+2] := flag; first := 1;
fori := 1 step 1 until n do addr [i] := i end;
else begin first := list {first,m+3];
list [first, m+2] := flag end;
for i := 1 step 1 until m+3 do list [addr [1],i] := 0
end outlist

ALGORITHM 102

PERMUTATION IN LEXICOGRAPHICAL ORDER
G. F. ScHRACK AND M. SHIMRAT

University of Alberta, Calgary, Alberta, Canada

procedure PERMULEX (n,p);

integer 1n; integer array D;

comment Successive calls of the procedure will generate all
permutations p of 1,2,3,- - - ,n in lexicographical order. Before the
first call, the non-local Boolean variable ‘flag’ must be set to
true. If after an execution of PERMULEX ‘flag’ is false,
additional calls will generate further permutations—if true, all
permutations have been obtained;

begin integer array g[l:n]; integer i, k, t;

if flag then
begin fori :=

Boolean flag2;

1 step 1 until n do

pli] :=1i; flag2 := true; flag := false;
go to EXIT
end initialize;
if flag2 then
begin t := pln]; pln] := pn—1]; ph—1] := t;

flag2 := false; go to EXIT
end bypass;
flag2 := true; fori := n—2 step —1 until 1 do
if pli] < p[i+1] then go to A;
flag := true; go to EXIT;
A: for k := 1 step 1 until n do q[k] := 0;
for k := i step 1 until n do q[p[k]] := p[k];
for k := p[i] + 1 step 1 until n do
if qlk] # 0 then go to B;
B: pli] := k; qlk] := 0;
for k := 1 step 1 until n do
if q[k] # 0 then begini :=1i4 1;pli] :=
else if i = n then go to EXIT;
EXIT:
end PERMULEX

qlk] end

ALGORITHM 103
SIMPSON’S RULE INTEGRATOR
Guy F. Kuncir
UNIVAC Division, Sperry Rand Corp., San Diego, Calif.
procedure SIMPSON (a, b, f, I, i eps, N);

value a, b, eps, N; integer N;

veal a, b, L i, eps;
comment

real procedure f;

This procedure integrates the function f(z) using a
modified Simpson’s Rule quadrature formula. The quadrature is
performed over j subintervals of [a,b] forming the total area I.
Convergence in each subinterval of length (b—a)/2" is indicated
when the relative difference between successive three-point and
five-point area approximations

Az i = (b—a)(go + 492 + g2/ (3.2

As; = (b—a)(go + 491 + 2¢2 + 4z + g0/ (3271
is less than or equal to an appropriate portion of the over-all
tolerance eps (i.e., |(As,; — A3,;)/ds,; | £ eps/2* with n £ N).
SIMPSON will reduce the size of each interval until this con-
dition is satisfied.

Complete integration over [a,b] is indicated by ¢ = b. A value

a £ i < bisindicates that the integration was terminated, leav-
ing I the true area under fin {a,i]. Further integration over (Z,b]
will necessitate either the assignment of a larger N, a larger eps,
or an integral substitution reducing the slope of the integrand in
that interval. It is recommended that this procedure be used
between known integrand maxima and minima.;

begin integer m, n; real d,h; array gl0:4], Al0:2], S[1:N, 1:3];
I:=i:=m:=n:=0;

glo] := f(a);
gl2] := f((a + b)/2);
gld] := £(b);

Al0] := (b — a) X (gl0] + 4 X gl2] + gl4])/2;
AA: d:=2Mn; h:= (b — a)/4/d;
gll] :=f(a 4+ h X (4 X m 4 1));
gl3] :=f(a + h X (4 X m + 3));
All] := h X (gl0] + 4 X gl1] + gl2]);
Al2] :=h X (gl2] + 4 X gl3] + gl4]);
if abs (((Al1] 4+ Af2]) — Al0])/(All] + Al2])) > eps/d
then begin m := 2 X m;n :=n + 1;
if n > N then go to CC;

y

Ao} := Al1]; S[n,1] := Al2];

S[n,2] := gl3]; Sn,3] := gl4];

gl4] := gl2]; gl2] := gll]; go to AA
end

else begin I := 1 + (A[l] + Al2])/3;
m:=m+4+1; i:=a+mX (b —a)/d;
BB: ifm =2 X (m + 2) then
beginm :=m <+ 2; n:=n—1;
if (m £ 1) V (n # 0) then
begin A[0] := S[n,1]; gl0] := g
gl2] := Sin2]; gl4] := 8|

go to BB end

14];
n,3]; go to AAend

end

CC: end SIMPSON

REMARK ON ALGORITHM 19

RINOMIAL COEFFICIENTS (Richard R. Kenyon,
Comm. ACM, Oct. 1960)

BicHARD STECK

Armour Research Foundation, Chicago 16, Tl

The for clause of Algorithm 19 should read:

for i := 0 step 1 until b—1 do

With this correction the algorithm was certified on the Armour
Research Foundation UNivac 1105.
The recursion formula stated in the comment should read:

Cin = (n—1) C"/G+1).

CERTIFICATION OF ALGORITHM 46
EXPONENTIAL OF A COMPLEX NUMBER (J. R.
Herndon, Comm. ACM 4 (Apr., 1961), 178)
A. P. Reveu
Atomic Power Div., The English Electric Co., Whetstone,
England
Algorithm 46 was translated using the DEuce AneoL compiler,
no corrections being required, and gave satisfactory results.

CERTIFICATION OF ALGORITHM 48

LOGARITHM OF A COMPLEX NUMBER (J. R.
Herndon, Comm. ACM 4 (Apr., 1961), 179)

A. P. RELrr

Atomic Power Div., The English Electric Co., Whetstone,
Ingland

Algorithm 48 was translated using the Deuce ALcoL compiler,
after certain modifications had been incorporated, and then gave
satisfactory results.

The original version will fail if ¢ = 0 when the procedure for
arctan is entered. It also assumes that —r/2<d <3w/2, whereas the
principal value for logarithm of a complex number assumes
—r<dZw.

Incidentally, the ALcoL 60 identifier for natural logarithm is In,
not log.

The modified procedure is as follows:
procedure LOGC (a,b,c,d); valuea,b; reala,b,c,d;
comment This procedure computes the number ¢ 4 di which is

equal to the principal value of log, (@ + bi). If @ = 0 then ¢ is
put equal to —1047 which is used to represent ‘‘— infinity’’;
begin integer m,n
m := sign (a); n := sign (b);
if 2 = 0 then begin ¢ := —1047;
d := 1.5707963 X n;
go to k
end;
¢:=sqrt(a X a4+ bXb);
¢ :=In (¢);
d := 1.5707963 X (1—m) X (14+n—nXn) + arctan (b/a);
k: end LOGC;

CERTIFICATION OF ALGORITHM 58

MATRIX INVERSION (Donald Cohen, Comm. ACM 4,
May 1961)

Ricuarp A. CONGER

Yalem Computer Center, St.
Louis, Mo.

Louis University, St.

Invert was hand-coded in Forrran for the IBM 1620. The
following corrections were found necessary:

The statement ax,; := ax,; — b; X ¢k should be

ag,j ‘= 8k,j — bj X ¢k

The statement go to back should be changed to

i:=2r; zx:=12;; z;:=1; go to back

After these corrections were made, the program was checked by
inverting a 6 X 6 matrix and then inverting the result. The second
result was equal to the original matrix within round-off.

Communications of the ACM 347

CERTIFICATION OF ALGORITHM 66

INVRS (J. Caffrey, Comm. ACM, July 1961)

JOoHN CAFFREY

Palo Alto Unified School District, Palo Alto, California

INVRS was translated using the Burroughs 220 Algebraic
Computer (Barcowm) at Stanford University, using 8-digit floating-
point arithmetic. The misprint noted by Randell and Broyden
(Comm. ACM, Jan. 1962, p. 50) was corrected, and the same
example (Wilson’s 4 X 4 matrix) was used as a test case. The
resulting inverse was:

68.0000 -—41.0000 —17.0000 10.0000
25.0000 10.0000 —6.0000

5.0000 —3.0000

2.0000

It may also be useful to note that the determinant of the matrix
may be obtained as the successive product of the pivots. That is,
if t; (=T(1, 1)) is the ¢th pivot of a matrix of order n,

determinant = []? 4 .
For the above input example,
determinant = 1.0

Randell and Broyden’s observation concerning the apparent
limitation of INVRS to positive definite cases is correct: That is,
any nonsingular real symmetric matrix (positive, indefinite, or
negative) may be inverted using this algorithm. The original
INVRS should therefore be modified as follows:

if pivot = 0 then go to singular;

Randell and Broyden’s second example (of order 5) was also

used as a test case, with the resulting inverse:

—.0000 .9999 .0000 .0000 .9999
1.5333 —.7333 —.1333 .7999

— . 8666 —1.0666 ~—.5999

~—1.4666 ~.1999

.2000

determinant = —14.999999
An attempt to invert the inverse of the 4 X 4 segment of the
Hilbert matrix, as presented by Randell (Comm. ACM, Jan.
1962, p. 50), yielded the following results:

.9999 .4999 .3333 .2499
.3333 .2499 .1999

.1999 .1666

.1428

determinant = 6048020.6

CERTIFICATION OF ALGORITHM 67

CRAM (J. Caffrey, Comm. ACM 4 (July 1961), 322)

A. P. Revprr

Atomic Power Div., The English Electric Co., Whetstone,
England

CRAM was translated using the DEUCE ALGoL compiler with
the following corrections:
Vii] = 8 was changed to VIi] := S
flk,j] = VIk] was changed to flk,j] := Vik]
It is quicker not to use the table of the C[i] in the ‘“load”
sequence and instead use the following sequence:
load: m :=n X (n41)/2;
fori := 1step 1 untilm do READ (ali});

REMARK ON ALGORITHM 76

SORTING PROCEDURES (Ivan TFlores, Comm. ACM
5, Jan. 1962)

B. RANDELL

Atomic Power Div., The English Electric Co., Whetstone,
England

The following types of errors have been found in the Sorting

348 Communications of the ACM

Procedures:

1. Procedure declarations not starting with procedure.

2. Bound pair list given with array specification.

3. = used instead of :=, in assignment statements, and in a for
clause.

4. A large number of semicolons missing (usually after end).

5. Expressions in bound pair lists in array declarations depend-
ing on local variables.

6. Right parentheses missing in some procedure statements.

7. Conditional statement following a then.

8. No declarations for A, or z, which is presumably a misprint.

9. Inseveral procedures attempt is made to use the same identi-
fier for two different quantities, and sometimes to declare an
identifier twice in the same block head.

10. In the Presort quadratic selection procedure an array, de-
clared as having two dimensions, is used by a subscripted variable
with only one subscript.

11. At one point a subscripted variable is given as an actual
parameter corresponding to a formal parameter specified as an
array.

12. In several of the procedures, identifiers used as formal
parameters are redeclared, and still assumed to be available as
parameters.

13. In every procedure K is given in the specification part, with
a parameter, whilst not given in the formal parameter list.

No attempt has been made to translate, or even to understand
the logic of these procedures. Indeed it is felt that such a grossly
inaccurate attempt at ArLcoL should never have appeared as an
algorithm in the Communications.

CERTIFICATION OF ALGORITHM 77

AVINT (Paul E. Hennion, Comm. ACM 5, Feb., 1962)

Vicror E. WHITTIER

Computations Res. Lab., The Dow Chemical Co., Mid-
land, Mich.

AVINT was transliterated into BAC-220 (a dialect of ALGOL-58)
and was tested on the Burroughs 220 computer. The following
minor errors were found:

1. The first statement following label Li11 should read:
dif := 2 X a X xarg + b;

2. The semicolon (;) at the end of the line beginning with the label
116 should be deleted.

3. There appears to be a confusion between ‘1’ (numeric) and
“1”” (alphabetic) following label L12. This portion of the
program should read:

L12: sum := 0; syl :=xlo; jul := nop — 1; ib:=2;

After making the above corrections the procedure was tested for
interpolation, differentiation, and integration using e, log X, and
sin X in the range (1.0 £ X < 5.0). Twenty-one values of each of
these functions, evenly spaced with respect to X and accurate to
at least 7 significant digits, were tabulated in the above range.
Then the procedure was tested. The following table indicates ap-
proximately the accuracy obtained:

Number of Significant Digits

Function Interpolation Di fferentiation Integration
ld =4* =2 24
log X =4* =2 =3
sin X =4* =2 =4

* Except for interpolation between the first two points in the
table.

The above results are quite reasonable in view of the relatively
large increment in X. Tests using smaller increments in X and un-
even spacing of X were also satisfactory.

It was also discovered that for integration the following re-
strictions must be observed:

1. xlo £ xa (1).

2. xup = xa (nop).

