
 Hacker or Hero? — Extreme Programming Today
Steven Fraser (Impresario), Nortel Networks, sdfraser@nortelnetworks.com

Panelists: Kent Beck, First Class Software, 70761.1216@compuserve.com; Ward Cunningham,
Cunningham & Cunningham, ward@c2.com; Ron Crocker, Motorola, QA1007@email.mot.com;

Martin Fowler, ThoughtWorks, fowler@acm.org; Linda Rising, risingl@acm.org;
Laurie Williams, NC State, williams@csu.ncsu.edu

Steven Fraser

Extreme programming is the latest rage, everyone is
talking extreme, but who is doing it? XP is in the
words of one proponent, is a “lightweight, efficient,
low-risk, predictable, scientific, and fun way to develop
software”. XP bundles much conventional software en-
gineering wisdom into a practice with a high degree of
appeal as a cool technology. Questions for inquiring
minds include: Will XP deliver? Will XP scale? How
will products based on software developed by XP prac-
tices age? What are the elements of XP that can be ef-
fectively adopted by organizations outside the XP en-
velop, e.g. large teams, real-time systems, etc. Is XP the
next “silver bullet”?

Steven Fraser is a senior manager in Global External
Research in the Nortel Networks Disruptive Technol-
ogy program in Santa Clara, California. Previous to this
he was an advisor in technology transfer for object-
oriented software development best practices. In 1994
he was a visiting scientist at the SEI in Pittsburgh. Ste-
ven completed his doctoral studies at McGill University
in Electrical Engineering. He is an avid operatunist,
photographer, and videographer.

Kent Beck

I will be taking the anti-XP position, since it clearly
cannot work. There are many obstacles in the way of
adopting XP, and most of them are completely out of
the control of techies. Technically, XP is obvious:
• Evolution of architecture and design
• Constant measurement and refinement
• Frequent automated unit and integration testing

The problem is that once the programmers aren't the
bottleneck, aren't, in Ron Jefferies' memorable phrase
“the cork in the orifice of progress,” all
other problems in the business become apparent:

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. OOPSLA
2000 Companion Minneapolis, Minnesota

© Copyright ACM 2000 1-58113-307-3/00/10...$5.00

• Marketing really doesn't know what the product
should do, and if they make all the priority deci-
sions there is no longer anywhere to hide

• Sales doesn't know how to sell when engineering
can tell them exactly where the product is, and can
change direction on a dime

• Operations can't keep up with new releases of soft-
ware daily (for centralized applications) or monthly
(for shrink-wrapped applications)

• Executives don't want to make the hard calls about
what doesn't go into this release

• Stock analysts can't figure out the additional value
of a company where engineering is predictable,
fast, and high quality

Kent Beck helped pioneer CRC cards and patterns for
software development. He rediscovered test-first pro-
gramming, and popularized it with his xUnit testing
framework, now translated into Java, C++, Visual Ba-
sic, and Smalltalk. He is the author of “The Smalltalk
Best Practice Patterns”, “Kent Beck’s Guide to Better
Smalltalk”, and a contributing author on Martin Fow-
ler’s book “Refactoring”. He is also the author of the
Addison-Wesley books “Extreme Programming: Em-
brace Change”, and “Planning Extreme Programming”,
and stars with Erich Gamma in the video “Test In-
fected”.

Ron Crocker

I was the system architect for a rather large develop-
ment effort. The system consisted of several like-sized
(10-15 engineers) integrated subsystems. Our project
was ideal for an XP approach -the system level ap-
proach was to start system integration early, with a little
bit of end-to-end functionality, growing the system ca-
pabilities until the whole thing was done. Our schedule
had three week increments for end-to-end functions,
with some shorter increments for pair-wise integration
steps. We had a simple system metaphor, easy to re-
member and meaningful. Not only was I the architect of
the system, I was also the development manager for two
of the subsystems. The down side was that I only had
two of the teams. We did XP (or close to XP - it de-
pends on how literal you want to be), but the other
teams were free to do whatever they wanted, as long as
they met our incremental integration schedule.

5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F367845.367892&domain=pdf&date_stamp=2000-01-01

Managing this project became quite “interesting.” Be-
cause of our highly integrative approach, we often had
stuff that we felt good about. However, because not
everyone was playing, we couldn't ship what we had.
We also had difficulty telling our management some-
thing that they understood. We had a task list for my
teams. The task list grew as we went through the plan-
ning game. We added tasks as we refined our under-
standing of what we were doing. We had charts that
showed our progress toward achieving our tasks, and
we had monotonically increasing number of tasks com-
pleted per week, but our “% of tasks completed” num-
ber would vacillate based on how many tasks got added
each period. We also had data on the integration phases
completed. Unfortunately, my management didn't grok
this information. They wanted to know if we were done
with design, done with coding, done with testing, done
with subsystem integration, ready to hand off to system
integration, etc. I spent a lot of time trying to convince
my management that we were on track, even though it
was obvious that we were on track (“Go down in the lab
and I'll show it to you”) and the other teams might not
be (“We're 93% code complete,” but does that really
mean anything?). Ok, so it seems like XP doesn't scale.
That doesn't mean XP is bad, it just means that it does-
n't scale. There are many projects that don't need to
scale to 100s of engineers. XP seems to work well
there. We found XP worked nicely for our part of the
project, but our approach to building the system this
way created quite a bit of different problems. To make
XP a scalable approach requires solutions to the coor-
dination issues.

Ron Crocker is a Senior Member of Technical Staff at
Motorola. He is responsible for 3rd Generation cellular
system architecture, and has been playing with object
technology for 17 years. Before joining Motorola, he
was a C++ guinea pig at Bell Labs.

Ward Cunningham: XP is Genius Friendly

There was a time when a software genius would have to
hide from a project to get genius work done. Not so
with XP. The genius hangs with the team, taking task
cards and pitching in on others. This way a genius gets
a good feel for just what sort of invention can be ab-
sorbed. To get along, the genius avoids lording superior
intellect over others. He/she wouldn't say “I had that
idea yesterday”, even if it were true. So what fun is
thisThe fun begins when a deep problem surfaces. The
whole team feels simplicity slipping away and is dis-
tressed about it. Genius gears start working. Should the
necessary flash of insight fail to come, the genius just
keeps pitching in and making sure that the code stays
clean enough to absorb insight that might be just around
the corner. The genius knows this wait and enjoys it.
Then finally the light comes on. The genius is first to
connect the pieces that solve the problem. So what
then? Cry eureka? No way. The genius says something

like “I'm thinking we need to spend more time looking
at the interaction of x and y.” Then the rest of the team
has a chance to try their hand at genius. If they are wise
enough to look at x and y they will probably see just
what the genius has seen and get to bask in the warm
light of an original Ah-Ha. The thing that is really great
about this interaction is that it is really safe for the gen-
ius. If there is an error of logic, it will be gently exposed
without casting doubt on the genius. Also, if there is
resistance to the insight, the genius gets to explore it
before showing all the cards. Finally, the genius is ap-
preciated by people who now know what genius is like.
(Remember, they just had a eureka moment them-
selves.) So what is all this about XP making everyone
just a cog? XP is truly genius friendly. And, in case you
have any doubt, just think about how the above would
work when everyone is a genius. Heck, maybe they are!

Ward Cunningham is a founder of Cunningham & Cun-
ningham, Inc. He has also served as Director of R&D at
Wyatt Software and as Principle Engineer in the Tek-
tronix Computer Research Laboratory. Ward is well
known for his contributions to the developing practice
of object-oriented programming, the variation called
Extreme Programming, and the communities hosted by
his WikiWikiWeb. He is active with the Hillside Group
and has served as program chair of the Pattern Lan-
guages of Programs conference which it sponsors. Ward
created the CRC design method which helps teams find
core objects for their programs. Ward has written for
PLoP, JOOP and OOPSLA on Patterns, Objects, and
CRC.

Martin Fowler

XP is an interesting methodology. It calls itself light-
weight - but it's high discipline means that it's actually
quite difficult to adopt. People talk about doing it, while
missing out some of the practices. Others don't even
claim to do it, but may use as many of the practices as
those who do - sometimes they may say they are doing
pseudo-XP. There is no conformance test (or merit
badge) for XP, so how can anyone tell if they are doing
it or not? For some this is a problem, but frankly I don't
mind that much. The key to XP, at least for me, is that it
has acted as a cattle prod to the rather staid word of
methodology. It's forced people to reassess what it
means for software to become a more disciplined pro-
fession, and it's reintroduced a number of important
practices to software development that have long been
neglected. Even without the rest its emphasis on testing,
balanced approach to planning, and enabling of evolu-
tionary design are big steps forward. In the end you
can't choose a methodology and drop it into a project.
Instead you have to start with your company culture,
your type of project, and above all your people, and
blend a methodology that will work for those circum-
stances. For many situations (up to a dozen co-located
developers with uncertain or volatile requirements) XP

6

makes a good starting point. But it can only be a start-
ing point.

Martin Fowler is Chief Scientist at ThoughtWorks, an
internet system integrator, where he is responsible to
identifying and spreading best practices for Thought-
Works and their clients. He's been active in object cir-
cles for over a decade, developing business software in
C++, Smalltalk, and Java. He's the author of Analysis
Patterns, UML Distilled, Refactoring, and soon Plan-
ning Extreme Programming. He first learned about Ex-
treme Programming from Kent on the Chrysler C3 proj-
ect, and has tried to apply lessons from that experience
ever since.

Linda Rising

I know XP is hot! I've recently given several talks on
eXtreme Programming - at the joint IEEE-ACM-SPIN
meeting in Phoenix, the attendance was triple that of
our usual gathering. Afterwards, the Tucson and
Flagstaff organizations wanted the same presentation.
There's definitely interest out there! Since I've been
spending some time in the trenches, I tried to introduce
XP to my team. They liked the sound of it but imple-
menting it was another story. Kent says himself in his
book that XP sounds a lot easier than it is. I was also a
member of the program committee for the first ever XP
conference and I know there were lots of paper submis-
sions. In the ones I read, however, I didn't see anyone
who was actually practicing full-blown XP. They were
touting the benefits of one tenet or another but my
question still remains: is anyone (except Kent et. al.)
really doing it?

Linda Rising has a Ph.D. from Arizona State University
in the area of object-based design metrics. Her back-
ground includes university teaching experience as well
as work in industry in the areas of telecommunications,
avionics, and strategic weapons systems. She has been
working with object technologies since 1983. Linda
Rising is the editor of: The Patterns Handbook, A Pat-
tern Almanac 2000, and Design Patterns in Communi-
cations Software..

Laurie Williams

XP popularized the practice of pair-programming – two
programmers working side-by-side at one computer,
collaborating on the same design, algorithm, code or
test. XP has touted near defect-free code production
without increased costs, which has peaked the interest
of many – including myself. Still, many software de-
velopment managers question the affordability of the
practice. Convention speaks against having two people
work together to develop code -- having “two do the
work of one”, as some people see it. In 1999, a struc-
tured experiment was run at the University of Utah to
study pair-programming. The results of the experiment

showed that, indeed, pair-programmers produce code
with statistically significant higher quality and that the
cost increase for “two doing the work of one” is not
statistically significant. Additionally, employing the
practice of pair-programming can help an organization
achieve a higher level of maturity. Pair-programmers
tend to apply a positive form of “pair-pressure” on each
other. This pressure causes them follow more faithfully
the prescribed methodology, whether it is XP, PSP,
RUP or any other. Based on surveys and direct experi-
ences, programmers are far less likely to “blow off”
writing test cases or doing design if they are working
with a partner. (They are also less likely to read their
email or surf the web!) Achieving widespread accep-
tance and adherence to a methodology is often a major
inhibitor to organizations trying to realize the increased
effectiveness and predictability that is a major benefit of
maturity. Lastly, almost unanimously, pair-
programmers have said that they enjoy working with a
partner and that they feel more confident when working
with a partner. Therefore, pair-programming is not
likely one of those process improvements that gets “for-
gotten” in crunch time. Quite commonly, programmers,
long conditioned to working alone, initially hesitate in
their transition to pair-programming and then buy-in
after trying it. Sporadically, a pair-programming ar-
rangement does not work out due to the personalities
involved. Most often, the pair and the organization
achieve the quality improvement and maturity that have
been described.

Laurie Williams is a faculty member at North Carolina
State. She received a BS in Industrial Engineering from
Lehigh University, an MBA from Duke University, and
a PhD in Computer Science from the University of
Utah. Laurie worked at IBM in Research Triangle
Park, NC for nine years in engineering and software de-
velopment technical and managerial positions. In her
last position, she managed a software-testing depart-
ment. Her research interests are in software engineer-
ing, software process, collaborative programming and
eCommerce.

7

