
 1

Designing a flexible services-based architecture for
Internet Applications

Vijay Mehra
KPMG Consulting, LLC

99 High Street,
Boston, MA 02110

1 617 988 5681

vmehra@kpmg.com

Richard K. Walker
KPMG Consulting, LLC

757 Third Ave
New York, NY 10036

1 212 954 2474

rkwalker@kpmg.com

Jeffrey S. Brashear
KPMG Consulting, LLC

99 High Street,
Boston, MA 02110

1 617 988 1386

jbrashear@kpmg.com

Mohan Tavorath
KPMG Consulting, LLC

99 High Street,
Boston, MA 02110

1 617 988 5953

mtavorath@kpmg.com

ABSTRACT
This article describes a flexible architecture for developing
services-based business applications that use component-based
architectural services to demarcate the application into various tiers
that enable the decoupling of each layer, both logically and
physically. This provides the speed and flexibility needed to
embrace new product ideas, channels, and markets.

1. ARCHITECTURE OVERVIEW
The following system architecture description describes the design
of a distributed, object-oriented, multi-tiered, Internet-based
application. It describes both conceptual and implementation-
specific views of particular approaches, technologies, object
models, and communication protocols. Architectural decisions
regarding specific tools and platforms that may be used to
construct such an application were made taking into account
constraints such as existing skill sets, standards set by the
organization, and future state architectural direction. This involved
build-versus-buy decisions based on the effort required to integrate
and maintain the application. It is based on practical experiences
that have extracted lessons learned from various projects. The use
of an eXtensible Markup Language (XML)-enabled architecture
created the opportunity to deploy quickly and interoperate with a
wide variety of business systems

2. ARCHITECTURAL APPROACH
The architecture consists of four major layers/tiers of abstraction
enabled by the use of eXtensible Markup Language (Client,
Context Processing, Business Logic, and Legacy systems). This
abstraction layer is built on middleware that connects to back end
systems by wrapping an adaptor interface layer around legacy
systems, thereby providing a standard interface. XML is used for
structured data messaging, sending rich, self-describing platform-
independent streams of data between legacy systems and new
applications in XML format.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

OOPSLA 2000 Companion Minneapolis, Minnesota

© Copyright ACM 2000 1-58113-307-3/00/10...$5.00

The architecture strives to:
• be scalable, flexible, adaptable and extensible to support the
changing business environment

• support a consistent strategic architectural vision
• reduce cost of technology ownership
• leverage existing assets (platforms, environments, tools, custom
development, and packages)

• reuse, buy, and build needed functionality (in that order)
• support short-term tactical implementations and the long-term
strategic vision

3. COMPONENT LAYERS
The architecture has been separated into four layers, each one
completely decoupled from the layers with which it interacts.
Communication between each layer uses XML data streams to
ensure that inter-layer messaging is platform-independent.
Communication within each layer may use proprietary protocols or
XML and these decisions are made contingent upon the speed and
efficiency requirements of the application.

3.1 Client Layer
3.1.1 Conceptual View
For every new request made by the Client Layer, data from the
back end database server is processed by the application server
and arrives at the web server in the form of a standard extensible
Markup Language (XML) document. The web server then
dynamically generates Hyper Text Markup Language (HTML)
from this XML using eXtensible Stylesheet Language (XSL) files.
This HTML file is then displayed in a browser frame on the screen.
This achieves the important objective of decoupling the format and
display characteristics of the user interface from the content of the
data being displayed. Changing the look of this incoming data is
simply a matter of changing the XSL stylesheets. The same XML
data content can also be rendered on any other client User
Interface.

Database
HTML Form

Client Layer Context Processing Layer Interface Layer

Context
Processor

HTML Output

Business
Logic Interfaces

Existing
Applications

Business Logic Layer

XML XML

XMLXML

31

http://crossmark.crossref.org/dialog/?doi=10.1145%2F367845.367912&domain=pdf&date_stamp=2000-01-01

 2

3.1.2 Implementation View
The client-tier displays HTML pages that conform to the HTML
3.2 specification and supports 4.x or higher of either the Navigator
or Internet Explorer browsers.

3.2 Context Processing Layer
3.2.1 Conceptual View
The context processing layer takes the input HTTP request object
and converts input parameters into an XML stream that is then
passed on to the business logic layer. The business logic layer
performs required processing and returns an XML output data
stream. The style sheet-rendering engine merges the XML data
stream with the appropriate XSL template file to render HTML
output to the browser.

3.2.2 Implementation View
The user interface controllers are Java Servlets. These are inherited
from a base ancestor Servlet and use an HTTP-Request-to-XML
transformer Java component to convert the name-value pairs that
are intrinsic to the HTTP Request object into an XML stream that
represents those input parameters. This provides the flexibility to
construct more sophisticated XML streams that more accurately
represent a business domain or metadata model. This also
effectively separates the client-layer access mechanism, e.g. a
browser, from the request coming in to the web server. This input
data is processed by the business logic layer, which returns an
XML output stream that represents the output data.

3.3 Business Logic Layer
3.3.1 Conceptual View
The business logic layer accepts an XML data stream with input
parameters and passes it to a business controller object (BCO).
The business controller object uses a business object factory
(BOF) to instantiate appropriate business objects. Each business
object instantiates shadow objects that talk to the interface layer.

3.3.2 Implementation View
The User Interface Controller (a servlet) passes the input data as an
XML data stream into the Business Controller Object (a Java
object). The business controller object represents business logic
associated with a use case (or a set of use cases), as defined by
the business requirements and use case analysis. The business
controller object uses a Business Object Factory (BOF) to
instantiate Java Business Objects that collaborate to process the
required functionality. The business objects have shadow objects
associated with them that provide an abstraction layer that
encapsulates access to back-end or external systems that are
accessed. The results are returned as an XML stream to the
context-processing layer.

3.4 Interface Layer
3.4.1 Conceptual View
The interface layer accepts an XML data stream that represents
input parameters as criteria to request data from or t persist data to
back-end systems. Interface objects communicate with those back-
end systems, leveraging existing native or open communication
protocols to retrieve data and then pass them back as an XML data
stream to the business logic layer.

3.4.2 Implementation View
Interface objects are implemented as Java objects that utilize
appropriate mechanisms to access back-end systems. These use
native and XML interfaces to facilitate speed of access and
persistence to those back-end systems. Some of these were
determined to be reusable across other applications that perform
the same function, and were converted to component-based
services (CORBA-based) with clearly defined interfaces.

4. ARCHITECTURE SERVICES LAYER
The Application Architecture can be subdivided into services. A
service is a collection of classes or components that provide some
common functionality to be used by the other components across
the application.

4.1 Runtime/Deployment Infrastructure
These services represent the runtime environment for the
application and include the following components:
Operating System: The application can be developed on various
environments such as Solaris or Windows NT/2000. This decision
is made based upon the software products used for application
development.
Network Connectivity: The protocol used for the underlying
network connectivity.
Application Server: The runtime environment for the business
application is provided using standard Application Servers.
Database Server: Any standard relational database server may be
used for the application as per the system requirements.

4.2 Application Architecture Services
These services represent the components/classes that provide the
common functionality required to support the components that
constitute the Application Services Layer. The following
application architecture services were developed:
Database Connections and Transaction Management:
Database connectivity between the application and the database is
maintained using appropriate drivers.
Error Handling: The error handling service traps and logs errors
related to application business logic, database access and system
infrastructure.
Security/Encryption: The security service prevents unauthorized
users from gaining access to the system or gaining access to
personal information about system users. This service is
embedded in to the component layer at various levels to prevent
unauthorized access to the system.
Application Utility Services: These services represent the
components that provide supporting services to the Application
services layer.

5. SUMMARY
The architectural approach outlined in this paper delivers
technology solutions through the aggregation of granular services
and business-based components, achieving a high degree of reuse.
The use of eXtensible Markup Language (XML) created the
opportunity to deploy quickly and interoperate with a wide variety
of business systems. providing the speed and flexibility needed to
embrace new product ideas, channels and markets.

32

