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ABSTRACT
This paper gives the rationale for the Complementary Pass-Tran-
sistor Logic (CPL) implementation of threshold gates for the
design of complex logic functions. The interesting low-power
properties of CPL circuits and the efficiency with which a broad
class of functions can be implemented by threshold functions
make the proposed methodology extremely useful. A number of
implementation examples are given which illustrate the feasibility
and versatility of the proposed technique and its potential as a low-
cost design technique for CMOS technologies. Simulation results
confirm our expectations.

1. INTRODUCTION

Circuit design based on threshold gates has been considered for
many years an alternative to the traditional logic gate design proce-
dure because of their acknowledged power. The power of the
threshold gate design style lies in the intrinsic complex functions
implemented by such gates, which allows for realizations that re-
quire less threshold gates than standard logic gates [1]. More re-
cently, a number of theoretical results show that polynomial-size,
bounded level networks of threshold gates can implement functions
that require unbounded level networks of standard logic gates [2-
4]. In particular, important functions like multiple-addition, multi-
plication, division, or sorting can be implemented by polynomial-
size threshold circuits of small constant depth. Threshold gate net-
works have also been found useful in modeling nerve nets and brain
organization, and with variable threshold (or weights) values they
have been used to model learning systems, adaptive systems, self-
repairing systems, pattern recognition systems, etc.

Threshold gates are based on the so-called majority or threshold
decision principle, which means that the output value depends on
whether the weighted arithmetic sum of its input values exceeds a
threshold. Conventional simple logic gates, such as AND and OR
gates, are special cases of threshold gates. Thus, threshold logic
can treat conventional gates, as well as threshold gates in general,
in a unified manner. However, the usefulness of threshold logic as
a design alternative is determined by the availability, cost and ca-
pabilities of the basic building blocks, as well as by the existence
of effective synthesis procedures.

Recently, a number of solutions for building CMOS threshold gates
with integer weights and threshold levels have been reported [5-
11]. All of them rely on representing each distinct weighted sum of
inputs by an analogue voltage. Thus, they present limitations to im-
plement threshold gates with many different sums, specially for
low voltage operation. Pass-transistor logic styles have emerged as
an attractive alternative to conventional CMOS logic [12-16]. In
particular, Complementary Pass-Transistor Logic (CPL) is a well
known low-power logic style [14-15]. Pass-transistor logic is at-
tractive as fewer transistors are needed to implement important log-
ic functions, smaller transistors and smaller capacitances are re-
quired, and it is faster than conventional CMOS. In this paper we
link both concepts by presenting the rationale for CPL-based real-
izations of threshold gates. Implementation examples which dem-
onstrate the feasibility and versatility of the proposed technique and
its potential as a low-cost design technique for CMOS technologies
are presented.

The following section presents a brief description of the threshold
gate principle. Section 3 gives the rationale for steering realizations
of threshold gates. Section 4 particularizes the procedure previous-
ly described for the case of complementary pass-transistor logic
(CPL). Section 5 shows experimental results and, finally, some
conclusions are given.

2. THE THRESHOLD GATE

A threshold gate hasn binary input variables and a

binary output variable“ ”. The gate is specified by real

numbers: the threshold and a group ofnweights ,

x1 x2 … xn, , ,

y n 1+( )
T w1 w2 … wn, , ,



where each weight (i=1,...,n) is associated to a specific input .

The output of a threshold gate is defined as iff

and if this were not the case. Sums and prod-

ucts are the conventional, rather than the logical, operations, and the
weights and threshold may have any real value. A threshold function

with all input weights equal to 1 and threshold in , is a

special case of a TG and is represented as , ,

where  iff , and 0 otherwise.

In the following, we will specify the threshold element by means
of a weights and threshold vector, TG; TG= . It
can be deduced from the elemental properties [1] of the threshold
functions shown in Figure 1, that if a function can be performed as
a threshold gate, then selectively complementing the input and/or
the output, a realization can be obtained using an element with pos-
itive values for both weights and threshold. Also, any threshold
function may be obtained with integer weights [1].

3. STEERING LOGIC REALIZATIONS OF
THRESHOLD GATES

In this section, a steering logic realization for threshold gates is dis-
cussed and compared with the traditional steering logic realization
of symmetric functions. It is well known [17] that symmetric func-
tions allow for a clever topologically regular implementation. They
are the so-called Tally functions. A Tally circuit hasn inputs

and outputs . The circuit
counts the number of its inputs that are at logic 1 and asserts only
the output with a subindex equal to this number. For example, if
there are inputs at logic 1, then , and only , is at logic one.
The remaining outputs are at logic 0. Traditional implementa-
tions for tally circuits use transmission gates as shown in Figure 2
for a single-input tally function.

3a. Threshold Functions with all Weights Equal to 1
Threshold gates could be implemented by considering that they can
be formulated as particular symmetric functions, but this solution
lacks efficiency concerning area overhead. The structure we pro-
pose for threshold gate implementations is simpler than traditional
tally circuits. Figure 3 shows the proposed threshold gate basic
structure when particularized to three input variables. Outputs

are the threshold functions of three variables, with all the
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Figure 1: Properties of threshold functions
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weights equal to 1, and thresholds in 1, 2, and 3, respectively,i.e.,

. Depending on the setting of the control

signals, the inputs are steered straight through the network (control
signal at logic 0) or are shifted diagonally (control signal to logic
1). Checking that the proposed structure operates correctly can be
done by considering the signal flow. For example, let us suppose in-

put at a logic 1. Then, point is also at a logic 1. If now input

is also at a logic 1, points and are also at a logic 1 (

because the diagonal transmission of the logic 1 at the bottom, and

through the diagonal transmission of logic 1 in ). Finally, if

input is also at logic 1, is at logic 1 by diagonal transmission

of logic 1 at the bottom, is at logic 1 by diagonal transmission

of logic 1 in , and is at logic 1 by diagonal transmission also

of logic 1 in . In the case that input is now at a logic 0, logic

1 in is steered to the output, logic 1 in is steered to the

output, and a logic 0 from the left of the network is steered to

x1

0

1

0

z0

z1

x1

Figure 2: Single-input tally circuit implemented by using
 transmission gates
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Figure 3: Proposed basic structure for 3-input threshold gates
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the output. Finally, if the signal in point is considered, it can

be easily shown that it is the same as input and so, transmission

gates controlled by can be eliminated and input directly tied

to transmission gates controlled by input . The network is well

formed, i.e., for any combination of the control inputs, there is at
least one conducting path from an input to the output. The proposed
structure can be easily extended to implement then threshold func-

tions ofn inputs each, in such a way that each col-

umn is controlled by each input variable.

The example shown in Figure 3 simultaneously provides the net-

work for a three-input OR gate , a three-input majority gate

, and a three-input AND gate . If only a three-input ma-

jority gate is required, for example, the network is pruned as shown
in Figure 4. Additionally, note that implementation obtained for the
3-input AND gate (OR gate) is the traditional pass-transistor one.

3b. Threshold Functions with Arbitrary Weights
Now we will address the implementation of threshold functions with

arbitrary integer weights. If input has an associated weight of ,

the problem can be solved by tying together as many inputs as nec-

essary (given by ). This solution makes the design unnecessarily

complex. It is easy to show that an arbitrary weight of can be di-

rectly implemented in the column controlled by input by replicat-

ing the transmission gates connected to logic 1 (at the bottom) and
logic 0 (at the top), and altering by the diagonal connection pattern.
Figure 5 shows the network which implements the six possible
threshold functions which can be obtained with the following set of

weights: . As the weight associated to variables and

is 2, there are two transmission gates connected to logic 1 at the

bottom, and another two transmission gates connected to logic 0 at
the top for both columns. Also, the diagonal connection pattern has
been modified. The normal diagonal pattern (for the column con-

trolled by ) connects a transmission gate with the one placed in

the row immediately above. For columns controlled by variables
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Figure 4: 3-input majority gate
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and , this connection jumps one row and it is tied to the transmis-

sion gate placed two rows above. These considerations can be gen-
eralized and the complete structure for a network implementing an
arbitrary threshold gate can be easily derived.

4. CPL-BASED THRESHOLD GATES

In this section we will prove that the steering logic structure pro-
posed in the previous section can be easily transformed into a
Complementary Pass-Transistor Logic (CPL) structure. The main
concepts behind CPL are the use of complementary input/outputs,
an nMOS pass-transistor logic network, and CMOS output invert-
ers. Additionally, a pMOS latch can be added to decrease static
power consumption and for swing restoration, as opposed to the
conventional pull-up function. To obtain these characteristics, we
will consider the circuits shown in Figure 6, which can be consid-
ered a “dual” of the other once because they are obtained by simply
exchanging logic 0’s and logic 1’s.

Signals , , , and  are related by:
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In a similar way, and after simple logic manipulation, we have:

Through a simple exercise of mathematical induction we can show
that the proposed structure makes it possible to obtain two sets ofn
output signals (forn input variables) of which one is the comple-
ment of the other. Moreover, thesen outputs are the threshold gates

, as it was proven in Section 3. Thus, a CPL imple-

mentation for a threshold function can be obtained by adding the
CMOS inverters to the output lines and, if desired, the pMOS latch.

Figure 7 shows a 3-input CPL majority gate , obtained from

these considerations.
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Figure 7: A 3-input CPL majority gate

To show the power of the proposed methodology, let us consider a
more complex example. A set of functions which appear in the im-
plementation of arithmetic circuits is given by:

(1)

All the functions in this set are threshold functions [18] with

weights and threshold in , where is thek-th Fi-

bonacci number,i.e., each is the sum of the two adjacent Fi-

bonacci numbers on its immediate left,

.

(2)

The total weight for the threshold gate implementing , ,

is given by:

(3)

It is very difficult to implement these threshold gates by any of the
other threshold gate implementation methods published in the liter-
ature. However, the CPL-based implementation we propose depends
only on the number of variables, not on their associated weight.
Therefore, when we particularize Eq. (2) ton=9, for example, func-

tion becomes and

the procedure developed in this section leads to a 36 transistor CPL
implementation (without introducing the pMOS latch in the count),
as shown in Figure 8.

Some practical considerations are in order. As the CPL-based de-
sign is a class of static pass-transistor logic, it inherits the design
problems that are specific to that circuit class. In particular, as we
have chains of nMOS transistors in the nMOS networks, after a
careful study of the situation additional intermediate swing restora-
tion may be needed (see the arrows in Figure 8 for their possible
placement, after 4-transistor paths). This consideration does not in-
troduce any conceptual problem in our implementation because in-
termediate signals in both nMOS networks are each one comple-
mented to the other.
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Figure 6: Basic structures for a CPL implementation of a threshold gate



5. PRACTICAL RESULTS

In order to prove both the power of the approach and the correction
of the designs produced by our methodology, we have selected the
5-input majority function (i.e., a function which is 1 if three, four or
five inputs are at logic 1). A conventional CMOS implementation

for this function is very expensive as it requires product terms

of three literals each (60 transistors without counting the OR gate
needed to add them). This function is efficiently implemented by the

threshold gate which needs 38 transistors to

be realized, as shown in Figure 9. This circuit has been laid out in
an 0.6µm double poly CMOS technology as shown in Figure 10.

The occupied area is . Operation under process and
ambient parameters has been validated through extensive HSPICE
simulations including Monte Carlo simulations and simulations
using different standard worst-case device parameters at a power

supply, , of 3.3V. Figure 11 depicts some of the simulation

results for a typical load. The waveforms at the top trace are the cir-
cuit input signals. A new input combination is applied each 5ns

every. Circuit outputs (middle trace) and (bottom trace) are

shown below. Pre- and post-layout simulations have been depicted.

6. CONCLUSIONS

A design methodology for implementing CPL-based threshold
gates has been presented. It provides an easy and systematic way
to build threshold functions. Implementation of threshold gates by
the circuits thus obtained does not depend on the weight associated
to each input. This is a distinguishing characteristic which differ-
entiates these implementations from others which have been
reported. Several examples of circuit implementations have been
presented which take advantage of both the CPL logic design style
and the power of the threshold gate based paradigm. Experimental
results confirm the suitability of the proposed methodology.
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3 

 
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Figure 9: 5-input majority gate implemented as CPL-based threshold gate
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Figure 10: Layout of the CPL 5-input majority gate Figure 11: Simulated waveforms for the CPL 5-input majority gate
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