
Units of Distribution for Distributed Ad a

Trevor Mudge
Robotics Research Lab & Advanced Computer Architecture La b

The University of Michiga n
Ann Arbor, Michigan 48109, US A

Background

Since the beginnings of Ada over a decade ago there have been dramatic developments i n
computer hardware which have led to new possibilities for the design of large parallel o r
distributed computer systems, particularly those intended for real-time embedded applications .
Developments have occurred on two fronts : 1) the level of integration possible on a singl e
chip has followed "Moore's Law" [1] and has continued to almost double every year ; and 2 )
fiber-optics and the availability of LSI chips that implement standard network protocols hav e
simplified the hardware needed to construct local/small area networks .

The first of these developments has made sophisticated 32-bit microprocessors and 256 K-
bit memory chips commonplace . This development together with developments in networ k
hardware make it preferable to construct many real-time embedded systems as networks of
microprocessor-based systems, where the processing can be placed close to the site of sensor s
or effectors . In many cases this placement of processing power simplifies system design, and
improves the response times and the throughput rates . From a traditional viewpoint thi s
may seem wasteful, but the increased cost of the hardware (if any), is greatly outweighed b y
performance, reliability, and ease of design . The latter is especially true if the alternative i s
one in which the real-time tasks must time-share a cpu ; scheduling can make system design a
nightmare, particularly when hard deadlines have to be met .

The developments in hardware have also resulted in the emergence of "massively parallel "
computers [2] that are made up of a regular array of hundreds of processors in a non-share d
memory configuration . Although programming these machines may seem to be a problem
unrelated to that of programming an embedded real-time system, the fact that both have
distributed memory structures means that they share many problems and can, therefore, bot h

Permission to copy without fee all or part of this material is granted provided that the copies are no t
made or distributed for direct commercial advantage, the ACM copyright notice and the title of th e
publication and its date appear, and notice is given that copying is by permission of the Associatio n
for Computing Machinery . To copy otherwise, or to republish, requires a fee and/or specific permission .

© 1987 ACM 0-89791-240-3/87/0500-0064 $00 .75

64

http://crossmark.crossref.org/dialog/?doi=10.1145%2F36821.36805&domain=pdf&date_stamp=1987-10-01


benefit from any solutions to their common problems . Furthermore, Ada with its suppor t
for parallel and scientific programming, would seem to be a natural candidate for these ne w

supercomputers .

To take system-wide advantage of strong typing, packages, tasking, exceptions and othe r

features of Ada, these distributed systems—both the embedded ones and the massively paralle l

ones—should be programmed as a single Ada program . Given the need to do this, what is th e

appropriate "unit of distribution" ?

Recommendatio n

Within the current definition of Ada, it is not possible to define a unit of distribution tha t

is without some shortcomings. Our recommendation is that library subprograms and librar y

packages be the only distributable units . They represent a reasonable level of granularity for

distribution, and they provide a reasonable unit for structuring distributed programs . Further -

more, as shown in [3], they do not require cross-machine dynamic scope management . This

fact greatly simplifies compiler implementation and run-time support, allowing efficient cross -

machine communications . Supplementary recommendations are : 1) Data objects created fro m
remotely defined types should be placed with the unit creating them, with implicit and basi c

operations being replicated . User defined operations should remain on the unit elaborating th e

corresponding type definition . 2) Task objects should be placed with the unit initiating thei r

creation .

The above recommendations could be presented as guidelines for the programming of dis-

tributed systems without requiring changes in the language definition . However, compiler an d

run-time support would still be needed for those situations that may arise should the user decid e

to ignore the guidelines . To avoid this, the recommendations should be part of the languag e

definition . They represent a compromise that will require a minimum of reinterpretation an d

augmentation to the present language definition, while greatly facilitating the programming o f

distributed systems .

A more radical departure from the current language, and one that we would also like t o

see, is to have package types added to the language specification [4] . This would allow th e
further recommendation that task objects created from task type definitions be restricted to th e

units where the corresponding type definitions are elaborated . This would simplify distribute d

task termination without restricting tasks of the same type to the same processor. Package

types would also simplify the programming of massively parallel machines . They are currently

programmed in much the same way as distributed systems—each processor is programme d

separately and communication is performed by a run-time system or simple operating system

[5] . The package type would provide a natural abstraction for the "single code" model" o f

• In the single code model, multiple copies of the same program execute asynchronously . Thus, differen t
execution paths may be being taken by different processors . Each copy of the code is also a function of the
position in the array of the processor executing it .

65



programming which is currently the way in which most applications are programmed for thes e
machines [2] .

References

G . Moore, "VLSI : Some fundamental challenges," IEEE Spectrum 16, (Apr . 1979), 30-37 .

J .P Hayes, T .N . Mudge, Q .F. Stout, S . Colley, and J . Palmer, "Architectures of a hypercube
supercomputer", Proceedings of the 1986 International Conference on Parallel Processing ,
August 1986, pp . 653-660 .

R .A . Volz, T .N . Mudge, G .D . Buzzard, and P . Krishnan, "Translation and execution o f
distributed Ada programs : Is it still Ada?" to appear in the special issue on Ada of th e
IEEE Transactions on Software, Winter/Spring 1987 .

[4] G .D . Buzzard and T .N. Mudge, "Object-based computing and the Ada programming lan-
guage", Computer, March 1985, pp . 11-19 .

[5] T .N . Mudge, G .D . Buzzard, and T .S . Abdel-Rahman, "A high performance operatin g
system for the NCUBE" , Proceedings of the 1986 Conference on Hypercube Multiprocessors ,
(to appear) .

[1 ]

[2 ]

[3]

66


