Check for
Updates

Units of Distribution for Distributed Ada

Trevor Mudge
Robotics Research Lab & Advanced Computer Architecture Lab
The University of Michigan
Ann Arbor, Michigan 48109, USA

Background

Since the beginnings of Ada over a decade ago there have been dramatic developments in
computer hardware which have led to new possibilities for the design of large parallel or
distributed computer systems, particularly those intended for real-time embedded applications.
Developments have occurred on two fronts: 1) the level of integration possible on a single
chip has followed “Moore’s Law” [1] and has continued to almost double every year; and 2)
fiber-optics and the availability of LSI chips that implement standard network protocols have
simplified the hardware needed to construct local/small area networks.

The first of these developments has made sophisticated 32-bit microprocessors and 256 K-
bit memory chips commonplace. This development together with developments in network
hardware make it preferable to construct many real-time embedded systems as networks of
microprocessor-based systems, where the processing can be placed close to the site of sensors
or effectors. In many cases this placement of processing power simplifies system design, and
improves the response times and the throughput rates. From a traditional viewpoint this
may seem wasteful, but the increased cost of the hardware (if any), is greatly outweighed by
performance, reliability, and ease of design. The latter is especially true if the alternative is
one in which the real-time tasks must time-share a cpu; scheduling can make system design a
nightmare, particularly when hard deadlines have to be met.

The developments in hardware have also resulted in the emergence of “massively parallel”
computers (2| that are made up of a regular array of hundreds of processors in a non-shared
memory configuration. Although programming these machines may seem to be a problem
unrelated to that of programming an embedded real-time system, the fact that both have
distributed memory structures means that they share many problems and can, therefore, both

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1987 ACM 0-89791-240-3/87/0500-0064 Z00.75

64


http://crossmark.crossref.org/dialog/?doi=10.1145%2F36821.36805&domain=pdf&date_stamp=1987-10-01

benefit from any solutions to their common problems. Furthermore, Ada with its support
for parallel and scientific programming, would seem to be a natural candidate for these new
supercomputers.

To take system-wide advantage of strong typing, packages, tasking, exceptions and other
features of Ada, these distributed systems—both the embedded ones and the massively parallel
ones—should be programmed as a single Ada program. Given the need to do this, what is the
appropriate “unit of distribution” ?

Recommendation

Within the current definition of Ada, it is not possible to define a unit of distribution that
is without some shortcomings. Our recommendation is that library subprograms and library
packages be the only distributable units. They represent a reasonable level of granularity for
distribution, and they provide a reasonable unit for structuring distributed programs. Further-
more, as shown in [3], they do not require cross-machine dynamic scope management. This
fact greatly simplifies compiler implementation and run-time support, allowing efficient cross-
machine communications. Supplementary recommendations are: 1) Data objects created from
remotely defined types should be placed with the unit creating them, with implicit and basic
operations being replicated. User defined operations should remain on the unit elaborating the
corresponding type definition. 2) Task objects should be placed with the unit initiating their
creation.

The above recommendations could be presented as guidelines for the programming of dis-
tributed systems without requiring changes in the language definition. However, compiler and
run-time support would still be needed for those situations that may arise should the user decide
to ignore the guidelines. To avoid this, the recommendations should be part of the language
definition. They represent a compromise that will require a minimum of reinterpretation and
augmentation to the present language definition, while greatly facilitating the programming of
distributed systems.

A more radical departure from the current language, and one that we would also like to
see, is to have package types added to the language specification [4]. This would allow the
further recommendation that task objects created from task type definitions be restricted to the
units where the corresponding type definitions are elaborated. This would simplify distributed
task termination without restricting tasks of the same type to the same processor. Package
types would also simplify the programming of massively parallel machines. They are currently
programmed in much the same way as distributed systems—each processor is programmed
separately and communication is performed by a run-time system or simple operating system
[5]. The package type would provide a natural abstraction for the “single code” model® of

*In the single code model, multiple copies of the same program execute asynchronously. Thus, different
execution paths may be being taken by different processors. Each copy of the code is also a function of the
position in the array of the processor executing it.

65



programming which is currently the way in which most applications are programmed for these
machines [2].

References

[1] G. Moore, “VLSI: Some fundamental challenges,” IEEE Spectrum 16, (Apr. 1979), 30-37.

(2] J.P Hayes, T.N. Mudge, Q.F. Stout, S. Colley, and J. Palmer, “Architectures of a hypercube
supercomputer”, Proceedings of the 1986 International Conference on Parallel Processing,
August 1986, pp. 653-660.

(3] R.A. Volz, T.N. Mudge, G.D. Buzzard, and P. Krishnan, “Translation and execution of
distributed Ada programs: Is it still Ada?” to appear in the special issue on Ada of the
IEEFE Transactions on Software, Winter/Spring 1987.

(4] G.D. Buzzard and T.N. Mudge, “Object-based computing and the Ada programming lan-
guage”, Computer, March 1985, pp. 11-19.

(6] T.N. Mudge, G.D. Buzzard, and T.S. Abdel-Rahman, “A high performance operating
system for the NCUBE”, Proceedings of the 1986 Conference on Hypercube Multiprocessors,
(to appear).

66



