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In this note we propose a method of generating stationary 
noise with a prescribed auto-covariance function by digital 
methods. The need for such a technique often arises in testing 
the performance of data processing and engineering systems, 
where inputs corrupted with correlated noise (of a known 
form) are required. 

The technique is quite simple and produces strict-sense 
stationary noise which agrees approximately with R(r), the 
prescribed auto-covariance function (acf), over an interval 
[- -To, T0]. The method consists of approximating the spectral 
density by a periodic process with spectral lines, and then 
synthesizing the periodic noise with random phases and 
appropriate amplitudes. 

In order to simplify discussion of the statistical properties 
of the noise generated, the technique is first presented in 
terms of exact harmonic analysis. In practice, discrete harmonic 
analysis as presented in the third section is used. 

T h e  T e c h n i q u e  in  T h e o r y  

Let R ( r )  be the given acf and [ - T o ,  To] the interval 
in r for which noise with acf R*(r) = R(r)  is to be 
generated. Using the fact tha t  R(- - r )  = R(r) and 
IR(r) IX R(0)  <: ~ ,  we write 

R*@) = A~ + 2 A,~ cos nwor wo = - -  (1) 
n = l  ~ 0  

so tha t  R*(r) = R(r)  for [ r  I S To. The coefficients 
A,  are obtained from the formula 

1 f0 m A,, =: T0 R*(r) cos nwor dr (2) 

The A,, are related to the spectral density S*(w) of 
R*(r), which is the Fourier t ransform of R*(r), by 

S*(~v) = ~ A,,~(w - nwo) (3) 

where 8(w) is the unit impulse at  w =  0. Thus the spec- 
t rum of R*(r) consists of lines of height A, at  the fre- 
quencies nwo. The coefficients An are non-negative since 
an acf is realizable by  a random time series if and only if 
if the Fourier t ransform is non-negative. 

Let  4~1, ¢2, " "  be a sequence of independently and 
identically distributed random variables with a uniform 
distribution over the interval [0, 2@ Set B0 = (2A0) }, 
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B,,. = 2(A,0 } for n >= 1 and define 

x(t) = k B,, cos (nwot 4- 4',,). 
n=O 

I t  can easily be verified tha t  E[x(t)] 
E[x(t)x(t -4- r)] = R(r) for l r I S To. 

= 0 

(4) 

and 

T h e  T e c h n i q u e  in  Pract ice  

In  practice we have only a sampled R(r) ,  say 
Rk = R ( k a ) ,  k = 0 ,1 ,  . . . , N ,  NA = T 0 ; a n d h e n c e  
only N +  1 coefficients A,~ may  be determined. The integra- 
tion in Eq. (2) must  also be replaced by  numerical integra- 
tion. I f  the trapezoidal rule is used, the following formulas 
are obtained: 

NL 9, + ~ R~ cos + cos ~ (5a) 

f o r 0  S n S N -  1, and 

A.~  = :VL~- + k=l ~ ( - ] ) %  + ( -x )~  ,~6 J 

which yields 
Ar 

R**(T) = A0 + 2 ~ A,~ cos nwor 

so tha t  R**(kA) = R@A).  
Because of roundoff and truncation errors introduced 

by  the numerical integration, it is possible for some of 
the A,  coefficients to be negative. Thus we put  

B0 = (2A0) ~, B,  = / 2(A~)~ 
if A, >= 0, 

[0 if A.  < 0. 

We choose a sample of size N + 1 of random phases 
4,o, ~ ,  " " ,  4~ and define 

N 

x(t) = ~ Bn cos (nwot q- ~,,). (6) 
n ~ 0  

Thus x(t) is a sample function f rom a s tat ionary zero- 
mean random process with aef equal to R**(r). 

Periodic i ty  o f  S a m p l e  F u n c t i o n s  

The construction process given is equivalent to san> 
piing the spectrum S(w) of R(r) at the frequencies 
Wo, 2coo, - - • , No00, where w0 = ~r/To. The sample-func- 
tion x(t) is periodic wi th 'per iod  2To, and care must  be 
exercised not to sample x(t)  over an interval longer than 
2T0. Suppose we sample x(t)  a t  intervals of length a, and 
let, Ma be the desired length of time. Then M~ must  be 
equal to or less than 2NA. 

If  a t ime period longer than  2To is desired, then either 
(a) To must  be extended by sampling R(r)  longer, or (b) 
Rk may  be set equal to zero for k. > N, so tha t  Rk = R(lck) 
for 0 S k =< N, and Rk = 0 for N < lc ~ N1, where 
where 2N~A > M& I t  should be noticed tha t  if the lat ter  
approach is used, the A,  remain the same for 0 <- n_< N, 
and non-trivial A,, are added for n > N. 
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Asymptot ic  Normal i ty  

For each t, x(t)  in Eq. (6) is composed of a linear 
combination of identically and independently distributed 
random variables. I t  might be suspected that  as N ~ 
the distribution of x(t) approaches a normal distribution 
with mean-zero and variance equal to R(0).  Care must be 
exercised, however, since the A,~ coefficients are functions 
of N, as evidence by Eqs. (5). In other words, each case 
must be analyzed individually, as R(r )  = cos r provides 
an example of a case in which the central limit theorem 
does not hold. 

The authors have tested a few cases, using a chi-squared 
goodness-of-fit test, and obtained results which indicate 
that  when the central limit theorem applies, convergence 
is quite rapid. For example, let 

and let 

R(T) = 1 - - i r l  I r l  =< 1 

Rk = 0.02/~ 0 =< /c =< 50. 

A very small, chi-squared value with 9 degrees of freedom 
indicated normality at the 99 percent level of confidence. 
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Introduct ion  

For computer programs which require as nearly as 
possible approximations of uniform accuracy, the Tcheby- 
chev approximations which minimize the maximum error 
are better than others although perhaps, as Kogbetliantz 
[l] points out, not significantly better for some purposes. 
The main reason for not using them in the past has been 
the difficulty connected with obtaining them, but this 
situation has changed rapidly with the improvement of 
algorithms for their determination. Since the publication 
of the review by Stiefel [2] in 1959, the Remes' algorithm 
in particular has been developed into a stable efficient 
method for finding "best" polynomial approximations. 
Of impo~ance in this connection has been the improve- 
ment by Maehly [3] of the initial development of Mur- 
naghan and Wrench [4]. 

As mentioned by Kogbetliantz [q.v.], the use of rational 
approximations converted into continued fraction form 
offers a potentially great improvement over polynomials 
in the evaluation of functions by computer sub-routines 
if the operations of multiplication and division require 
approximately the same time and these are long in com- 
parison with addition and subtraction. In general, we can 
expect to produce a stated accuracy using less computer 
time or with approximately equal times get greater ac- 
curacy. The purpose of this article is to present computa- 
tional details of the extension of Remes' algorithm for 
finding polynomial approximations to the determination 
of "best" rational approximations, and to present some 
results obtained by using it. For the functions sin x and 
cos x, comparison with rational approximations given by 

Spielberg [8] shows noticeable improvement, while coef- 
ficients for the approximation of F(1 -4- x) have not to 
our knowledge been tabulated before. An approximation 
for [x I is included because it illustrates the behavior in the 
case of a function which is continuous but not everywhere 
differentiable. I t  is hoped that  the mathematical aspect of 
the extension, which is not yet complete, will be published 
later. 

Remes' Second Algor i thm 

I t  will be helpful in describing the algorithm for mini- 
max rational approximation to make reference to the 
algorithm for polynomial approximation since many of 
the computing details are exactly the same and hence 
directly transferable. Defining A(x) = f (x ) - -  P,,(x) ,  
a =< x =< b, it is known that  corresponding to the best 
polynomial approximation of degree n to f ( x ) ,  there exists 
a set of points {xi} and a minimum deviation E such that  

A(xi) = (--1)~E ( i = 0 , 1 , . . .  , n + l ) ,  (1) 

]A(x~)I => IA( x) l,a--<x--<b, ( i = 0 , 1 , . . .  , n - t - l ) .  (2) 

The determination of the set of points {xi}, the minimum 
deviation E, and the polynomial Pn(x)  of best approxima- 
tion is achieved by replacing the system of equations (1) 
and (2) by the following iterative scheme, in which the 
superscript k applies to the kth iteration: 

k k A ( x l )  = (--1)~E k ( i =  0,1, . . .  ,n--k 1), (3) 

A/¢ .," k+l~. ~xi ) = extreme (i = 0, 1, • . .  ,n-4- 1) 
A k /  k + l \  and for at  least one i, ~x~ ) = max IAk(x)I. (4) 

a<x .~b  

The solution is started by choosing an arbitrary set of 
points {x~ °} and using the resulting linear system (3) to 
determine E ° and 0 Pn (x). The maxima and minima (in- 
cluding the greatest extreme) of A°(x) become by (4) 
the set of points {xil}, and a cycle of the computation is 
complete. 

Novodvorskii and Pinsker [7] show that  using any  
arbitrary set of initial points {xi °} such that  E ° # 0, this 
process is convergent. In addition, Veidinger [5] shows 
that  if f ( x )  is differentiable the rate of convergence is 
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