Check for
Updates

An Error-Correcting Parse

Algorithm

E. T. Irons
Institute for Defense Analysts, Princeton, N. J.

During the past few years, research into so-called
“Syntax Directed Compiler” and “Compiler Compiler”
techniques (1, 2, 3, 4, 5, 6] has given hope that constructing
computer programs for translating formal languages may
not be as formidable a task as it once was. However, the
glow of the researchers’ glee has obscured to a certain
extent some very perplexing problems in constructing
practical translators for common programming languages.
The automatic parsing algorithms indeed simplify com-
piler construction but contribute little to the production
of “optimized” machine code, for example. An equally
perplexing problem for many of these parsing algorithms
has been what to do about syntactically incorrect object
strings. It is common knowledge that most of the ArcoL
or ForTRAN “‘programs” which a compiler sees are syn-
tactically incorrect. All of the parsing algorithms detect
the existence of such errors. Many have considerable
difficulty pinpointing the location of the error, printing
out diagnostic information, and recovering enough to
move on to other correct parts of the object string. It is
the author’s opinion that those algorithms which do the
best job of error recovery are those which are restricted to
simpler forms of formal languages.

The algorithm presented here is the outgrowth of an
attempt to alleviate some of these difficulties in error
detection and recovery. Its general characteristics are:

(1) It will parse strings describable in essentially
Backus Normal Form (BNF) [7, 8]. No automatic parse of
the author’s acquaintance will work for substantially
more complicated languages.

(2) If an incorrect object string is presented to the
algorithm, it will make local insertions, deletions or sub-
stitutions in the object string until a syntactically correct
string is produced. Many errors made in such a way that
the “‘correction” is clear from context will be corrected.
In any event, no matter how garbled the object string is,
it will be manipulated until a correct string has been
obtained.
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(3) The algorithm is relatively efficient. Pilot Models
indicate that parsing proceeds at the rate of about 100
executed machine instructions per symbol of the object
string.

(4) The algorithm is economical of memory space. In
particular its intermediate storage requirements are quite
restricted.

The essentially novel characteristic of the algorithm is
that in parsing the object string (say from left to right)
when a situation arises where more than one parse is
possible for the next few symbols all possible parses are
carried along until a symbol is reached which ‘“selects”
one of the parses. The following example will serve to
illustrate this principle. The BNT grammar

(A)::= ab (D) ::1= ce
(B) ::= (A)e (E) ::= b(D)
@) 1= (B) Gy ::= all)
assigns the parse
a h ¢ d
L. J
A
L. -
B
L. -
G
to the string abed, and the parse
a b c e
S —
L D J
L E 4

G

to the string abce. This grammar presents a problem to a
left-to-right parse because regardless of what string may
occur to the left, the parse of abc cannot be determined
until the next symbol after ¢ is encountered.

There are essentially two ways in which this dilemma
has been resolved.

(1) The grammar is restricted so that a unique parse
for a string A is determined by considering only the strings
to the left of A and one symbol to the right.

(2) The parsing algorithm makes an assumption that
one of the possible parses is correct, and if this turns out
not to be the case, the algorithm back tracks and tries
another parse.

The disadvantage of the first solution is simply that
the parsable languages are from a considerably more
restricted class than even BNF specified languages.

Communications of the ACM 669


http://crossmark.crossref.org/dialog/?doi=10.1145%2F368310.368385&domain=pdf&date_stamp=1963-11-01

The disadvantage of the second solution is that in
leaving the door open for back tracking, the occurrence of
an error requires that a whole host of unexamined alterna-
tives must be examined before it can definitely be estab-
lished that an error has occurred. Furthermore when all
alternatives have been so examined, the matter of deciding
which unsatisfied alternative is unsatisfied because of the
error 13 somewhat more than hopeless.

In the algorithm presented here, all possible parses are
carried along as shown below in the progressing parse of
abee according to the syntax of the earlier example.

PARSE 1 PARSE 2
a b c le a b ¢ !
| { L |
| 1
e e
| |
| 1

L

When the symbol ¢ is encountered, Parse 1 cannot be
continued and is dropped, leaving Parse 2 as the correct
one. o

Because the parse proceeds in this way, the location of
an error is easily detected, namely at the point where no
parses can be continued. Error Técovery is then effected
by examining the next few symbols in the object string in
relation to the syntactic statements concerning the parse
“brackets” which have been extended up to the point of
error. A more detailed discussion of the error recovery
feature will be postponed until a more detailed description
of the algorithm has been presented.

The Parse Algorithm

In order to describe the algorithm we present first the
form of the metalanguage, used to specify the parsing
and the way in which the statements of the metalanguage
are stored in the machine.

We adopt as metasymbols those used in BNT, namely
() and ::=, plus two braces { }. The statements of the
metalanguage take the form of BNF statements with
the following restriction: No syntactic variable may occur
both as the defined variable (left of the :: =) and the first
defining variable (immediately to the right of the ::=
or |) nor may any set of statements exist such that a
variable is defined in terms of itself. I'or example

(TERM) ::= (TERM) (MULT OP) (PRIMARY).

is not allowed nor are the set of statements
(A)
(B) ::

(B)(C)
(4)(D).

Il

Having thus stripped BNF of all its recursive power by
restriction 1, we add instead an ‘“iterative” power by
introducing the metasymbols { and } as follows:

Any set, of syntactic variables embraced by the braces
{ } are specified to occur any number of times in an input
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string. For example

-

(SUM) ::= (TERM) {{(MULT OP) (TERM)

specifies that a (SUM) may consist of a (TERM) alone
or a (TERM) followed by any number of occurences of the
pair (MULT OP) (TERM). A final restriction prohibits
a brace from occurring immediately after the ::= ie.,

A) 2= {(B)} ()
is not allowed.

Without bogging down in comparisons of this meta-
language to BNTI and others, we assert that as a practical
metalanguage it is essentially as powerful as BNT and
furthermore lends itself to somewhat more compact
descriptions of languages. To reinforce this point we pre-
sent the syntax in our metalanguage for a part of the
arithmetic section of ArLcoL 60 which we shall continue
to use in later examples.

(LETTER) ::= A |B|C ---
(DIGIT) ::=0]1]2 .-

1. (IDEN) ::= (LETTER) {{(LETTER)} {(DIGIT}}
(ADOP) ::= + | —
(MULOP) ::= |/
2. (PRIMARY) ::= (IDEN) | ((SUM))
3. (FACTOR) ::= (PRIMARY) {{(PRIMARY )}
4. (TERM) ::= (FACTOR) { (MULOP) (FACTOR)}
5. (SUM) ::= (TERM) {(ADOP) {TERM)} |

6. (ADOP) (TERM)

The representation in the machine of these statements
is designed to facilitate the parsing algorithm. In palfticulal‘
we wish to be able to assign the complete parse (or several
of them) to a basic at the first moment it is encountered
i the object string. To this end, construct from the syntax
statements a ‘“‘chain’ table for each basic symbol as
follows,

Observing that letter 4 can be the first symbol of a
(LETTER), {IDEN), (PRIMARY), (FACTOR), etc.
construct the chain

A « <LETTER>° <+ <IDEN>!1 « <PRIMARY>®

T
<SUM>#1 — <TERM>#! — <FACTOR>#!

for each letter. Five other symbols have chains:

+ « (ADOP) — (SUM)s !

—~ «— (ADOP)? — (SUM Y-t

% <« (MULOP)®

/ « (MULOP)

( - (PRIMARY)! « (FACTORP1 «
(SUM Y-t

(TERM )}«

(Although for this example, it happens that each link of the
chain has only one arrow pointing to it, there may, in
general, be several arrows pointing to an element. There
may be only one pointing away, however.) A chain for a
symbol may be interpreted as indicating that the symbol
may begin any syntactic category on its chain. Suppose,
for example, we wish to know the parse of a {TERM)
beginning with A. It is determined by looking for {TERM)
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on A’s chains, and following the arrows to A to construct

A
— 0
LETTER
11
1IDEN
— 0
PRIMARY
- 3.1
FACTOR

The digits connected to the brackets (copied from the

digits in the chain) are called “syntax pointers” and

indicate elements of the syntax tree which effectively

determine how the brackets may be extended to the right.
The syntax “tree” for our example would be

Index Names Aliernates Successors
0 null

1.1 (LETTER) 1.2 1.1
1.2 (DIGIT) 0 1.1
2.1 (SUM) 2.2
2.2 ) 0
3.1 0 0 3.2
3.2 (PRIMARY) 3.1
4.1 (MULOP) 0 4.2
4.2 (FACTOR) 4.1
5.1 (ADOP) 0 5.2
5.2 (TERM) 5.1
6.1 (TERM) 0

To interpret the tree, we adopt the following notation

S; is the zth entry (line) of the tree table.
The alternates of 8; are S;, S;,, 8;,, -+, S;, where 8;, is the
alternate for S; and S;,,, is the alternate for S;,.

A bracket whose syntax pointer is 7 may be extended
right one symbol if the next symbol has any of the alter-
nates of S; on its chain, and if all brackets “under” it can
be terminated.

A bracket may be terminated if 0 (or null) is one of
alternates of its pointer. Observe that for the parse

A
— 0
LETTER
11
IDEN
PRIMARY
31
FACTOR

(IDEN’) may be extended over a (LETTER) or (DIGIT)
or since (IDEN) and (PRIMARY) may be terminated,
(FACTOR) may be extended over T

Observe that if any bracket is extended,

(1) all brackets “covering” it must be extended as well,

(2) all brackets “under” it must be terminated,

(3) the pointer for the extended bracket becomes the
successor of S; (where 7 was its old pointer),

(4) if it is possible to extend two or more brackets,
we must create a new parse for each extension.

Lest the workings of the algorithm be completely ob-
scured by the above description, it is presented more
precisely in the following (almost ArnGor) program.
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We define the following arrays (with all lower subscript
bounds = 1) and variables:
1. The chain for a symbol 7

CNZ, j] isthe name of the ith element of the chain for the symbol
whose numeric value (under some convenient mapping)
is 7.

C8[Z, 7] is the syntax link (given as superscript digits in the
earlier presentation) for the zth element of the chain
for 7.

CP[i, 51 is the index of the next element in the chain (and = 0
if the element is the last, namely the symbol j.

NC[j] is the number of elements on the chain for j.

2. The syntax tree

SN [k]
SS[k]
SA[k)

is the name of the kth element of the tree table.

is the successor for this element.

is the immediate alternate, (if there is no alternate SA[k]
= 0) SN[1] is the “null’’ element.

3. The Parses

N is the number of parses currently existing.
NPn]) is the number of brackets in the nth parse.

PN, j] is the name of the jth bracket of the ¢th parse.
PS[i, j] 1is the syniax pointer for the bracket.
PI[z, j1 is the index of the first (left most) symbol under the

bracket.

Observing that once a bracket has been terminated we no
longer need to keep it in the parse table, we may assign
the following structure to PN (and corresponding parse
vectors): For ith parse, PNz, 1] is the outermost bracket
of the parse. P[, 2] is the next bracket under it, and so on.
Pli, NP[{]] is the “innermost’ bracket, namely the one
covering the last parsed symbol.

The algorithm for parsing the “next” (gth) symbol in
the object string (call it O[q]) is:

t:=N+41;
for ¢ := 1 step 1 until N do
begin
for j := NP[i] step —1 until 1 do
begin
for k := 1 step 1 until NC[0[q¢]] do
begin
SW := true;
= P8I, 5];
L2: if CNk, Olgl] = SN[I] then
begin
COPY PARSE (1, 5);
Ll: if CPlk] # 0 then

PNlt, j] := CNIk];
PS¢, 51 := CS[k];
PIL, 41 == q;
k := CPlk];
go to Ll end;
t:=1¢+ 1end;
if I = 1 then SW := false;
if SA[l] # 0 then begin [ := SA[l];
end;
if SW then go to L3 end;
L3: end

go to L2 end;
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The procedure COPYPARSE is defined as follows:

procedure COPYPARSE (i, §); valuet, j;
begin
for 4 := 1 step 1 until j do
begin
PN[t, ul := PNi, ul;
PSit, u] 1= P;S['i, ul;
PIt, u] := PI[i, u]; end;
PS[t, w] := SS[PSt, u]]

for v = j 4+ 1 step 1 until NP[i] do

Output appropriate information about PN[i, u] ete. Such out-

puts specify the final parse.
end

After executing these program steps, the parses of the

object string lie in NP[N + 1], NP[N 4+ 2] --

are then moved to NP[1], NP[2] - -

-. They

and the process is

repeated for the next symbol in the object string.
As an example of the parsing operation we give a blow-

by-blow description of the parse of

AB x (C + D)
according to the syntax of our example. The final parse is:
A B * ( C + D )
- r— 1 L S [ S I S — |

LETTE R LETTER MULO P

LF‘TTER ADOP LETTER

N — | | I — | | D —— |
IDEN IDEN IDEN
N | N | L. .|
PRIMARY PRIMARY PRIMARY
L. S _ 1 |
FACTOR FACTOR FACTOR
I | | ——
TERM TERM
L ]
. SUM
t —
PRIMARY
L )
FACTOR
e |
TERM
| S— ]
SUM
The chain for 4 is
i CN[i,’4’) CS[i. A’} CP[i, 'A"}
1 A 0 0
2 letter 1 1
3 iden 2 2
4 primary 4 3
5 factor 6 4
6 term 8 5
7 sum 10 6
The complete syntax tree is:
i SN[ SALi] SS[i
1 null 0 0
2 letter 3 2
3 digit 1 2
4 sum 0 5
5 ) 0 1
6 1 1 7
7 primary 0 6
8 mulop 1 9
9 factor 0 8
10 adop 1 11
11 term 0 10
12 term 0 1

672

Communications of the ACM

The parse (there is only one at all times for this example)
is (we abbreviate the syntactic names by their first letter):

PN1i, PSli
o/fi 10 9 & 7 6 5 4 3 2 1
A L,1 1,2 Pr,1 F,6 T,8 8,10
B ,1 1,2 P,1 F,6 T,8 §,10
* M,1 T,9 S,10
( P,4 F,6 T,8 8,10
¢ IL,1 1,2 P,1 F,6 T,8 8,10 P,5 F,6 T,8 8,10
+ A, 128,11 P,5 F,6 T,8 8,10
D L,1 1,2 P,1 F,6 T,8 8,10 P,5 F,6 T,8 §,10
) P,1 F,6 T,8 §,10

The output of the program is simply a list of brackets
equivalent to the pictorial parse diagram given earlier.

Error Correction Algorithm

An error in the object string will cause all parses to
disappear at or shortly after the error. In this event the
following actions are taken:

1. A list is compiled of all the syntactic elements or
basic symbols which might be called for after the error
point. The list consists of all elements of SN named by
the syntax pointers of all brackets in all parses (just before
the error point) and all successors and alternates of these
SN elements.

2. The symbols at and after the error point are ex-
amined one by one and discarded until one is found which

a. occurs on the list of 1, or

b. has an element on its chain which occurs on the list

of 1.

3. The bracket from 1 which is selected in 2 is examined
in relation to the parses to determine a string of basic
symbols which, when inserted at the error point will allow
the parse to continue at least one symbol past the inserted
string.

4. The string of 3 is inserted into the object string at the
error point and the parse is continued. The parse is forced
to cover the complete input string by initializing the parse
with a “program’ bracket which requires a special symbol
(to be inserted at the end of input string) for its termina-
tion.

The pilot model used to verify these algorithms used the
syntax productions of IMigure 1 to produce the parse and
error diagnostic shown in Figure 2.

An interesting side effect of the parse algorithm is that
ambiguous strings for a set of productions are easily
detected since they will cause the occurrence of two or
more identical parses in PN at the end of the ambiguous
string. Such oceurrences cause all but one of the parses
to be dropped and the printing of appropriate diagnostic
information.

Applications

The most important application of the error correcting
parse algorithm is to compiler construction. The error
correction feature will allow compilers using this technique
to compile and run an error ridden program to obtain a
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SYNTAX RULES

1. METAVARIABLES ARE ENCLOSED IN PARENTHESES.

2., NO VERTICAL BAR ALLOWED.

3. USE + AND ~ FOR LEFT AND RIGHT BRACES RESPECTIVELY.

4. THE FOLLOWING RULES PROVIDE FOR INSERTING BASIC SYMBOLS ()+¢~*
USE 'L FOR { L
USE 'R FOR )
USE *P FOR *
USE *A FOR +
USE 'S FOR -

5. ASSIGNMENTS ARE TO THE RIGHT RATHER THAN TO THE LEFT.

I.E« (A){B)=(C) MEANS AN A CONCATENATED WITH A B FORMS A C.

PRODUCTIONS FOR ‘FIGURE 2.
(SL) =(PG)
A={LT)
B=(LT)
C={LT)
D=(LT)
E=(LT)
F=(LT)
G={(LT)
H={LT)
I=(LT)
J=(LT)
K={LT)
L=(LT)
M=(LT)
N=(LT)
o=(LT)
P=(LT)
Q=(LT)
R=(LT)
$=(LT)
T={LT)
us(LT)
v=(LT)
W={LT)
X={LT}
Y=(LT)
1=(LT)
fA={ADQ)
*5={A0)
*=(M0)
/={MQ)
{(LT)+(LT)=={PR)
*L{SU)'R={PR)
{PR)+(MO) (PR}==({TM)
(TMI+(AD) (TM)~=(35U)
(LTI+{LT)-=(SU}=(ST)
(ST)+; (ST)=-={SL)}

Fra. 1

maximum of diagnostic information in one try on a
machine. The success of the Corc compiler testifies for the
merits of this mode of operation. We reiterate the earlier
statement that constructing a good compiler is still far
from being a trivial task; output code optimization and
“gelf-defining”’ or declarative languages are just two areas
which still present difficulties in compiler construction
which are not solved by (indeed are partly outside the
scope of) automatic parsing techniques. The error cor-
recting parse will, however, remove some of the burdens
of programming a good compiler.

A second area of application which may have some im-
portance in the future is in the area of pattern recognition.
One of the biggest problems in pattern recognition de-
vices is their lack of ability to capitalize as the human
reader does on the wealth of contextual information con-
tained in many patterns of interest. A combination of the
error correcting parse and a pattern recognizing device
which, for example, might offer several interpretations of a
pattern and weight for each, might produce an effective
device for reading and interpreting names on forms, in-
formation in journals and the like. At the very least, we
might hope to allow a programmer to present his hand-
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INPUT STRING
SIRE==VZ21)(oXM;+X=A+F i X=+HT, (R} «ST;EN
DIAGNOSTICS

IN COL @1 OF CARD @237 REPLAZES ;i
IN COL 06 OF CARD 081 REPLACES -
IN COL 08 OF CARD @81 + REPLACES 21)
IN CCL 12 OF CARD 621 ) REPLACES
IM COL 16 OF CARD 921 REPLACES +
IN COL 2% OF CARD @81 = REPLACES -+
IN COL 28 OF CARD 021 + REPLACES .
IN COL 21 OF CARD 082 =I REPLACES

PARSE

Lss?
LsSse
SSP
LPTSSSP
ASSSP
PTSSSP
LPTSPTSSSP
PTSSSP
MTSSSP
LPTSSSP
LPTSSSP

X

ssp
LPTSSSP
LPTSSSP
ASSSP
PTSSSP
LPTSPTSSSP
PTSSSP
MTSSSP
LPTSSSP
LPTSSSP
se

Lssp
LSSP.

sSSP
LPTSSSP

Fia. 2

VRN RERDN RN AR RREE
EI RS R R R R R Sl o S S o R R S E SRR
-
v
©v
b

R R R E R I

HUZMe AN e D~ AT I X NMA P I X IR et < B Mo

BERERGQ QS
R
oo n &S

written XcorL program to the computer thus avoiding the
very serious restrictions of card punch and typewriter
character sets.
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