
Abstract  We propose an efficient hardware architecture for 
the Blowfish algorithm [1]. The speed is up to 4 bit/clock, 
which is 9 times faster than a Pentium. By applying 
operator-rescheduling method, the critical path delay is 
improved by 21.7%. We have successfully implemented it 
using Compass cell library targeted at a 0.6 µm TSMC 
SPTM CMOS process. The die size is 5.7x6.1 mm2 and the 
maximum frequency is 50MHz. 

I. INTRODUCTION 

Cryptography is widely applied to protect digital data. 
Nowadays, there are many kinds of cryptography and most 
of them require a secret key to encode digital data. After 
applying a cryptography algorithm to our digital data, others 
can’t regain the original data easily without the secret key. 
Then, the private data are under protection. 

The Blowfish algorithm was designed by Bruce Schneier 
in 1993. It is a symmetric block cipher and each block is 64 
bits. The secret key of Blowfish cryptography ranges from 32 
bits to 448 bits. 

Blowfish has been examined for five years. Serge 
Vaudenay has examined weak keys in Blowfish. Vincent 
Rijmen's Ph.D. paper includes a second-order differential 
attack on 4-round Blowfish [2]. The key of the Blowfish 
algorithm is 448 bits, so it re-quires 2448 combinations to 
examine all keys. 

The Blowfish algorithm has many advantages. It is 
suitable and efficient for hardware implementation. Besides, 
it is unpatented and no license is required.  

The proposed architecture can produce 4-bit data per 
clock. The scan chains are also included in this architecture 
for testing. The die size of the chip is 5.7x6.1 mm2, and the 
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maximum frequency is up to 50MHz. 

II. BLOWFISH ALGORITHM 

The elementary operators of Blowfish algorithm include 
table-lookup, addition and XOR. The table includes four 
S-boxes (256x32bits) and a P-array (18x32bits).  

The Blowfish algorithm consists of four steps including 
table initialization, key initialization, data encryption and 
data decryption. Fig. 1 shows the Blowfish encryption 
algorithm 

III. THE PROPOSED ARCHITECTURE 

A. Operator Rescheduling 

When calculating “s = a + b”, the i-th bit of s is equal to ai 
⊕ bi ⊕ ci , where ci is the carry-in of i-th bit. 

Fig. 2 shows the original DFG of the loop body after 
replacing the add operation with CG and XOR function. 
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Divide X into two 32-bit halves: XL, XR 
For i = 1 to 16: 
   XL = XL⊕ Pi 
   XR = F(XL) ⊕ XR 
   Swap XL and XR 
Swap XL and XR (Undo the last swap.) 
XR = XR ⊕ P17 
XL = XL ⊕ P18 
Concatenate XL and XR 

Fig. 1 Blowfish algorithm 

Divide XL into four eight-bit quarters: a, b, c, and d 
F(XL) = ( ( S1[a] + S2[b] ) ⊕ S3[c] ) + S4[d] 

Fig 2. DFG of the loop body 

Fig. 3 DFG after rescheduling 
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The operators include only carry generators and XOR, so 
we can use operator-rescheduling method to reduce the 
critical path delay. Fig. 3 shows the result of operator 
rescheduling. 

The gray line in these figures shows the critical path. The 
original critical path delay is two CG delay plus five XOR 
delay. After rescheduling, the critical path delay is reduced to 
two CG delay plus two XOR delay. Three 2-input XOR 
delays are hidden. According to a synthesizer’s report, the 
improvement of critical path delay is about 21.7%. 

B. Fast Carry Generator 

The fast carry generator is based on a carry-lookahead 
adder [3]. We construct the carry generator using hierarchical 
4-bit carry generators. 

C. The System Configuration 

Controller 
The controller is implemented as a finite state machine 

and described in a behavioral Verilog model. See Fig. 4. 

Datapath 

It includes ROM modules, SRAM modules, and the main 
arithmetic units of Blowfish. Fig. 5 shows the datapath 
architecture. 

Because the size of SRAM module is 2n words, P1 and 
P18 are implemented as registers, and the others are mapped 
to 16x32 bits SRAM. We use a shift register under DataIn to 
expand 4-bit input to 64-bit input and a shift register over 
DataOut to reduce 64-bit output to 4-bit output. 

CORE implements the loop of the 16-round iteration. A 
pipeline stage is added to the output of the SRAM modules. 
The pipeline stage will double the performance of the 
Blowfish hardware but lead to the overhead of area. 

D. DFT Consideration 

The testing circuit of the controller is done by adding 
scan registers to store the signals of the controller and scan 
out the contents of the registers in test mode. 

The datapath is described by Verilog RTL model. All of 
the flip-flops of the datapath are replaced by scan flip-flops. 

IV. EXPERIMENTAL RESULTS 

Table 1 shows the feature of this chip. The maximum 
frequency of this Blowfish cipher chip is 50MHz. Fig. 6 
shows the photomicrograph. 

V. CONCLUSION 

The proposed hardware architecture of the Blowfish 
algorithm can achieve high-speed data transfer up to 4 bits 
per clock, which is 9 times faster than a Pentium. By 
applying operator-rescheduling method, the critical path 
delay is improved about 21.7%. Besides, DFT is also taken 
into consideration. Specially, the chip is cascadable that 
means if two chips are used, the performance is double. The 
test results show that the maximum frequency of this 
Blowfish cipher chip is 50MHz. The proposed architecture 
has satisfied the need of high-speed data transfer and can be 
applied to security device of a system. 
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Table 1 The chip feature 

Fig. 6 Photomicrograph 

Fig. 5 The architecture of the datapath 

Fig. 4 FSM of the controller 
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