
Abstract We propose an efficient hardware architecture for
the Blowfish algorithm [1]. The speed is up to 4 bit/clock,
which is 9 times faster than a Pentium. By applying
operator-rescheduling method, the critical path delay is
improved by 21.7%. We have successfully implemented it
using Compass cell library targeted at a 0.6 µm TSMC
SPTM CMOS process. The die size is 5.7x6.1 mm2 and the
maximum frequency is 50MHz.

I. INTRODUCTION

Cryptography is widely applied to protect digital data.
Nowadays, there are many kinds of cryptography and most
of them require a secret key to encode digital data. After
applying a cryptography algorithm to our digital data, others
can’t regain the original data easily without the secret key.
Then, the private data are under protection.

The Blowfish algorithm was designed by Bruce Schneier
in 1993. It is a symmetric block cipher and each block is 64
bits. The secret key of Blowfish cryptography ranges from 32
bits to 448 bits.

Blowfish has been examined for five years. Serge
Vaudenay has examined weak keys in Blowfish. Vincent
Rijmen's Ph.D. paper includes a second-order differential
attack on 4-round Blowfish [2]. The key of the Blowfish
algorithm is 448 bits, so it re-quires 2448 combinations to
examine all keys.

The Blowfish algorithm has many advantages. It is
suitable and efficient for hardware implementation. Besides,
it is unpatented and no license is required.

The proposed architecture can produce 4-bit data per
clock. The scan chains are also included in this architecture
for testing. The die size of the chip is 5.7x6.1 mm2, and the

† Supported in part by the National Science Council, R.O.C,
under contract no. NSC 88-2215-E-007-025

maximum frequency is up to 50MHz.

II. BLOWFISH ALGORITHM

The elementary operators of Blowfish algorithm include
table-lookup, addition and XOR. The table includes four
S-boxes (256x32bits) and a P-array (18x32bits).

The Blowfish algorithm consists of four steps including
table initialization, key initialization, data encryption and
data decryption. Fig. 1 shows the Blowfish encryption
algorithm

III. THE PROPOSED ARCHITECTURE

A. Operator Rescheduling

When calculating “s = a + b”, the i-th bit of s is equal to ai
⊕ bi ⊕ ci , where ci is the carry-in of i-th bit.

Fig. 2 shows the original DFG of the loop body after
replacing the add operation with CG and XOR function.

A VLSI Implementation of the Blowfish Encryption/Decryption Algorithm†

Michael C.-J. Lin, Youn-Long Lin

Department of Computer Science
National Tsing Hua University

Hsin-Chu, Taiwan 30043, R.O.C.

Divide X into two 32-bit halves: XL, XR
For i = 1 to 16:
 XL = XL⊕ Pi
 XR = F(XL) ⊕ XR
 Swap XL and XR
Swap XL and XR (Undo the last swap.)
XR = XR ⊕ P17
XL = XL ⊕ P18
Concatenate XL and XR

Fig. 1 Blowfish algorithm

Divide XL into four eight-bit quarters: a, b, c, and d
F(XL) = ((S1[a] + S2[b]) ⊕ S3[c]) + S4[d]

Fig 2. DFG of the loop body

Fig. 3 DFG after rescheduling

S - b o x 1 S - b o x 3 S - b o x 4S - b o x 2

X R P -a r r ay

R e s u l t

X L
8 bits 8 bits 8 bits 8 bits

32 bits32 bits 32 bits 32 bits

32 bits 32 bits

CG
CG

32 bits

32 bits

32 bits

a b c d e f

r2

XOR

XOR

XOR

XOR

XOR

S-box1 S-box3 S-box4S-box2

XR P-arrayXL
8 bits 8 bits 8 bits 8 bits

C
G

C
G

Result

32 bits 32 bits

32 bits

32 bits 32 bits 32 bits 32 bits

32 bits

32 bits

32 bits

a b c d e f

r1

XOR

XOR

XOR

XOR

XOR

XOR

XOR

The operators include only carry generators and XOR, so
we can use operator-rescheduling method to reduce the
critical path delay. Fig. 3 shows the result of operator
rescheduling.

The gray line in these figures shows the critical path. The
original critical path delay is two CG delay plus five XOR
delay. After rescheduling, the critical path delay is reduced to
two CG delay plus two XOR delay. Three 2-input XOR
delays are hidden. According to a synthesizer’s report, the
improvement of critical path delay is about 21.7%.

B. Fast Carry Generator

The fast carry generator is based on a carry-lookahead
adder [3]. We construct the carry generator using hierarchical
4-bit carry generators.

C. The System Configuration

Controller
The controller is implemented as a finite state machine

and described in a behavioral Verilog model. See Fig. 4.

Datapath

It includes ROM modules, SRAM modules, and the main
arithmetic units of Blowfish. Fig. 5 shows the datapath
architecture.

Because the size of SRAM module is 2n words, P1 and
P18 are implemented as registers, and the others are mapped
to 16x32 bits SRAM. We use a shift register under DataIn to
expand 4-bit input to 64-bit input and a shift register over
DataOut to reduce 64-bit output to 4-bit output.

CORE implements the loop of the 16-round iteration. A
pipeline stage is added to the output of the SRAM modules.
The pipeline stage will double the performance of the
Blowfish hardware but lead to the overhead of area.

D. DFT Consideration

The testing circuit of the controller is done by adding
scan registers to store the signals of the controller and scan
out the contents of the registers in test mode.

The datapath is described by Verilog RTL model. All of
the flip-flops of the datapath are replaced by scan flip-flops.

IV. EXPERIMENTAL RESULTS

Table 1 shows the feature of this chip. The maximum
frequency of this Blowfish cipher chip is 50MHz. Fig. 6
shows the photomicrograph.

V. CONCLUSION

The proposed hardware architecture of the Blowfish
algorithm can achieve high-speed data transfer up to 4 bits
per clock, which is 9 times faster than a Pentium. By
applying operator-rescheduling method, the critical path
delay is improved about 21.7%. Besides, DFT is also taken
into consideration. Specially, the chip is cascadable that
means if two chips are used, the performance is double. The
test results show that the maximum frequency of this
Blowfish cipher chip is 50MHz. The proposed architecture
has satisfied the need of high-speed data transfer and can be
applied to security device of a system.

REFERENCE

[1] Bruce Schneier, “Applied Cryptography”, John Wiley & Sons, Inc. 1996

[2] The homepage of description of a new variable-length key, 64-bit block

cipher http://www.counterpane.com/bfsverlag.html

[3] Patterson and Hennessy, “Computer Organization & Design: The

Hardware/ Software Interface”, Morgan Kaufmann, Inc. 1994

CORE

0 0ROM_P

ROM_Sbox

SRAM_P

SRAM_Sbox

Mux

MuxMux

Mux

FF FF

FFFF

F
F

s0

s1

s2

s3

p

M
u

x
M

u
x

M
u

x
M

u
x

M
u

x

M
u

x
M

u
x

M
u

x
M

u
x

M
u

x

F
F

F
F

F
F

F
F

XOR

clk
en_de
sel2

clk

sel1

sel0

cnl1

sel4

M
u

x

sel3

sel5 sel6

addr_s[7:0]

addr_p[3:0] oe_p we_p oe_s we_s[3:0]

32

addr_s0

addr_s3

addr_s2

addr_s1

s3_dout

s0_dout

s1_dout

s2_dout

clk

so_din

s1_din

s2_din

s3_din

p_din

32

32 32

32

32

32

32

32

p_dout

Shift Register

cnl0

4

DataIn

clkShift Register

4

DataOut

FF

clk

Table 1 The chip feature

Fig. 6 Photomicrograph

Fig. 5 The architecture of the datapath

Fig. 4 FSM of the controller

Die size 5.7 x 6.1 mm2
Pad

 Ext. Power 5 vdd 7 gnd
 Int. Power 4 pairs
 Input 12
 Output 6
 Clock buffer PC5C03

Macro
 SRAM 256x32(x4), 16x32(x1)
 ROM 256x32(x4)

Random logic 16K gates

start

clear

load

initialidle

decrypt

encrypt

!reset

mode=0

mode=3 mode=2

mode=1

e1

e3

e2
e4

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

