
 Co-synthesis with custom ASICs

Abstract - This paper introduces the first hardware/software
co-synthesis algorithm that optimizes the implementations of
ASICs that are used as processing elements for the embedded
systems. Many real time embedded systems are composed of
heterogeneous processing elements, such as general purpose
CPUs, ASICs and FPGAs. Previous work has not considered
how to select one of several possible ASIC implementations for
a specific task. We have developed a heuristic iterative
improvement algorithm for distributed embedded system co-
synthesis. We use Monet, a behavioral level architectural
exploration system, to generate multiple implementations of a
behavioral description of an ASIC and to analyze their
performance. To the best of our knowledge, this is the first co-
synthesis algorithm that takes into account the impact of
different ASIC implementations of tasks on system
performance and cost in the co-synthesis process.

 I. Introduction

 Hardware-software co-synthesis creates an embedded
system architecture to meet performance, power and cost
goals[3]. This paper describes a new algorithm for the co-
synthesis of distributed, embedded computing systems. The
algorithm synthesizes a distributed multiprocessor
architecture and allocates processes to the CPUs and ASICs
such that the allocation and scheduling meet the deadline of
the system, while the cost of the system is minimized. The
system functionality is specified by the periodic task graphs.
The target architecture is a heterogeneous multiprocessor
with multiple processing elements (PEs) of various types:
CPUs and ASICs. A CPU can execute different processes,
while an ASIC executes a single task. Furthermore, for a
specific task, it is possible to have different ASIC
implementations: such as the fast implementation with large
area or the slow implementation with small area. Our
algorithm takes into account the impact of different ASIC
implementations of tasks on system performance and cost in
the co-synthesis process.

 This paper is organized as follows. Section II reviews
previous related work. Section III describes an ASIC
performance analysis tool based on Monet, an architectural
exploration system by the Mentor Graphics. We then
present our iterative improvement co-synthesis algorithm.
Section V discusses the experimental results of our co-
synthesis algorithm and finally we propose the future work.

 II. Previous work

 Previous work in hardware software co-design has
addressed various aspects of co-synthesis[1][2][3].
Hardware/software partitioning algorithms were the first
variety of co-synthesis applications. Partitioning algorithm
implements the system specification on some sort of
architectural template, usually a single CPU with one or
more ASICs connected to the bus. On the other hand,
distributed system co-synthesis does not use an architectural
template to drive co-synthesis. Instead, it creates a
multiprocessor architecture for the hardware engine. The
target architecture is usually heterogeneous in both its
processing elements and its communication channels. It can
employ multiple CPUs, ASICs and FPGAs.

 Two distinct approaches exist in the distributed system
co-synthesis: optimal and heuristic. A typical example for
optimal approaches is the SOS system[9], which uses mixed
integer linear programming technique (MILP). Because of
the time complexity, optimal approaches are suitable only
for small task graphs and impractical. So people turn to the
heuristic domain to find a solution quickly and efficiently.
There are two distinct approaches in the heuristic domain:
iterative and constructive. The iterative approach begins
with an initial solution and improves it[1][2]. A constructive
algorithm builds the solution step by step and a complete
solution is not available until the algorithm is finished [7].
There are other heuristic algorithms such as MOGAC[8],
which deploys an adaptive multi-objective genetic
algorithm, both cost and power consumption are optimized
while hard real-time constraint is met.

 Though many aspects of co-synthesis have been
addressed, previous work did not consider the impact of
different ASIC implementations on the final co-synthesis
result.

 III. ASIC performance analysis

 Working together with the Mentor Graphics’ codesign
consortium, we have developed an ASIC performance
analysis tool in our algorithm, based on their architectural
exploration system Monet, to explore the tradeoffs for

Yuan Xie, Wayne Wolf

Electrical Engineering Department
Princeton University

Princeton, NJ 08540 USA
 e-mail : {yuanxie,wolf}@ee.princeton.edu

different ASIC implementations in the co-synthesis
algorithm.

 Monet[6] allows the user to explore architectural
alternatives rapidly and to interactively make and evaluate
tradeoff decisions at the behavioral level, before designs are
committed to an RTL description. It is the first tool to
combine interactive, graphical trade-off analysis with state-
of-the-art automatic scheduling, allocation, and sharing.
The user specifies the desired clock cycle time, expected
control step to finish the process, as well as the I/O timing
constraints. Then based on Monet’s synthesis result, we
determine the worst case execution time (performance) and
the area (cost) of the ASIC.

 Using our ASIC performance analysis tool, it is possible
to explore the design space of the ASIC implementations.
Figure 1 shows the design space for a specific ASIC
implementations. In the real design, we might either choose
the fastest implementation with expensive cost (large area),
or choose the cheapest implementation(small area) with
rather slow execution time, or other implementations
between these two extreme points.

 Fig.1. The design space of the ASIC implementations.

 IV. Hardware/Software co-synthesis

A. Problem specification

 The problem specification of our co-synthesis algorithm
includes a set of real-time applications, an architecture
template, and a technology library.

 The real-time applications are periodic, running at
multiple rates. We use task graph model[3] to describe each
application. Applications are partitioned into task graph,
which is a directed acyclic graph, as shown in Figure 2. In a
task graph, nodes represent tasks that may have moderate to
large granularity; the directed edges represent data
dependencies between tasks. An edge, say A È B, implies
that task B cannot start execution until A is finished. Data
dependency edges ensure the correct order of execution.
Each edge is associated with a scalar describing the amount

of data that must be transferred between the two connected
nodes. The task graph is executed periodically at its
specified rate. We assume that the deadline, by which the
task graph must complete its execution, is equal to the
period.

 We use a heterogeneous shared memory multiprocessor as
the target architecture as shown in Figure3.The architecture
has a number of processing elements (PEs), which may be
CPUs or ASICs. Each CPU has its private instruction cache
and data cache. The task-level cache performance model we
used is proposed by Li[2]. Each task can have many
implementation options differing in PE type, cost and
execution time.

 The technology library provides a number of choices of
the types of CPUs and the worst case execution
time(WCET) for the tasks on each type CPU. If a task can
be implemented as ASIC, then there is a related behavioral
VHDL file for this task.

 The goal of the co-synthesis algorithm is to allocate
processes to PEs and choose the number and types of
components in the target architecture from the technology
library, such that the applications can be scheduled to meet
their performance constraints (deadlines) and the total cost
of the result system is minimized.

B. Outline of the co-synthesis algorithm

 Our co-synthesis algorithm uses an iterative improvement

Area

Execution time

fastest

smallest

A

B C

D E

3 5

4 62

period=35

deadline=35deadline=35

Fig.2. Task graph.

memory

CPU1 CPU2

ASIC2ASIC1
1

Fig.3. The target architecture

strategy to search the design space. The outline of the
algorithm consists of the following steps:

 1. Pre-process and find an initial solution
 2. Iteratively reduce ASIC numbers and CPU cost
 3. ASIC cost reduction procedure
 4. Allocate and schedule tasks and data transfers for

 the final design

 In step 1, the pre-processor calls our ASIC performance
analysis tool, which is based on Monet architectural
exploration system. Given a behavioral VHDL description,
our ASIC performance analysis tool calculate the speed
(performance) and the area (cost) for the fastest ASIC
implementation and the smallest ASIC implementation for
each task which can be implemented as ASIC and put such
information into the technology library. We assume that the
cost of ASIC is proportional to the area of ASIC, which is
reasonable in the system-level design[10].

 The initial solution is constructed by assigning each task
in the task graphs the fastest PE that is available for the task.
This is done by looking up the technology library. If the PE
is a CPU, then the instruction and data caches of the task’s
program or data size are added to that CPU. If the PE is an
ASIC, then the task is implemented as the fastest ASIC,
whose parameters (the worse case execution time and the
area) are extracted from our ASIC performance analysis tool
in the pre-process procedure. The performance of the initial
solution is evaluated, assuming the communication delay
between PEs is zero. If it cannot meet the deadline
constraints, there exists no feasible design given the current
technology library, and the algorithm stops without a
solution.

C. Iterative cost reduction procedure

 Since the ASIC implementation is usually faster than the
software implementation in CPU for a specific task, most of
the PEs in the initial architecture will be ASICs (or all
ASICs). The iterative cost reduction is the most critical step
in the co-synthesis algorithm. It searches for an improved
design by moving tasks from ASIC to CPU and cutting CPU
cost and cache cost iteratively.

 A single iteration of the cost reduction step consists of
two procedures: the ASIC_to_CPU procedure and the CPU
cost reduction procedure. The ASIC_to_CPU procedure tries
to move tasks from ASIC to CPU (from hardware to
software), while the CPU cost reduction procedure reduces
the CPU cost and cache cost.

 We use two heuristics to select tasks on ASIC and move
them from ASICs to CPUs.

 1. The first heuristic is related to the difference between the
hardware speed and software speed. If the difference D

(D=WCET_of_fastest_ASIC-WCET_of_fastest_CPU)is small,
it implies that implementing the task as ASIC can’t achieve
much speedup compared to implementing the task on CPU.
Therefore this task is a good candidate to be slowed down
by moving it from ASIC to CPU.

2. The second heuristic uses the task graph’s critical path. If
a node is not on the critical path of the task graph, it implies
this node is a good candidate to be moved from ASIC to
CPU. Since the critical path moves as the tasks are moved
around PEs, we use a simple method to decide the critical
path and decide if a node is on the critical path[11].

 The Earliest Start Time (EST) for the node is the time at
which the node can be executed as early as possible. For
node_i, which is allocated to PE(node_i) , the EST(i) is
defined as follows:

 EST(i)=Max{EST(j)+ET(j)+Com(i,j) }
 for all node_j, which are parent nodes of node_i

 where the EST(j) is the EST of node_j, ET(j) is the
execution time for node_j, Com(i,j) is the data
communication time between node_j and node_i. If node_i
and node_j are allocated on the same CPU, the Com(i,j) is
zero. EST of node_i is simply the latest data arrival time
among all its parent nodes. For start nodes, which don’t
have parent nodes, EST=0.

 The Critical Path Length (CPL) is defined as the length
of the critical path:

 CPL=Max{EST(j)+ET(j)} for all node_j in graph.

 The Latest Start Time (LST) is the time at which the
node can be executed as late as possible. The definition is:

 LST(i)=Min{LST(j)-ET(j)- Com(i,j)}
 for all node_j, which are child nodes of node_i.

 For end nodes, which don’t have child nodes, LST=CPL-
ET(j).

 After calculating the EST and the LST for each node in the
task graph, if EST(node_i) =LST(node_i), then node_i is
on the critical path.

 A single iteration of the CPU cost reduction procedure
tries to reduce the cost of the CPUs by eliminating lightly
loaded CPUs after moving the tasks on those CPUs to other
CPUs. The CPUs in the current design are ordered by their
workload. The algorithm starts from the most lightly loaded
CPU. For each CPU, we identify the tasks on it that can be
executed on other CPUs; these tasks are then moved to the
other CPUs that provide the best performance for the tasks;
the cache sizes of the other CPUs increase to accommodates
the tasks that are newly moved there. The CPU is removed if
it becomes empty. When the tasks on a CPU cannot be

moved to other CPUs, the algorithm tries to replace the
current CPU with a cheaper alternative. Finally an attempt is
made to cut its instruction and data cache size.

D. ASIC cost reduction.

 After the iterative improvement procedure, the CPU
structure and the ASIC structure is fixed. But until now, for
those tasks implemented as ASICs, we use the fastest
implementation. Our ASIC cost reduction procedure tries to
reduce the ASIC cost, by trying to replace the fastest ASIC
implementation with the smallest ASIC implementation or
the intermediate implementations. There are two types of
slacks can be utilized to slow down the ASICs and reduce
the area of ASICs.
 • global slack, which is the minimum slack between the
deadline and the completion time of the tasks.
 • local slack, which is the minimum slack between the
ASIC completion time and the starting time of its successor
tasks.

 Fig.3. The ASIC cost reduction procedure.

 We try to use less expensive (smaller area) ASIC
implementations in the design where possible. All the
ASICs in the current design are ordered by the difference of
area between the fastest ASIC implementation and the
smallest ASIC implementation. (line 1). We start from the
ASIC with the largest D, try to replace that fastest ASIC
with its smallest implementation (line 3). If it is not feasible,
we keep the fastest ASIC implementation (line 5). After the
loop (line 2—5), The ASICs in the design are either the
fastest or the smallest implementation. For those fastest
ASICs that can't be replaced with the smallest
implementations, we begin to find the intermediate
implementations. First, the global slack is calculated (line 6),
then for each fastest ASIC, we calculate its local slack and
slow down the ASIC speed by (global_slack +local_slack)
(line 8) and slow down other fastest ASICs by their own
local slack (line 10). If the schedule meet the deadline, we
call our ASIC performance analysis tool to get the cost of
current ASIC setting (line 11), and keep the cost and setting
(line 11). But we do not change the system permanently for

the time being. After the loop (line7 – line11), we choose the
ASIC setting with the minimum cost and change the system
permanently (line 12) and calculate the final schedule and
allocation.

E. Task allocation and scheduling algorithm

 Task allocation and scheduling are important aspects of
the co-synthesis algorithm. The scheduling procedure
generates the allocation and schedule of the design, its
result is used to evaluate the performance of intermediate
solutions and help generate new solution. The scheduler in
our algorithm is similar to that designed by Sih and Lee [5]
as well as Li[2]. This allocation and scheduling algorithm is
less expensive than the other existing algorithms and gives
an effective schedule. Also, it can balance the load on the
hardware structure. This makes the algorithm suitable for
use in the design space exploration of our co-synthesis
algorithm, in which an allocation and scheduling algorithm
is called repeatedly.

 V. Experimental Result

We have implemented our co-synthesis algorithm, which
required about 5000 lines of C++. Also, we designed the
graphical user interface written by Tcl/Tk. The whole co-
synthesis framework is called ASICosyn. All of our
experiments were run on Pentium Pro 200. We used
examples from related co-synthesis research to evaluate our
algorithm: PP1 and PP2 are Prakash and Parker’s example1
and example2 [9], ex1 is one of Li’s examples[2].

Since PP1 and PP2 examples have no ASIC model, we
first ran our algorithm by constructing the initial solution to
be all CPUs. The table1 shows that the optimal algorithm is
very time-consuming. While Li/Wolf[2] (an iterative
improvement algorithm) and COSYN[7] (a constructive
algorithm) as well as our algorithm can get the solution with
the same cost as Prakash and Parker’ s optimal algorithm[7]
within 1 second.

 The we ran ASICosyn with different ASIC
implementations for PP2 and ex1. For PP2 example,
Li/Wolf and COSYN, as well as Prakash and Paker’s
algorithm, can find a solution with cost 10. Our algorithm
can get a solution with cost 8.4. For ex1 example,
Li/Wolf’s algorithm returns a solution with cost 140, while
ASICosyn can return a solution with cost 105. If we shorten
the deadline (ex1-1), their algorithm can not get a feasible

1. sort ASICs by decreasing cost difference
(D=area_of_fastest –area_of_smallest)

2. for each ASIC_i in sorted list
3. replace the fastest ASIC with the smallest ASIC;
4. if (meet deadline) use the smallest ASIC;
5. else keep the fastest ASIC
6. calculate the global slack;
7. for each fastest ASIC_i ;
8. slow down ASIC_i by (global_slack+local_slack_i);
9. for each other ASICs
10. Slow down ASIC by its local_slack
11. call Monet to get the total ASIC cost COST(i)}
12. select the minimal COST(i) and select corresponding

ASIC implementations. Cost
 ($)

Prakash/Parker
CPU time on
Solboume
5/e/900 (sec)

LI/WOLF
CPU time on
Pentium
Pro 200 (sec)

 COSYN
CPU time
on Sparc
20 (sec)

ASICosyn
CPU time on
Pentium Pro
200 (sec)

PP1 5 37 0.10 0.20 0.08

PP2 10 7.2 hr 0.26 0.54 0.20

 Table 1. Comparison with other algorithms

solution, while ASICosyn can still return a slightly more
expensive solution by speeding up ASIC a little bit.

 Fig.4. PP2 example.

 Fig.5. ex1 example.

 VI. Conclusions and future work

 In this paper, we described a new co-synthesis algorithm.
To the best of our knowledge, this is the first co-synthesis
framework that considers the impact of different ASIC
implementations on both the system performance and the
system cost. Our algorithm synthesizes complex multi-rate
real-time applications onto a heterogeneous multiprocessor
architecture to meet real-time deadlines at minimal cost. In
order to explore the ASIC design space, we develop an
ASIC performance analysis tool based on Mentor Graphics’
Monet architectural exploration system, which can help us to
explore the tradeoffs between ASIC performance and cost.

 Future work includes the development and demonstration
of synthesis from the extended flow graphs. Currently the
task graph model in co-synthesis research is too simple to
handle more complicated phenomena. We are going to
extend the task graph model such that it can handle more
complicated phenomena such as conditional delivery of data
and time delays on delivery of data.

Acknowledgements

 This work was funded by Mentor Graphics with
additional funding from NSF.

References

[1]Wayne Wolf, “An architectural co-synthesis algorithm for
distributed, embedded computing systems” , IEEE transaction on
VLSI, vol.5, No.2, pp. 218-229,June 1997.
[2]Yanbing Li, “Hardware-Software co-synthesis of embedded
real-time multiprocessor”, Ph.D. dissertation, Princeton, 1998
[3] Wayne Wolf and Jorgen Staunstrup, “Hardware/Software co-
design: Principles and Practice”, Kluwer Academic Publishers,
1997
[4] Wayne Wolf and Ti-Yen Yen, “ Hardware-software co-
synthesis of distribute embedded systems” , Kluwer Academic
Publishers. 1996
[5] G.Shi and E.A.Lee, “A compile-time scheduling heuristic for
interconnection constrained heterogeneous processor
architectures", G.Shi and E.A.Lee. IEEE transactions on Parallel
and Distributed systems,vol.4,no.2,pp.175-187, Feb.1993
[6] Monet reference manual, Mentor Graphics company.
[7] B.Dave and N.K.Jha, “COSYN: Hardware-software co-
synthesis of embedded systems” , Proceedings of the 34th

ACM/IEEE DAC ,pp.703-708, June, 1997
[8] R.Dick and N.K.Jha, “MOGAC: A multiobjective genetic
algorithm for the co-synthesis of hardware-software embedded
systems”, Proceedings, ICCAD,pp.522-529, Nov.1997
[9] S.Prakash, A.Parker, “SOS: synthesis of application specific
heterogeneous multiprocessor systems”, Journal of Parallel and
Distributed computing, vol 16, pp.338-351,1992
[10]M.Potkonjak, W.Wolf, “Cost optimization in ASIC
implementation of periodic hard-real time systems using behavioral
synthesis techniques”,Proceedings, ICCAD, pp.446-451, Nov1995
[11]Y.Kwok, I.Ahmad,”Dynamic critical-path scheduling: an
effective technique for allocating task graphs to multiprocessors”,
IEEE transactions on parallel and distributed systems, vol.7,No.5,
pp.506-521, May 1996.

10 10 10

8.4

6

7

8

9

10

P&P Li/Wolf COSYN ASICosyn

PP2 example

140

105 108

0

20

40

60

80

100

120

140

ex1 ex1-1

ex1 example (Li/Wolf)

Li/Wolf

ASICosyn

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

