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Abstract—This paper proposes an area/time optimizing
algorithm in high-level synthesis for control-based hardwares.
Given a call graph whose node corresponds to a control flow
of an application program, the algorithm generates a set of
state-transition graphs which represents the input call graph
under area and timing constraint. In the algorithm, first
state-transition graphs which satisfy only timing constraint
are generated and second they are transformed so that they
can satisfy area constraint. Since the algorithm is direct-
ly applied to control-flow graphs, it can deal with control
flows such as bit-wise processes and conditional branches.
Further, the algorithm synthesizes more than one hardware
architecture candidates from a single call graph for an ap-
plication program. Designers of an application program can
select several good hardware architectures among candidates
depending on multiple design criteria. Experimental results
for several control-based hardwares demonstrate effectiveness
and efficiency of the algorithm.

I. INTRODUCTION

Generally, if a control-based application program such as im-
age coding and decoding, protocol processing, and encryption is
implemented on an application-specific hardware, bit-wise pro-
cesses or conditional branches can be executed concurrently and
then the application program runs faster compared with being
implemented on a micro processor. A high-level synthesis system
which synthesizes such control-based hardwares should have the
two features: (1) Hardwares for control-based processes including
bit-wise processes and conditional branches can be synthesized.
(2) More than one design candidates can be provided for a de-
sign specification given by a designer so that a designer can select
several good designs among the design candidates depending on
multiple criteria. Based on this idea, we have been developing a
high-level synthesis system for control-based hardwares [5]. Giv-
en a behavioral description for an application program in C, the
system generates hardware descriptions for the input application
program. The system produces more than one hardware archi-
tecture candidates, all of which meet the given area and timing
constraint. The system is composed of (i) a code optimizer, (ii)
an area/time optimizer, and (iii) a hardware generator. The code
optimizer generates a call graph and its corresponding control-
flow graphs from an input application program. Based on them,
the area/time optimizer generates more than one hardware ar-
chitecture candidates. Finally, the hardware generator generates
hardware descriptions.

Let us focus on area/time optimization among the processes
(i)—(iii) above. Area/time optimization corresponds to opera-
tion scheduling for control-flow oriented hardwares and sever-
al researches on it have been reported as in [1]-[3],[6]. These
approaches can synthesize general control-based hardwares in-
cluding conditional branches. However, they only obtain a single
solution and then they do not enumerate more than one solutions
based on several criteria.

In this paper, we propose an area/time optimizing algorith-
m in the high-level synthesis system for control-based hard-
wares. Given a call graph whose node corresponds to a control
flow of an application program, the algorithm generates a set
of state-transition graphs which represents the input call graph
under area and timing constraint. In the algorithm, first state-
transition graphs which satisfy only timing constraint are gen-
erated and second they are transformed so that they can satisfy
area constraint. The proposed algorithm has the following ad-
vantages: First the proposed algorithm can deal with control
flows such as bit-wise processes and conditional branches since it
is directly applied to control-flow graphs. Second the proposed
algorithm synthesizes more than one hardware architecture can-
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Fig. 1. Hardware model.

didates from a single call graph for an application program.

II. DEFINITIONS
A. Hardware Model

Fig. 1 shows a hardware model [5]. The hardware model is
composed of components and a memory. A component is a state-
transition machine and has states in it. Input and output signals
of a component are given by primary inputs and outputs, inputs
and outputs of another component, and a memory. The com-
mon clock signal is also given to each component. A component
hierarchically has sub-components. Particularly the uppermost
component is called the system component. A memory is com-
posed of several memory banks.

B. Call Graph, Control-flow Graph, and State-Transition Graph

An application program is described by a set of functions in
the C language. Each function corresponds to a component in
our hardware model. A call graph G. = (V¢, E.) represents func-
tion calls in an entire application program. Each node v € V, in
G, corresponds to each function. If a function v; calls a func-
tion w2, G. has a directed edge (v1,v2). Each function v € V
is represented by a control-flow graph. A control-flow graph
Ger = (Voy, Ecy) represents a control flow in a function (Fig.
2(a)). Nodes in Gy are grouped into start nodes, end nodes, op-
eration nodes, memory nodes, condition nodes, join nodes, and
loop nodes. If there is control flow from a node v; to a node
v2, Gey has a directed edge (vi,v2). Particularly an incoming
edge of a loop node coming from the loop ending node is called
a feedback edge (Fig. 3(a)).

A control-flow graph can be modified so that it contains no
join nodes. This graph is called a modified control-flow graph
and denoted as G; = (V!;, E.;). For example, if the control-
flow graph in Fig. 2(a) is given, the modified control-flow graph
in Fig. 2(b) will be obtained. Then a state-transition graph Gs: =
(Vst, Est) 1s constructed based on a modified control-flow graph
as in Fig. 3. A state v; € Vi in a state-transition graph G
corresponds to a subgraph G¢; of a modified control-flow graph
G'Cf and has its ezecution start point which corresponds to a node

in Gif. For example, the node “i>0” is the execution start point
in the state ST2 in Fig. 3.

A node v; in a state-transition graph G, is said to be feasi-
ble if the following conditions are satisfied for its corresponding
subgraph G¢; in G’Cf:

Condition 1: Gif has only one execution start point.
Condition 2: Gif has no cycles.
If v; is feasible, v; can be executed within one clock cycle and
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Fig. 3. Modified control-flow graph (a) and its state-transition graph (b).

functioned as one state in a state-transition machine.! If all the
nodes in a state-transition graph are feasible, the state-transition
graph is feasible.

If a modified control-flow graph G, for a function f has no
cycles, its state-transition graph G,: has also no cycles. In this
case, we can obtain a directed path p in G, in which the maxi-
mum number of states is included. The path p is called a critical
path of f. The number of states in p is called a path length of f
and denoted as I(f).

I1I. AREA/TIME OPTIMIZING ALGORITHM
A. Area/Time Optimization Problem

Let amaz(f) be a maximum allowable area for a hardware real-
izing a function f in a call graph G. = (V,, E.). Area constraint
of f is given by a(f) < @maz(f), where a(f) is area for a hard-
ware of f. In our system, area is computed by adding up area for
functional units, area for registers, and area for controlling states
in a hardware. Area for functional units and area for registers
are given from our hardware unit libraries. Area for controlling
states is given by [co X (the number of the states in a hardware)],
where ¢ is a constant.? Similarly, let aq.» be a maximum al-
lowable area for a hardware of G.. Area constraint of G. is given
by a < amaz, where a is area for a hardware of G.. Area con-
straint is given by either a(f) < @maq(f) for a function f in G.
or a < Gmaz-

Let tmaz(f) be a maximum allowable execution time for a
function f in a call graph G. = (V¢, E.) when an input sequence
of data is entered into f. Execution time constraint of f is given
by t(f) < tmaz(f), where ¢(f) is an execution time for f. ¢(f) is
computed by multiplying a clock period by the number of clock
cycles to run the input application program. Similarly, let tmas
be a maximum allowable execution time for G.. Execution time
constraint of G. is given by t < t,,4., where ¢ is an execution
time for G.. Ezecution time constraint is given by either ¢(f) <
tmaz(f) for a function f in G. or t < tmax-

Let limaz (f) be a maximum allowable path length for a function
f in a call graph G. = (V;, E.). Path length constraint of f
is given by I(f) < lmax(f). If tc,mae is given as a maximum

l1f 5 subgraph Gif has a memory node, correct state transition cannot
always be realized even if it satisfies Conditions 1 and 2. In order to deal
with memory nodes, we first construct a feasible state-transition graph and
then we insert empty states into it as postprocessing.

2We set cg to be 2551um2/state from experiments. Note that our area
for a functional unit or a register includes connection area for each of them.
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allowable clock period, delay constraint is given by t. < tc maz,
where t. is a clock period given by the maximum delay in a
hardware realizing G..

Timing constraint refers to execution time constraint, path
length constraint, and delay constraint. As timing constraint, not
all of them are given but some of them are given depending on an
application program. For example, execution time constraint is
given in a protocol processing. In a huffman coding, path length
constraint lq.(f) = 1 is given for each function f corresponding
to each pipeline stage and also delay constraint is given as timing
constraint.

Then area/time optimization problem is defined as follows.
Definition 1 (Area/time optimization problem) Giv-
en a call graph, area constraint, and timing constraint, generate
more than one sets of state-transition graphs representing the in-
put call graph under the area constraint and timing constraint.

B. The Algorithm

The proposed area/time optimizing algorithm is composed of
three steps:

Step 1 (Initial state-transition graph generation). Based
on each control-flow graph corresponding to a node f in a
call graph G. = (V,, E.), generate a feasible state-transition
graph in which the number of states is minimum. Assign
initial hardware resources to f. For memory nodes, insert
empty states so that correct state transition can occur.

Step 2 (Considering timing constraint). Partition a state of
the state-transition graph in Step 1 repeatedly so that it can
satisfy timing constraint. In this step, a hardware candidate
which satisfies timing constraint is obtained but its area can
be maximum.

Step 3 (Considering area constraint). While satisfying tim-
ing constraint, partition further a state of the state-transition
graph in Step 2 or reassign hardware resources repeatedly.
Enumerate a set of state-transition graphs as a hardware can-
didate if it satisfies timing constraint and area constraint.

The proposed algorithm has the two advantages:

(1) We obtain a feasible state-transition graph for each function
fin G, in Step 1 and further it can satisfy timing constraint
and area constraint in Steps 2 and 3.

(2) In Step 3, we can enumerate more than one state-transition
graphs while satisfying timing constraint and area constraint.
A hardware designer can select better designs among them
depending on several criteria.

B.1 Initial State-transition Graph Generation (Step 1)

Let Gy = (V/,E.;) be a modified control-flow graph of a
function f in a call graph G. = (V;, E.). In Step 1, we generate
from G; a feasible state-transition graph G = (Ver, Est) in
which |V¢| is minimum. G is called an initial state-transition
graph. Then we assign hardware resources to the function f.
Hardware resources here can have large area but their execution
time is minimum.

Fig. 4 shows an algorithm for Step 1. Fig. 5 shows an algorithm
for state-transition graph generation which is called in Fig. 4.
For example of state-transition graph generation in Fig. 5, let
us assume that a modified control-flow graph of a function f
shown in Fig. 6(a) is given. In Fig. 6(b), the feedback edge going
into the node c¢ is deleted and the nodes a and ¢ are marked
as execution start points (Vs = {a,c}, Step (0)). At that time,
V(a) = {a,b,e} and V(c) = 0 are obtained since V, # @ (Step
(1-1)). ST1 for V(a) is generated as a state in a state-transition
graph. After generating ST1, V(a) is deleted and the node ¢
connecting to V(a) is marked as an execution start point in Fig.
6(c). Vs is updated as Vi, = {c} (Step (1-3)). By repeating this
process, ST2 is generated as a state in the state-transition graph.
Finally edges are added to the state-transition graph in Fig. 6(d).

Now, we clearly have the following theorem.

Theorem 1 The algorithm in Fig. 5 gives a feasible state-
transition graph.

Further, we can show that the algorithm in Fig. 5 gives a state-
transition graph in which the number of states is minimum.



Step 1.1 Pick up each function f € V. from a call graph G. = (V., E.)
one by one. For a modified control-flow graph G,cf = (Vc’f, Eéf) for f,
call the algorithm in Fig. 5.

Step 1.2 Assign hardware resources to each f in Ge.

Fig. 4. Initial state-transition graph generation (Step 1).

(Input: Modified control-flow graph G, ; = (V/;, E.;))
(Output: State-transition graph Gz = (Viy, Est))
(0) Delete all the feedback edges in Géf and mark the node pointed by

the start node and loop nodes as execution start points. Let V, C Vc/f
be a set of the marked nodes.

(1) While V, # 0, repeat (1-1)—(1-3). If V, =0, go to (2).
(1-1) For each execution start point v € Vi, let V(v) = P(v) —
U P(u), where P(v) is a set of v and its all succeeding
u€Vs—{v}
nodes excluding the end node.

(1-2) For a node v € V, such that V(v) # 0, generate a state corre-
sponding to V(v) for Gs¢ and delete a set V(v) of nodes from
G/cf' Mark as execution start points the nodes connecting to the

edges coming from V(v). Include these marked nodes into V; and
exclude v from V.

(2) Add edges for G;.

Fig. 5. Algorithm for state-transition graph generation.

Theorem 2 The number of states in a state-transition graph
given by the algorithm in Fig. 5 is minimum.

Proof Since each state in a state-transition graph has only one
execution start point, we show that the number of execution start
points is minimum in this proof.

Since a loop node has a feedback edge, it must become an
execution start point. Clearly the node pointed by a start node
is an execution start point. Then all the nodes in V; of Step (0)
must be execution start points in any state-transition graph.

Assume that all the nodes in V; must be execution start points
in a state-transition graph. Let u be a node marked newly in
Step (1-2). Since u is not included in V(v) and has an edge
coming from V' (v), u has at least two preceding nodes which are
execution start points, one of which is the node v and another one
is a node w € Vi — {v}. Thus, if u does not become an execution
start point, a state including u has at least two execution start
points v and w. w must be an execution start point in a state-
transition graph.

Based on the above discussion, V, always includes the nodes
which must become execution start points in any state-transition
graph for a given modified control-flow graph. This means that
the number of execution start points is minimum and then the
number of states in an obtained state-transition graph is mini-
mum. O

Theorems 1 and 2 show that the algorithm in Fig. 5 gives a
feasible state-transition graph in which the number of states is
minimum. Since we generate an initial state-transition graph
using the algorithm in Fig. 5, we only try to partition a state
when considering area constraint and timing constraint in Steps
2 and 3.

Finally time complexity of the algorithm in Fig. 5 is estimated.
Let n be the number of nodes in a given modified control-flow
graph and m be the maximum number of nodes marked as exe-
cution start points. The iteration of Steps (1-1)—(1-2) is repeated
m times and Step (1-1) requires O(mn) time. Since Step (1-1)
is the most time consuming in the iteration, time complexity of
the algorithm in Fig. 5 becomes O(m?*n).

B.2 Considering Timing Constraint (Step 2)

First we expect that an initial state-transition graph for each
function f in a call graph G. = (V., E.) satisfy path length con-
straint since it has the minimum number of states. However,
it does not always satisfies delay constraint and execution time
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Fig. 6. An example of state-transition graph generation (Fig. 5). (a) Step
0) (the feedback edge is not yet deleted). (b) First iteration of Steps
1-1)—(1-2). (c) Second iteration of Steps (1-1)—(1-2). (d) Step (2).
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Fig. 7. State partition. (a) The state v; is partitioned at the node c. (b)
After partitioning, three states are obtained ({a, b, d}, {c}, {e, f}).

constraint. Since initial hardware resources have minimum ex-
ecution time, Step 2 considers to partition a state in an initial
state-transition graph and tries to satisfy delay constraint and
execution time constraint.

Let G.; = (V!;, E;) be a modified control-flow and G =
(Vst, Est) be a state-transition graph of f. Let Gy = (V;, E¢y)
be a subgraph in G’Cf corresponding to a state v; € Vi and
vs € V; be its execution start point. Partition of the state v; at
anode vy € V; —{vs} is to run Steps (1)—(2) of Fig. 5 initializing
Vi = {vs,v: }. Consequently, the state v; is partitioned such that
both v; and vs are execution start points. For example, if the
state v; in Fig. 7(a) is partitioned at the node ¢, we obtain Fig.
7(b). In Fig. 7(b), v; is partitioned into three states where the
nodes a, ¢, and e become execution start points in order to make
the node ¢ an execution start point. If a state is partitioned
into several states, path length of each state will be smaller and
then we expect that delay constraint as well as execution time
constraint will be satisfied.

In Step 2, for each node v: in a control-flow graph, we try
to partition a state including v, at v¢. Then if the node v¢,min
gives the minimum clock period or minimum execution time, we
partition a state including v¢,min at v¢,min and update hardware
resource assignment. This process is continued until delay con-
straint and execution time constraint are satisfied.

B.3 Considering Area Constraint (Step 3)

After Step 2, a state-transition graph for a function f in a call
graph G. = (V,, E..) satisfies timing constraint. Then in Step 3,
we consider to reduce hardware resources while satisfying timing
constraint. Hardware resources are reduced by (1) decreasing
the number of operations executed concurrently (Figs. 8(a) and
(b)) or (2) exchanging/discarding some functional units (Figs.
8(a) and (c)). (1) is realized by partition of a state described in



State 1| | State 1 | State 1
Y ¥ ¥
| ADD_f | | ADD_f | | ADD_f |
| ! !
| ADD_f | D | ADD_f | or | ADD_f |
1
=X (oot ] I
l l State 2 l
ADD_f * 3 ADD_f * 2 ADD_f * 2
ADD_s * 1

(b) (c)

Fig. 8. Process of Step 3. (a) Three fast adders (ADD_f) are originally
assigned to State 1. (b) If State 1 is partitioned into State 1 and State 2,
we need only two adders and can reduce area. (c) If we exchange the
third fast adder for a slow adder (ADD_s), we can also reduce area.

the previous subsection. (2) is easily done by just exchanging or
discarding some functional units.

In Step 3, for each node v in a control-flow graph, we try
to partition a state including v; at v;. We also try to exchange
functional units or discard a functional unit. Then if the node
Vt,min Or the functional unit opmin gives the minimum area, we
partition a state including v: min at v¢min Or exchange/discard
OPmin, and we update hardware resource assignment. If area
constraint is satisfied, output a current state-transition graph
for a function. This process is continued until timing constraint
is no longer satisfied.

Based on this process, we can enumerate more than one state-
transition graphs satisfying timing constraint and area constrain-
t.

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS

The proposed algorithm has been implemented on Sun Ultra
Workstation in the C language and applied to a vending machine
controller, an x25 protocol processor [4], and a huffman coder
(the numbers of control-flow graph nodes for them are 360, 37,
and 5964, respectively). The vending machine controller is com-
posed of three functions and neither area constraint nor timing
constraint is given to it. The x25 protocol processor is composed
of a single function. We give it execution time constraint of 200n-
S (tmae = 200ns). We give it no area constraint. The huffman
coder is composed of four functions. We give it path length con-
straint of Lynaz(f) = 1 for each function f and delay constraint
of 200ns (tc,maz = 200ns). We give it no area constraint. We
use hardware resource libraries synthesized by Synopsis Design
Compiler using VDEC libraries (0.35um technology).?

Figs. 9, 10, and 11 show experimental results for the vending
machine controller, the x25 protocol processor, and the huffman
coder. Figs. 9 and 10 show the relation between area and exe-
cution time when a sequence of input data is entered into each
application program. Fig. 11 shows the relation between area
and clock period. The run time of the proposed algorithm to
obtain the results is a maximum of 15 minutes. The proposed al-
gorithm obtains more than one hardware architecture candidates
varying area, execution time, and clock period.

Further, we wrote a hardware description manually for the
x25 protocol processor and obtained its hardware. In Fig. 10,
the manual design is shown as an x mark. The manual design
obtains only one result but the proposed algorithm obtains sev-
eral results, some of which are superior to the manual design.

The experimental results demonstrate that the proposed algo-
rithm searches wider design space than manual design and then
obtains more than one hardware architecture candidates from a
hardware specification.
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