
Compact yet High-Performance (CyHP) Library for Short Time-to-Market with
New Technologies

Nguyen Minh Duc and Takayasu Sakurai

Center for Collaborative Research and Institute of Industrial Science

University of Tokyo

7-22-1 Roppongi, Minato-ku, Tokyo, 106-8558, JAPAN

Tel: +81-3-3402-6226

Fax: +81-3-3402-6227

e-mail: duc@cc.iis.u-tokyo.ac.jp, tsakurai@iis.u-tokyo.ac.jp

Abstract Two compact yet high performance standard cell

libraries (CyHP libraries), which contain only 11 and 20 cells

respectively, are proposed. The first CyHP library leads to 5%

increase in delay compared to a library containing about 400 cells.

The second CyHP library suppresses delay increase up to 2%. The

compact nature of these libraries not only reduces the cost and time

for generation and maintenance substantially (thus enables new

technologies to be adopted immediately), but also shortens synthesis

time to about a half. Application results of these libraries to standard

benchmarks and an industry design of about 80K gates are

presented.

I. INTRODUCTION

Standard cell based design has become a mainstream design

style for recent VLSI’s. Standard cell libraries are getting bigger,

containing more than 500 cells in expecting better performance

of the resulting VLSI's. Generating, verifying and maintaining

these big libraries, however, need lot of time and manpower and

errors may be crept into the cell designs and/or cell

characterization processes. Moreover, technologies are getting

diverse and changing rapidly and a cell library must be generated

from scratch more frequently. For example, low-power

technologies such as MTCMOS, VTCMOS, DTMOS, and

partially-depleted SOI [1] demand new layout and templates for

the cells should be redesigned. To make the most of the more

interconnection levels, self-aligned contacts, and other

technology innovations, new cell design is required. These new

cells cannot be generated by just changing the parameters of the

parameterized cell templates. In this sense, the burden of the big

cell libraries becomes an obstacle to realize short time-to-market

of VLSI's.

Considering these issues, this paper proposes two compact

yet high performance cell libraries (CyHP libraries) that contain

fewer cells and is inherently efficient in generation, verification

and maintenance. The drawback in adopting the small libraries

may be area increase, delay increase, power increase and

synthesis time increase.

Using multiple cell libraries, a widely used synthesis tool

(Synopsys Design Compiler), a large set of benchmark circuits

and a real industrial design, the paper shows the increase in these

indices can be small and the synthesis time is even decreased to

about a half. The area and power increase are not very important,

because synthesized blocks by standard cells are only a part of

the VLSI and memories, I/O's, clock systems and handcrafted

datapaths occupy major portion of the area and power in most

VLSI designs. The delay is important because the critical path in

a synthesized block may determine the clock frequency of the

total chip even though it is not major area-wise. The delay with

the compact library, however, increases only about 2% even if the

number of cells in a library is decreased to 20.

Since it is possible to make use of new technologies earlier

with the compact libraries, it may achieve better overall

performance at a fixed time point, although small increase in

delay is observed if the same technology is used. The compact

libraries will be beneficial to semiconductor suppliers as well as

design houses that create their own set of standard cells from time

to time to be independent from foundries.

In section II, an algorithm used to determine the CyHP

libraries are explained. Section III shows the delay, area, power,

and synthesis time results achieved with the CyHP libraries

produced by this algorithm. An application of the CyHP libraries

to an industry design is given in section IV.

II. ALGORITHM TO DETERMINE CELL SET

Generally there is no fixed rule to determine which cells a

standard cell library should contain and the organization of a

library is often determined in an empirical way. In this study,

compact libraries are created by removing cells from existing

libraries such that the increase of delay, area and power of the

circuits generated automatically is kept as small as possible.

A standard cell library usually contains hundreds of cells.

However, most of them do not influence much the performance

(i.e. delay, area and power. Hereafter, performance will be used

as a generic term to indicate these indices) of the circuit being

synthesized. While primitive cells such as inverter, NAND, NOR,

etc. are used very frequently, cells with relatively complicated

functionality such as AND-OR-INV, majority circuit, and 8-input

MUX are seldom used in random logic design. The circuit

performance is almost unchanged even if these infrequently used

cells are eliminated from the library. A more compact library can

be obtained by removing these cells from an existing library. The

problems is which cells to remove and what is the performance

penalty occurs due to the absent of these cells.

When a cell is removed from the library, the target circuit is

reconstructed by using other cells. The degree of circuit

reconstruction depends on both functionality of the removed cell

and its occurrence in the circuit. The more complicated the

functionality of the removed cell is, the larger portion of the

circuit needs to be reconstructed. Removing a cell that is used

frequently will also lead to extensive reconstruction. Since

complex cells always have large area, cell area times its

occurrence (i.e. the area occupied by a cell in the entire circuit)

can be used as a parameter to measure quantitatively its effect on

the circuit structure. On the other hand, the circuit performance is

almost unchanged if the change in the reconstruction is

insignificant. Thus, the smaller the area occupied by a cell in a

circuit, the less significant the effect of that cell to the circuit is.

The cell with the smallest area is least important in terms of

performance of the synthesized circuit.

Removing an appropriate number of least important cells

from an existing library results in a new library, which has less

cells than the original one but does not deteriorate much the

performance of the circuit constructed by using the library. The

above-mentioned procedure can be used as a heuristic rule to

reduce cells of a library. The area occupied by a cell, however,

depends on the nature of the circuit itself as well as the algorithm

of the logic synthesis tool. Its average value over a large set of

benchmark circuits should be used to guarantee the generality of

the resulting library. In this study, the ISCAS89 benchmark set

[2] is employed. This benchmark set consists of 31 sequential

circuits, whose scales range from hundreds to around 20K gates.

The average area portion occupied by a cell is calculated as

following.

∑
=

×
=

BN

i i

i

B A

af

N
a

1

1
, (1)

where NB (31 in this case) is the number of benchmark circuits, fi

is the occurrence of the cell in the i-th circuit, a is the cell area

and Ai is the total area of the i-th circuit.

The flowchart of the library compacting algorithm is shown

in Fig. 1. An existing standard cell library and a set of benchmark

circuits are used as the input. The algorithm can be divided into

the following steps.

1. Synthesize (and optimize) all benchmark circuits using the

original library L.

2. Analyze the circuits generated and use equation (1) to

calculate the average area a
_
 occupied by each cell in L.

3. Remove s cells with the smallest a
_
 from L (s is an appropriate

integer).

4. If L contains the minimum cell set required for synthesis, go

to step 1. Otherwise stop.

The number of cells in L is reduced by s each time steps 1

through 3 are executed. A minimum cell set (normally an inverter,

a 2-input NOR and a flip-flop are required) must exist in L to

make the synthesis in step 1 possible. L becomes more and more

compact as long as the execution proceeds. The algorithm will

stop when one of these minimum cells is excluded from L. The

logic synthesizer used in this study is a widely used commercial

tool[3]. The area, delay and power used in step 2 are the values

produced by the logic synthesizer. These values are used by

designers to estimate performance of the synthesized circuits.

The optimization in step 1 is done in a delay-oriented way, i.e.

constraints are set such that the fastest circuits are generated

(however, the result does not change if optimization is done in an

area-oriented way, i.e. constraints are set such that the smallest

circuits are produced).

With a given library containing a large number of cells, the

above algorithm produces (in step 3) a series of libraries which

have different number of cells. These libraries can be arranged in

the order they are produced as L, L1, L2, …, Lm (m is the number

of times that steps 1 through 3 are iterated). L is the original

library and also the largest one in this series. Lm is the last and

most compact library that is obtained just before the algorithm

halts. The number of cells of Li+1 is less than that of Li by s at least

(since removing a cell from the library generally cause some

other cells be unused). Let Pj and Pij be the performance (which is

one of delay, area and power as stated above) of the j-th

benchmark circuit when using the original library L and the i-th

library (i.e. Li) in this series respectively. The relative

performance of the j-th circuit achieved with Li can be defined as,

j

ij
ij P

P
p = (2)

The average of relative performance of all benchmark

circuits then can be expressed as following.

∑ ∑
= =

==
B BN

j

N

j j

ij

B

ij

B

i P

P

N
p

N
p

1 1

11
(3)

The relation between the number of cells and performance is

obtained by calculating pi

_
 for each library Li . There exists a trade-

off between pi

_
 and the number of cells contained in Li. Generally,

decreasing the number of cells will increase pi

_
 (i.e. deteriorates

the circuit performance). A CyHP library with a small number of

cells and an adequate performance can be achieved by examining

carefully this trade-off.

III. RESULTS

Based on the algorithm described in the previous section, an

automated library generating system was implemented using Perl

[4]. The number of cells removed each time, s, should be set to 1

in order to achieve a precise performance versus number of cells

curve. However, as shown later, the performance stays almost

constant when the number of cells is larger than 40. Thus, the

calculation time can be reduced greatly by setting s to a big initial

value (e.g. tens) then decreasing s gradually as the number of

SYNTHESIZABLE?

START

SYNTHESIZE ALL
BENCHMARK CIRCUITS

ANALYZE RESULTS

REMOVE S CELLS WITH

THE SMALLEST AREA

STOP

YES

NO

Fig. 1 Flowchart of library compacting algorithm.

cells decreases.

Three libraries A, B and C are used as the starting library.

They are all from different companies and have different design

rules (1.5[µm], 0.6[µm] and 0.25[µm]). This means that they are

very different in nature and the results gained from the

experiments using these three libraries will be applying to any

other libraries.

All these three libraries contain around 400 cells and are

used actually in commercial and academic LSI designs. It takes

more than a week to complete calculation for one library using a

400 MHz Sun Enterprise 450 workstation. The variation of delay,

area and power versus the number of cells are shown in Figs. 2, 3

and 4 respectively. The horizontal axis signifies the number of

cells. Delay, area and power are calculated using equation (3).

In addition to delay, area and power, the average time to

synthesize each benchmark is also plotted in Fig. 5 (the synthesis

time is calculated in a similar fashion using equation (3)).

Three libraries show the same tendency. In both three cases,

the number of cells ranges between around 150 and 10. The

maximum number of cells (about 150, which is the right most

value of the curves in Figs. 2, 3, 4 and 5) is much less than the

number of cells available in the original libraries. This means that

the remaining 250 cells are left unused in this case.

It can be observed that the circuit performance is almost

constant when the library contains more than 20 cells. Increase in

delay is almost negligible, irrelevant to the number of cells. Area

and power begin to increase considerably when the number of

cells becomes less than 20. Even when the library has only 10

cells, delay, area and power increase no more than 5%, 30% and

40% respectively.

In contrast to performance, synthesis time varies irregularly.

However, synthesis time tends to decrease when the number of

cells is small.

The curves in Figs. 2, 3, and 4 show that the library with a

number of cells between 10 and 20 is the appropriate CyHP
library, which contains a small number of cells and gives a

Number of cells

D
e
la

y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160

library A

library B

library C

Fig. 2 Average of relative delay versus number of cells.

library A

library B

library C

Number of cells

A
re

a
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160

Fig. 3 Average of relative area versus number of cells.

Number of cells

P
o

w
e
r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160

library A

library B

library C

Fig. 4 Average of relative power versus number of cells.

Number of cells

S
y
n

th
e
s
is

 t
im

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160

library A

library B

library C

Fig. 5 Average of relative synthesis time versus number of cells.

sufficient performance. Given the number of cells n, a CyHP

library L(n) and the performance p
_
(n) achieved with it can be

determined easily from these graphs. However, the compact

libraries determined in this way are extracted from original

libraries which are not totally identical, thus their cells are slightly

different. Three different libraries used in this study result in three

different CyHP libraries L(A)(n), L(B)(n), and L(C)(n) (the

superscript denotes the original library). Most cells are common

in both L(A)(n), L(B)(n), and L(C)(n) though a few cells exist in only

one library. Nevertheless, the common part of these three libraries

can be considered as the generic CyHP library.

As mentioned previously, there is a trade-off between the

number of cells (which has direct impact on library generation

and maintenance cost and time) and performance. Smaller

number of cells can be achieved by sacrificing performance. In

some cases, short time-to-market is much more crucial than

performance, then a compact library is required. However, when

time-to-market is not that critical, using a larger library will give

better performance. Considering these issues, two CyHP libraries

with different number of cells are proposed. The first one

contains 11 cells, which are the common part of L(A)(15), L(B)(15),

and L(C)(15). The second one contains 20 cells, which are the

common part of L(A)(25), L(B)(25), and L(C)(25). The cells of these

two compact libraries are shown in Tables I and II. Since the 20-

cell library is a super set of the 11-cell library, only cells that do

not exist in the 11-cell library are listed in Table II.

For the sake of reading, cells are classified in five categories:

flip-flops, inverters, primitive gates, compound gates and

multiplexers. Cell names are preceded by a number representing

their fanin. The driving ability of each cell is expressed as x1, x2,

etc. 2-InvNAND (2-InvNOR) is a 2-input NAND (NOR) with

one inverted input. 2-MUXInv is a 2-input multiplexer with

inverted output. D-FFN is a D flip-flop activated by clock’s

negative edge. 3-AND-NOR (3-OR-NAND) is a 3-input

compound gate formed by cascading a 2-input AND (OR) into

one of the two inputs of a 2-input NOR (NAND).

Since none of the benchmark circuits used in this study

requires tri-state buffers and flip-flops with set/reset, these cells

do not exist in the proposed CyHP libraries. However, they are

often used in real design and should be contained in the CyHP

library.

The average of relative delay, area, power and synthesis

time (which are calculated using equation (3)) achieved with

these two CyHP libraries are shown in Table III and IV. Adopting

the 11-cell library increases delay by only 5% in average. This

delay penalty can be reduced to just 2% if the 20-cell library is

used. Average increase of area and power is 35% and 58%

respectively, when using the 11-cell library. Since synthesized

blocks are only a small part of the entire chip, this results in just a

few percent of increase in total area and power. Furthermore, if

the 20-cell library is in use, the increase of area and power is only

5% and 17% respectively.

Another important point should be noted is that using these

CyHP libraries reduce synthesis time to a half. Large designs

often take long time to synthesize, thus this can help to accelerate

TABLE I

CONTENTS OF THE 11-CELL CyHP LIBRARY

Flip-flops D-FF x1, D-FF x2
Inverters INV x1, INV x2, INV x4
Primitive gates 2-NAND x2

2-NOR x2
2-XNOR x1

Compound gates 2-InvNAND x2
2-InvNOR x2

Multiplexers 2-MUXInv x1

TABLE II

CONTENTS OF THE 20-CELL CyHP LIBRARY

Flip flops D-FFN x1
Inverters INV x8, INV x16
Primitive gates 2-NAND x1

2-NOR x1
3-NAND x1
3-NOR x1

Compound gates 3-AND-NOR x1
3-OR-NAND x1

(only cells that not in Table I are listed)

the design phase, since multiple runs of synthesis are customary

in real designs.

IV. APPLICATION TO INDUSTRY EXAMPLE

This section demonstrates the effectiveness of the proposed

CyHP libraries by applying them to an industry example. An

80K gate industry design that is written in RTL, was synthesized

using both the original libraries (which have about 400 cells) and

two proposed libraries. Performance obtained with the CyHP

libraries is divided by that with the big libraries. The results are

shown in Table V and VI. Adopting the 11-cell library does not

increase but even decrease delay by 4% in average. Area and

power increase by 54% and 58% respectively. The 20-cell library

provides further improvement of delay (8%), while suppresses

the increase of area and power at 20% and 38% respectively.

Synthesis time is reduced to nearly a half in both cases. The 20-

cell library takes longer synthesis time, but gives better

performance.

V. CONCLUSIONS

The paper shows that the number of cells in a library can be

reduced greatly without deteriorating much performance of the

circuits generated with it. An algorithm to determine cells to

include in a library is presented. Two compact yet high

performance (CyHP) libraries are proposed. Using the first one,

which contains 11 cells, the delay increases by 5%, while with

the second library which has 20 cells the increase of delay is only

2%. The compact nature of the proposed CyHP libraries not only

reduces the cost and time required for generation and

maintenance substantially, but also shortens synthesis time to a

half, thus helps to accelerate the design phase.

The merit of the CyHP libraries is proved by the application

to an industry design of about 80K gates.

ACKNOWLEDGEMENTS

This work was partly supported by a grant from Toshiba

Corporation. Useful discussions with T.Kuroda, T.Takayanagi

and M. Hamada are appreciated.

REFERENCES

[1] Takayasu Sakurai (Ed.), Low Power High Speed LSI Circuits & Technology,

Realize Inc., 1998.

[2] Franc Brglez, David Bryan, Krzysztof Kozminski, “Combinational profiles of

sequential benchmark circuits”, Proc. of ISCAS, pp. 1929-1934, 1989.

[3] Design Compiler Reference Manual, Synopsys, 1998.

[4] Larry Wall and Randal L. Schwartz, Programming Perl, Reading, O’Reilly &

Associates Inc., 1991.

TABLE V

DELAY, AREA, POWER AND SYNTHESIS TIME OF THE 11-CELL CyHP LIBRARY

Original
library

Delay Area Power Time

A 0.88 1.55 1.51 0.57
B 1.04 1.46 1.25 0.47
C 0.97 1.60 1.99 0.65
Average 0.96 1.54 1.58 0.56

TABLE VI

DELAY, AREA, POWER AND SYNTHESIS TIME OF THE 20-CELL CyHP LIBRARY

Original
library

Delay Area Power Time

A 0.86 1.28 1.29 0.59
B 1.01 1.19 1.21 0.51
C 0.89 1.14 1.64 0.71
Average 0.92 1.20 1.38 0.60

TABLE III

AVERAGE DELAY, AREA, POWER AND SYNTHESIS TIME OF THE 11-CELL CyHP

LIBRARY

Original library Delay Area Power Time
A 1.05 1.37 1.60 0.28
B 0.99 1.27 1.25 0.71
C 1.11 1.40 1.89 0.46
Average 1.05 1.35 1.58 0.48

(the numbers show the average of relative delay, area, power and
synthesis time, which are calculated using equation (3))

TABLE IV

AVERAGE DELAY, AREA, POWER AND SYNTHESIS TIME OF THE 20-CELL CyHP

LIBRARY

Original library Delay Area Power Time
A 1.00 1.08 1.19 0.31
B 0.98 1.04 1.07 0.43
C 1.07 1.03 1.26 0.48
Average 1.02 1.05 1.17 0.41

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

