Check for
Updates

A New CMAC Neural Network Architecture and Its ASIC Realization

Yuan-Pao Hsu, Kao-Shing Hwang, Chien-Yuan Pao, and *Jinn-Shyan Wang

Electrical Engineering Dept.,
National Chung Cheng University
Chia-Y1, Taiwan
*ieegsw(@ccunix.ccu.edu.tw

Abstract--A new VLSI architecture of the CMAC neural
network, called CCMAC, which is composed of an embedded
content addressable memory (CAM) is proposed. The CCMAC
can determine whether the addressing content resides in the
memory or not faster. If a match doesn’t occur, the activated
address is stored in a vacant cell of the CAM. With this
mechanism, memory utilization rate can be improved to 100 %
and control noise can be suppressed. Moreover, the associated
mask function, which is triggered while the CAM is full, can
improve control performance. Comparison between CCMAC
and a conventional CMAC is examined on the truck backer-
upper control simulation. A CMAC ASIC chip has been
implemented using a 0.6-um CMOS technology under 3.3- or
2.5-V supply voltages after obtaining design trade-off. The chip
contains 0.33-million transistors and operates at 20 MH for a
2.5-V supply with only 10—-mW power dissipation.

I. INTRODUCTION

The Cerebella Model Articulation Controller (CMAC),
originally proposed by James Albus [1], is the architecture
of a neural network. Fundamentally, a CMAC estimates the
desired output by taking input states as an index to refer to a
look-up table where the synaptic weights are addressed and
stored. The relationship between input and output can be
represented approximately by a CAMC if addressable
weights are properly updated. Functionally, a CMAC is
defined by a series of mappings as shown in Fig. 1. Due to
the properties of local generalization, rapid computation,
function approximation and output superposition, it has been
widely used in robot control, pattern recognition, and signal
processing.

Since the conceptual memory of a CMAC
theoretically needs a huge space to address the encoded
input information, its hardware implementation is hard to be
realized. In general, hash coding algorithms [1] are always
applied to reduce the space into a more reasonable scale.
However, this approach has some drawbacks [4]. First,
collisions always occur. For instance, as shown in Fig. 1, the
cells of c; and a, project onto a memory cell P,
simultaneously. Although some algorithms [2] have been
introduced to achieve low collision rate, some cells are still
never visited thoroughly. Second, while collisions occur,
from the viewpoint of system control, it could cause CMACs
interfered by so-called control noises.

The objective of this paper is to propose a new VLSI
architecture of a CMAC, which is composed of an
embedded content addressable memory (CAM). The CAM
is to replace the hash coding for address mapping used in

© 2000 |EEE ISBN 0-7803-5974-7

conventional CMACs and can achieve the goals of good
memory utilization and alleviation of the control noise
resulting from hash algorithms.

The paper is organized as follows. Section II describes
the VLSI architecture of a conventional CMAC. Section III
introduces the new architecture of the CCMAC. Meanwhile,
in Sections II and III, a truck backer-upper control example
is demonstrated. Section IV shows the design considerations
and the implementation of the CCMAC ASIC chip. Finally,
conclusion is given in the last section.

II. THE CONVENTIONAL CMAC
Fig. 2 shows the functional block diagram of a
conventional CMAC, called HCMAC in this paper. The
input vector is fed to the Conceptual Mapper M is from the
plant or environment. Eq. (1) describes the conceptual
mapping from S to a conceptual memory C if the input
vector is one dimension:

. S +R-i-1 ,
f.(S)=X, =[1nt(’T)]><R +i, (1

Sj is the input, and R is the receptive field (R = 4 in the case
of Fig. 2). i is an index number of the activated address, and
Xji is the activated address mapped from S to C . And a Hash
Coder further maps the activated cells into a physical
memory. The output of the controller is derived by the
summation of the values(weights) stored in the indexed cells.
Weights are adjusted based on the errors evaluated from the
difference between the desired and actual outputs.
The following is a control example of truck backer-
upper simulation [4]. Fig. 3 is the configuration of the
workspace. @and x are the input variables to the neural
network. 0 is the output variable. To control the truck in a

S M C P 0

Input State Space

Conceptual Actual Desired
memoy 108y memory Response

Weight
Updating Adjust

@—» Plant

Conceptual
mapping

Fig. 1 Principle of CMAC

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368434.368763&domain=pdf&date_stamp=2000-01-28

Actual Desired
memory Response

Weight
| — Updatin -
Input Conceptual [— | Hash p_ "¢ | Adjust
Mapper [—* Coder \ rules

\
L)

R

i

Fig. 2 HCMAC architecture

x.y)

Fig. 3 Truck angle and position definitions

manner of backer-upper going toward the middle line until
@ = 90°nd x = 0 is the goal of the control.

There are 36 active addresses. The size of the actual
memory P is set to 1024. A weight-updating algorithm
similar to the Hebbian learning rule is applied to adjust
weight incrementally. Fig. 4 shows the trajectory along
which the truck, controlled by HCMAC, reached the desired
position at the 129™ sampling time from the starting point.

III. THE PROPOSED CCMAC

The functional architecture of a CCMAC is shown in
Fig. 5. The CAM stores the activated addresses and their
corresponding weights. The input of each control cycle
introduces some activated addresses through a conceptual
mapping function similar to Eq. (1). These addresses are
compared with the ones stored in the CAM immediately. If a
match occurs, the corresponding weight is read out,
otherwise, these activated addresses is stored in vacant cells
of the CAM indexed by an circular incremental pointer. If

Car Backer-Upper Simulation Results

Receptive field = 6x6

10f HCMAC

Memory size = 1024

8 mask bit =0
carlength=1.2
> d_theta = 1x(90/256)

Initial condition : fai=-30, x=7

T

2 Starting point
&P Truck tail

>

Fig. 4 Simulation results for the truck backer-upper application using
CCMAC and HCMAC, respectively.

482

S M C P (0]
CAM Desired
Response
Active addr. m Weight m eight '
Input pdating .
P Conceptual Active addr. n Weight n N Adjust
Mmapper \\ Rules
Pl Active addr. s Weight s : Plant
S
Active addr. t Weight
R=4

Fig. 5 CCMAC architecture

there is vacancy no more, the mask function is invoked
alternatively. In the worst case, where there might be no
match throughout the masking-matching process, the
address and its context is pushed in an occupied cell. With
this mechanism, memory utilization rate can be improved to
100 % without the problem of control noise.

The simulation results of CCMAC are also illustrated
in Fig. 4. Obviously, CCMAC is superior to HCMAC. In
fact, the truck reached the desired situation at the 80"
sampling time from the starting point. A brief comparison
between both neural networks in various aspects is shown in
Table 1.

IV. DESIGN OF THE CCMAC CHIP

The excellent performance of the new architecture of
the CCMAC neural network motivates its VLSI
implementation. An application-specific VLSI chip also
enhances the control speed in real applications. The design
flow of the CCMAC ASIC for the truck backer-upper
control is shown in Fig. 6.
Some important VLSI design parameters
discussed here after the architecture designed.
(a) The size of the receptive field

The larger the receptive field is, the more number of
address mappings should be manipulated. Conversely, If the
field has a tiny size, the neural network may lose memory
plasticity. The best way is to adjust the size dynamically

should be

TABLE 1
COMPARISONS BETWEEN CcMAC AND HCMAC
CCMAC HCMAC

Active address | Via index pointer Hash-coding
mapping
Hardware 8k-bit SRAM storing 8k-bit SRAM storing
requirement weight, weight,

20k-bit CAM storing Multiplier (20 x 8*),

active address Adder

Mapping latency |Depend on CAM
matching time (fast)
Memory usability[100%

Depend on multiplier
operation time (slow)
According to hash-coding

algorithm (<100%)
Control noise Hardly observed [4] High
Learning ability |Yes Yes

Jobs need that low
control noise

Applications Can not handle jobs that
need low control noise
(e.g. truck backer-upper

control)

*At least 8-bit

Architecture |

Performance Analysis

Design Parameters

(Malab)

Full Custom Design Cell Based Design

Function
Simulation / Verification
Circuit Design

(Verilog)

Synthesizable Verilog code

Logic
Synthesis and Verification
Gate-level verilog code

(OPUS,HSPICE,POWERMILL)

schematic

.

¢— Gate-Level Logic
- Simulation / Verification
Layout and Integration (OPUS, Verilog)
Verification . (‘}ate-leve.l.) schematic
Simulation / Verification L
ayout
(OPUS(DIVA), ORI ITUL
DRACULA(DRC/LVS/LPE)) (0) Auto-placement/routing
(OPUS)
R
layout ¢ layout

Integration
Floorplan/Placement/Routing
(OPUS)

Whole chip layout (including PAD)

Chip Layout Verification
DRACULA (DRC/LVS/LPE)
Performance Evaluation
(POWERMILL)
Fig. 6 Design flow of the CCMAC VLSI

by means of the clustering distribution of the input if
possible. However, it is very difficult to realize in
hardware. Therefore, the trade-off size is 36 in the
design.
(b) The size of CAM

The simulation results as shown in Fig. 7, when the size
of the receptive field is 6 x 6, CCMAC with only 36
cells of the CAM can drive the truck to the target. But
the controller actually has no learning ability. To make
CCMAC is capable of control learning, a sufficient
capacity of the CAM must be provided. For instance, in
a simulation similar to the one in Fig. 7, the CAM only
with 1024 cells became full on the 47" sampling time
and the truck reached the target at 122 ” sampling time.
Therefore, the size of the CAM needed to record all the
addresses in the simulation is 1796. Where the
simulation shown in Fig. 7 is under the case while the
incremental adjustment of weight updating is chosen as
AB =1. If the quantity is set to AB=3, then the

Car Backer-Upper Simulation Results

Receptive field = 6x6

10 CAM size = 36

mask bit = 0

8 car length = 1.2

d_theta = 1x(90/256)

6 Initial condition: fai=-90, x=10

Learning cycles = 3

7 75 8 85 9 95 10 10.5 11 115

Fig. 7 Simulation result of CCMAC truck backer-upper control under very
low CAM size

483

truck reaches the target at the 56" sampling time and the
needed size of the memory is reduced to 836. So, the
size of the CAM eventually depends on the
considerations of hardware realization. The reasonable
size of the CAM for this neural network chip is chosen
as 1024 x 20-bits.
(c) The length of maskable bits

The CAM possibly overflows in a learning epoch. A
special exceptional handling is designed to tackle this
problem. When the CAM is all occupied, the masking
function of CCMAC is then triggered. Sequentially
masking a bit at each matching cycle, CCMAC adjusts
its searching range dynamically until a match is found
or the mask bit upper bound is reached. The masking
function would be limited if too few maskable bits were
assigned. Conversely, many maskable bits may
introduce unexpected control noise. Therefore an
adaptive mechanism to adjust maskable length is the
best design.

After the important parameters are determined, the
design was proceeded in two directions. Cell based approach,
that starts from the verilog coding through logic synthesis to
automatic placement-and-routing, is taken for random logic
circuits. Whereas, full-custom approach is for the memory
parts. A low-power CMOS cell library [6] is used in the
technology-mapping step that translates the verilog code into
the gate-level design. The full-custom blocks are composed
of 1k x 8-bits SRAM, 1k x 20-bits CAM, and a 1024-bit
priority encoder. Current-mode technique [7][8] is used in
the design of the SRAM and the CAM to help reduce the
power consumption of the chip.

In the design of the priority encoder, a self-controlled
technique is proposed to enhance the circuit’s reliability.
Part of the 1024-bit priority circuit is shown in Fig. 8.
Without the shaded NMOS’s (Node A and node B are
shorted.), the circuit is identical to the conventional circuit
[9]. In the conventional design, we need to generate the
current-priority-clear signal Current clear to be a short-
pulsed train, as shown in Fig. 9(a). In our design, the pulse
width should be smaller than 2 ns. It is hard to design such a
signal without being affected by process variation. Without a
precise short pulse width, the cleared data may induce a race
problem that will clear the next-priority data in the same
cycle. In order to remove this problem, those shaded NMOS
transistors are added to the conventional circuit. These
transistors will be turned off when Current clear goes high,
and the clear signal of the flip-flop of the next priority will
be isolated. This self-controlled mechanism can thus prevent
from the race problem. The most convenient manner to
design the Current clear signal is to make it a gated clock
as shown in Fig. 9(b).

The whole-chip layout is shown in Fig. 10, and the
summary of the chip features is listed in Table 2.

V. CONCLUSIONS
A new VLSI architecture of CMAC neural network is

Self_control NMOS
EN : £ all_hit

=ald bl
X el
e

oclr

Current_clear [O—9

pri_out<0>
match<0> O—

match<1> O

pri_out<2>
match<2> -

o
o
o

pri_out<3>
match<3> O—rj

ctrl_up Ci
Fig. 8 Self-controlled priority encoder
System_clock
4 Sumvling data and Output 1t priity signal
EN m
Output 2nd priority signal Output 3rd priority signal
Current_clear H ﬂ H

(a)

@

System_clock
Sampling data and Output 15t priority signal
P

w1 [l

Output 2nd priority signal Output 3rd priority signal

cwmner —— | L[]

(W]
Fig. 9 Control signals (a) without (b) with self-control

TABLE 2
SUMMARY OF THE CcMAC AsiC CHIP FEATURES

Technology 0.6-um SPTM CMOS
Current-Mode SRAM 1k % 8 bits
Current-Mode CAM 1k x 20-bits and 36 x 11-bits
Self-Controlled Priority Encoder 1024 bits
No. of transistors 366,324

Chip Size 4225.725 x 4845.325 (um)*
Core Size 3245.925 x 3865.625 (Um)®
25 MHz @ 3.3 V or
Clock Rate 20 MHz @ 2.5V
Average power dissipation 10 mW @ 2.5V

proposed. CCMAC uses an embedded CAM to replace the
hash coding used in the conventional CMAC architecture.
The new architecture achieves faster control, higher memory
utilization rate, and much lower control noise than the
conventional CMAC architecture.

A CMAC ASIC chip for the truck backer-upper control

application has been implemented using a 0.6-um CMOS
technology under 3.3- or 2.5-V supply voltages. A low-
power cell library for random circuits and the current-mode
technique for SRAM and CAM are utilized to reduce the
power consumption. The chip contains 0.33-million
transistors and can operate at 20 MH @ 2.5 V for only 10—
mW power dissipation.

VI. REFERENCES

[1] J. S. Albus, “A new approach to manipulator control: The cerebella
model articulation controller (CMAC),” Trans. ASME, J. Dynamic
Syst. Meas., Contr., vol. 97, pp. 220-227, Sept. 1975.

[2] Z.-Q. Wang, J. Schiano and M. Ginsberg, “Hash-coding in CMAC
Neural Networks,” proceedings of International Conference on Neural
Networks, pp. 1698-1703, Washington, D. C., June 3-6, 1996.

[3] Yuan-Bao Hsu, Kao-Shing Hwang, and Jinn-Shyan Wang,” A CMAC
neural controller with embedded content addressable memory (in
Chinese),” 1999 Automatic Control Conference, pp.463-469,
Taichung, Taiwan, 1999.

[4] L.-X. Wang and J. M. Mendel, “Generating Fuzzy Rules by Learning
from Examples,” IEEE Transactions on systems, man, and cybernetics,
vol. 22, no. 6, Nov./Dec. 1992.

[5] B. Kosko, Neural Networks and Fuzzy Systems: A dynamical systems
approach to machine intelligence, Prentice Hall, Englewood Cliffs, N.
J., 1991.

[6] Jinn-Shyan Wang, Shang-Jyh Shieh, J.-C. Wang, and Chingwei Yeh,
“Design of standard cells used in low power ASIC’s exploiting the
multiple-supply-voltage scheme,” in Proceeding of 11" Annual IEEE
International ASIC Conference, pp. 119-123, 1998.

[7] Jinn-Shyan Wang and Hong-Yu Lee, “A new current-mode sense
amplifier for low-voltage low-power SRAM design,” in Proceeding of
11" Annual IEEE International ASIC Conference, pp. 163-167, 1998.

[8] Jinn-Shyan Wang, Po-Hui Yang, and Wayne Tseng, ‘“Low-power
embedded SRAM macros with current-mode read/write operations,”
in Proceedings of International Symposium on Low Power Electronics
and Design, pp.282-287, 1998.

[9] H. Kadota, J. Miyake, Y. Nishimichi, H. Kudoh, and K. Kagawa, “An
8-kbit content addressable and reentrant memory,” IEEE J. Solid-State
Circuits, vol. SC-20, no.5, pp. 951-957, Oct. 1985.

S

| HHHHEOEHHEE [|

ilili

LR

BEmaE
1 4 .

TRARAAARAAN]

Fig. 10 Whole-chip layout of the CCMAC ASIC chip

T i

