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Abstract - This paper presents software synthesis techniques to
deal with non-primitive data type from graphical dataflow
programs based on the synchronous dataflow (SDF) model.
Non-primitive data types, often used in multimedia and
graphics applications, require buffer memory of large size. To
minimize the buffer requirement, we separate global data buf-
fers and local pointer buffers. The proposed approach first
allocates the minimum size of global buffers and next binds the
local buffers to the global buffers by setting the pointers. Static
binding and dynamic binding techniques are devised. Experi-
mental results prove the significance of the proposed tech-
niques.

I. Introduction

Reducing the size of memory is an important objective in
the embedded system design since an embedded system has
tight area and power budgets. Therefore, application design-
ers usually spend significant portion of code development
time to optimize the memory requirements. 

On the other hand, as system complexity increases and fast
design turn-around time becomes important, it attracts more
attention to use high level software design methodology:
automatic code generation from block diagram specification.
COSSAP[1], GRAPE[2], and Ptolemy[3] are well-known
design environments, especially for digital signal processing
applications, with automatic code synthesis facility from
graphical dataflow programs. This paper is concerned with
memory-optimized code synthesis from dataflow programs
in case applications deal with non-primitive data types such
as arrays and structure data types.

An example block diagram representation with dataflow
semantics is shown in figure 1. A block represents a function
module that consumes data samples from all input arcs and
produces data samples to all output arcs. When generating a
code from a dataflow graph, a buffer is allocated to each arc
to store the data samples between the source and the desti-
nation blocks. The allocated buffer size should be no less
than the product of the maximum number of samples accu-
mulated on the arc and the size of data type.
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An application requires memory for both code segments
and data segments that store not only data samples but also
constants and parameters. If an application handles only
data samples of primitive type, such as integer and float, the
buffer requirements usually take only a small part of the total
memory requirements. However, there are several classes of
applications that deal with non-primitive data types. The
natural data type of an image processing application is a
matrix of fixed block size as illustrated in figure 1. Graphic
applications usually need to deal with structure-type samples
that contain informations on vertex coordinates, view points,
light sources, and so on. Networked multimedia applications
may need to exchange packets of data samples between
blocks. In those applications, the buffer requirements are
likely to be the dominant memory hog.

Once the execution order of blocks is determined, the buf-
fer requirements on all arcs as well as the code size are also
determined. Thus, the problem of minimizing memory re-
quirements has been considered as a scheduling problem to
determine the execution order of blocks with the objective of
memory minimization[4][5]. In this paper, we introduce two
buffer sharing techniques to further reduce the buffer memo-
ry requirements with a given scheduling result. Since most
existent schedulers do not consider the buffer sharing of
non-primitive type data, the proposed optimization tech-
niques are complementary to their previous efforts of memo-
ry minimization.

Figure 1 shows a demonstration how much data memory
we can reduce by sharing buffers. Without buffer sharing, 5
blocks whose size is 64(=8x8) are needed. However, only
two blocks are needed if buffer sharing is used since a, c and
e buffers share A buffer, and b and d buffers share B buffer.

DCT Zigzag Q8x8 8x8 DCT-1Zigzag-1Q-18x8 8x8 8x8

A B

a b c d e

Figure 1. Image processing example

In this paper, we discuss how to assign as small buffers as
possible to store non-primitive type data samples. To this
end, we separate global data buffers and local pointer buffers
as illustrated in figure 1. A and B buffers created by memory
allocation, store data samples while arcs are associated with
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pointer buffers a, b, c, d and e that will be bound to A or B
buffer.

We explain the problem of memory optimized code syn-
thesis and review the related works in the next section. In
section 3, a new buffer sharing problem is defined with the
non-primitive data types. In sections 4 and 5, we present our
optimization techniques based on static binding and dynamic
binding respectively. We show some experiments and con-
clude the paper afterwards.

II. Memory Optimized Code Synthesis with Primitive
Data Types

We use synchronous dataflow (SDF) model[6] as the block
diagram semantics while the proposed techniques are appli-
cable to other dataflow models of computation. In an SDF
graph, a block may consume or produce multiple number of
samples per execution. Each arc is annotated with the num-
ber of samples produced or consumed by an invocation of its
source or destination nodes. We illustrate an example SDF
graph in figure 2(a).

Figure 2. (a) SDF graph example  (b) Scheduling result
(c) Code generation (d) Buffer allocation and binding

To generate a code from the given SDF graph, we deter-
mine the order of block executions at compile time, which is
called “scheduling”. Since a dataflow graph specifies only
partial orders between blocks, there are usually more than
one valid schedules. Figure 2(b) shows one of many possible
scheduling results in a list form, where 2(A) means that
block A is executed twice. A schedule using such a loop no-
tation is called a looped schedule. After block A is executed
twice, block C is executed once. The schedule will be repeat-
ed with the streams of input samples to the application.

The generated code template according to the schedule of
figure 2(b) is shown in figure 2(c). Note that the code of
each block appears only once even though the schedule con-
tains two invocations of block A and D. If we generate the
code starting from another valid schedule “2(A)BDCD”, the
code of block D would appear twice. Hence, the schedule of
figure 2(b) is called a “single appearance schedule (SA-
schedule)”[4] meaning that the code of each block appears

only once in the generated code. An SA-schedule implies
that the code size of the generated code from the given da-
taflow graph is minimal.

Now, let us examine the buffer requirement. After block A
is executed twice, two data samples are produced on each
output arc as explicitly depicted in figure 2(d). We define the
buffer allocated on each arc as a local buffer that is used for
local communication between two associated blocks. If the
data samples are of primitive types, the local buffers store
data values and the generated code defines the local buffers
as arrays of primitive types. Suppose all data samples are of
the same type in the example graph, there is a possibility of
buffer sharing in the schedule of figure 2(b). The local buffer
between blocks A and C can be reused as the local buffer
between blocks B and D since the life-times of data samples
stored in those buffers do not overlap. If we consider the
buffer sharing possibility, the total size of local buffers is
reduced to 4 from 6 without buffer sharing.

To generate the code with minimal memory requirement,
both the code size and the local buffer size should be mini-
mized at the same time. Most previous approaches consid-
ered single appearance schedules to minimize the code size
first. Bhattacharyya et al. developed two clustering heuris-
tics, APGAN and RPMC, to find out a single appearance
schedule with minimal local buffers, but ignoring the possi-
bility of buffer sharing[4]. On the other hand, Ritz et. al.
used an ILP formulation to find out a “flat”(which means
that the looping of nodes is not hierarchical) single appear-
ance schedule with minimum local buffer sizes, considering
buffer sharing[5]. A flat SA-schedule does not allow nested
looped schedule. Since it usually requires more local buffers
than the optimal nested SA-schedule, it is not evident in
general whether the advantage of buffer sharing outweighs
the limitation of flat SA-schedules.

III. Buffer Sharing Problem with Non-primitive Data
Types

It is well known that the naive implementation of dataflow
model may incur a large overhead for handling data samples
of non-primitive data type. Suppose that each local buffer
stores a matrix sample. If a block consumes an input matrix
sample, modifies an element of the matrix, and produces an
output matrix sample, even the other unmodified elements
should be copied from the input local buffer to the output
local buffer. To avoid such overhead, we distinguish global
buffers from local buffers. A local buffer contains a pointer
to a global buffer that stores a real matrix data sample. Fig-
ure 3(a) illustrates the buffer structure consisting of separate
local and global buffers with the example of figure 2(a). It is
assumed that the data types are non-primitive. Since the size
of pointer is comparable to that of primitive-type, global
buffer is not needed for primitive data types as has been
mainly assumed in the previous researches. Note that a

A 1 2
1

1

2

2
2(A)CB2(D)

main() {
  for(i=0;i<2;i++){A}
  {C}
  {B}
  for(i=0;i<2;i++){D}
}

(a)

(b)

(c) (d)

B D

C

A 1 2
1

1

2

2B D

C

492



global buffer can be bound to multiple local buffers as the
adjunct “global” indicates. By making the input and the out-
put local buffers point the same global buffer, we can avoid
redundant copy of unmodified elements.

(a)                (b)

Figure 3. (a) Global data buffer and local pointer buffer
(b) Local buffer life-time chart

With the proposed buffer structure of separate local and
global buffers, we also break buffer management task into
two sub-tasks: buffer allocation and buffer binding. Through
compile-time analysis based on the given schedule, we de-
termine the size of local buffers and global buffers statically,
which defines the buffer allocation sub-task. Buffer binding
is to set the pointer value of a local buffer to an available
global buffer. Depending on when this buffer binding actu-
ally happens, static binding and dynamic binding are classi-
fied. In the static binding strategy, the pointer values of local
buffers are predetermined at compile-time.  On the other
hand, the dynamic binding strategy set the pointer values at
run-time.

Now, we have to minimize the size of global buffers as
well as local buffers. Previous works tried to minimize the
local buffers only[4][5]. With non-primitive data types, how-
ever, minimizing global buffers is usually more important. If
we bind each local buffer to a separate global buffer throug-
hout the whole schedule, minimizing the local buffer size is
equivalent to minimizing the global buffer size. Unfortu-
nately, such a trivial binding is not always optimal as will be
shown later.

The problem of minimizing the total size of local buffers
and global buffers with static binding is NP-hard. Therefore,
our approach is to minimize the global buffer first since the
global buffer size would be more significant in case of non-
primitive type data samples. The minimum size is nothing
but the maximum number of live local buffers during an
iteration of the given schedule. Figure 3(b) displays the local
buffer life-time chart in which the x-axis represents buffer
life-time whose unit is the execution of each node and the y-
axis indicates each local buffer. From the life-time chart, the
global buffer size is determined to 4 which is the maximum
number of local buffers whose life times are overlapped at
any instant. With the minimum global buffers, we introduce
a static binding and a dynamic binding technique. In the
static binding technique, we give up minimizing local buf-
fers to avoid run-time overhead of memory management. On

the other hand, the dynamic binding technique uses the
minimal local buffers, but binds them to the global buffers at
run-time.

For the comparison purpose, we display the generated code
from figure 1 with the traditional approach without global
buffers and buffer sharing in figure 4.

IV. Static Buffer Binding

As mentioned above, the static buffer binding technique
binds a local buffer to a global buffer statically at the vari-
able initialization step. Many local buffers can be connected
to one global buffer as long as their life-times do not overlap
each other. However, the general buffer sharing problem is
NP-hard as stated in the following theorem.

[Theorem] If the life-time of a local buffer consists of
multiple time intervals, the decision problem whether there
exists a static binding from the given number of local buffers
to the global buffers is NP-complete.

(Proof) Consider a graph coloring problem with a graph
G=(V,E) where V is a vertex set and E is an edge set. A
simple example graph is shown in figure 5(a). We associate
a new graph G’ (figure 5 (b)) where two nodes are created
for each vertex in graph G. The local buffer between two
nodes in graph G’ is mapped to a vertex in graph G. Note
that if we take a valid schedule A’B’A”B”, two local buffers
may not be shared. For each arc in graph G, we generate a
schedule that does not allow buffer sharing. For example,
arc(AC)  in graph G generates a schedule (A’C’A”C”) in
graph G’. Now, the valid schedule of graph G’ associated
with graph G is A’B’A”B”A’C’A”C”, in which the life-time
of a local buffer on arc A’A” has two intervals. Likewise a
graph coloring problem can be reduced to a static binding
problem allowing multiple time intervals. Thus the proof
completes.

struct Block8x8 { int pixel[8][8]; };
/* main function */
int main(int argc, char *argv[]) {
struct Block8x8* output_0;
struct Block8x8* output_1;
struct Block8x8* output_2;
struct Block8x8* output_3;
struct Block8x8* output_4;

output_0=(void*)malloc(sizeof(struct Block8x8));
output_1=(void*)malloc(sizeof(struct Block8x8));
…
{ int sdfLoopCounter_5;for (sdfLoopCounter_5 = 0; sdfLoopCounter_5
< 10; sdfLoopCounter_5++)
…
}}

Local buffer

Buffer allocation

Figure 4. Code generation without buffer sharing
from figure 1
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Figure 5. Transformation from (a) a graph coloring
problem to (b) a buffer sharing problem

Even if a general buffer sharing problem is NP hard, we
can find an optimal static binding by an interval scheduling
algorithm if the life-times of all local buffers have a single
time interval. The interval scheduling algorithm sorts local
buffers in the increasing order of interval starting times and
binds one at a time to an available global buffer. If the inter-
val of a local buffer elapses, the mapped global buffer is re-
turned to the available global buffer pool.

The proposed technique is to increase the local buffer size
if necessary so that there exists a static binding from the
local buffers to the minimum size of global buffers.

Case 1) The graph has no sample delay.

In this case, the local buffer size becomes smaller than or
equal to the total number of consuming samples by the des-
tination block during one iteration. In the latter situation, as
illustrated in figure 6(a), the life-times of all local buffers
consist of only one interval. Thus, we can find an optimal
binding by interval scheduling.

A B
1 2

a1 a2
a1
a2

A   A   B
Buffer life-time

            (a)             (b)

Figure 6. (a) Local buffers (b) Their life-time chart

If the local buffer size is less than the number of con-
suming samples, the local buffer has multiple intervals. For
example, if the number of local buffers between A and B in
figure 7 is 6, the life-times of buffers consists of multiple
intervals as shown in figure 7(a). To apply the interval
scheduling algorithm, we extend the local buffer size to the
number of consuming samples, which is 12 in this example
(figure 7(b)).

Case 2) The graph has sample delays.

If a local buffer has sample delays then the local buffer
size should be greater than the number of consuming sam-
ples in order not to have multiple intervals. Consider an ex-
ample in figure 8(a), where local buffer a2 has 2-intervals
over an iteration and the number of global buffers is 3 (fig-
ure 8(b)). It is assumed that the initial samples are placed at
the end of the local buffer. In this case, we have to increase
the local buffer size for interval scheduling. If the local buf-

fer size is a multiple of the number of consuming samples,
the interval patterns repeat after some iterations as displayed
in figure 8(c). In general, the local buffer size to avoid mul-
tiple intervals in one iteration is as follows.

The local buffer size =

where Di is the number of delay samples and Ni is the
number of consuming samples. In this exam-
ple,(           +1)*2 = 4.

After determining the local buffer size of each arc, we may
examine the buffer life-time chart over as many iterations as
the interval pattern is repeated (figure 8(c)). Note that the
interval patterns over iteration cycles are permutations to
each other. The pattern of a2 and a4 at the first iteration is
equal to that of a4 and a2 at the second. Therefore it is suffi-
cient to consider only one iteration.

After interval scheduling over the first iteration, the global
buffer sharing result is obtained as figure 8(d). From the
interval scheduling result, we can calculate the overall buffer
binding result like figure 8(e). Now, each row of the chart
represents a set of local buffers, or a sharing pattern of local
buffers, mapped to a global buffer. We expand the interval
scheduling result until the sharing pattern is repeated (figure
8(e)). This step is the main step to determine the local buffer
sizes and static binding. Some local buffers may need to be
increased or can be decreased. In this example, the local
buffer size of arc AB can be decreased to 2 from 4 if we ob-
serve that buffers {a1, a2} can be reused for buffers {a3, a4}.
Then the interval pattern of the local buffers on arc AB is
repeated after one iteration. In fact, the local buffer size of
an arc is equal to the product of the number of samples and
the sharing pattern of the bound global buffers. Mathemati-

A B3 4

a1 a2 a3 a4

a1

Schedule : AABABAB
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A A B A B A B
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Figure 7. (a) Local buffers have two intervals (b)
All local buffers have one interval after increasing
the local buffer size
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cal analysis is somewhat complicated, thus omitted due to
space limitation.

(a) A 1 1 1 1B C D
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Figure 8. (a) An example graph with sample delays (b)
Life-time chart with multiple intervals (c) Life-time chart
over two iterations after increasing the local buffer size
of arc AB (d) Interval scheduling result (e) Expanding
the sharing result (f) Final result of static binding
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Figure 9. (a) An example graph with a feedback arc (b)
Life-time chart  (c) After interval scheduling (d) In-
creasing the local buffer size and binding the local
buffers to the global buffers

The other example is shown in figure 9(a). This graph is a
simplified version of algorithms with a feedback arc. To use
the interval scheduling algorithm, the local buffer size on arc
CA is increased to 2. The life-time chart after interval

scheduling shown in figure 9(c) represents that a2 and c1
share a global buffer, and c2 and b1 share the other global
buffer. Since the interval pattern of the global buffers bound
with a2 and b1 are repeated after two iterations, we increase
the local buffer sizes of arc AB and arc BC twice.

V. Dynamic Buffer Binding

At the cost of local buffer sizes, the static binding tech-
nique could bind the local buffers to the global buffers by the
interval scheduling algorithm. In this section, we introduce a
dynamic buffer binding technique that does not increase any
local buffer while sharing the minimum global buffer size.
However we have to pay run-time overhead to bind local
buffers dynamically. Figure 10 represents the binding result
from figure 9(a). Since the dynamic binding method binds a
local buffer to a global buffer dynamically whenever the lo-
cal buffer is used, it is not needed that the interval pattern of
each global buffer is repeated and the local buffer sizes are
increased.

c1
a1

a2

b1
b2

c1 b1

a1 b2
c1a2

g1
g2
g3

a1 b2

c1a2
b1

b2a1 a2 b1 c1

A  B  B  C   A  B  B  C    A  B  B  C  ….

Figure 10. The dynamic binding result from figure 9(a)

Figure 11 displays the code that uses the dynamic binding
technique. It contains two functions: p_allocBuffer() to fetch
a free global buffer and p_freeBuffer() to return the used
global buffer to the free list. Before executing a block, the
local buffers on the output arcs are bound to the global buf-
fers and the bound global buffers of the input arcs are re-
leased. Binding a local buffer to a global buffer executes two
instructions and releasing a global buffer requires 4 or 5
instructions.

Besides the increase of the code size, we also need extra
data structure to manage the free list of global buffers. The
size of the free list is the same as the number of global buffer
entries.

VI. Experiment

The table 1 shows the summary of itemized buffer re-
quirements of three strategies discussed in this paper with
the simple example graph of figure 1. As expected, the size
of global buffer is reduced significantly with the proposed
buffer sharing techniques. Since the graph belongs to case 1
category in section 4, the static binding does not need to
increase any local buffers. While the static binding technique
needs one extra memory to maintain the global buffer
pointer, the dynamic binding technique needs 5 more words
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(2 for the free list, 2 for the head and tail pointers of the list,
and 1 for the global buffer pointer). The dynamic binding
technique also takes 30 instructions of run-time overhead per
iteration.

Table 1. The buffer sharing result of figure 1

Global
buffer

Local
buffer

Total (in
words)

Run-time over-
head (# of inst‘s)

Without
sharing

320 5 325 0

Static 128 5 134 0

Dynamic 128 5 138 30

We experiment a large real application, H.263 encoder
that is an image compression standard for videophones. In
reality, figure 1 is a subgraph of the H.263 encoder. In this
example, we can reduce the total buffer size by about 40%. It
is noteworthy that the dynamic binding requires the least
amount of memory with minimum local buffer sizes.

Table 2. The buffer sharing result of H.263

Global
buffer

Local
buffer

Total (in
words)

Run-time over-
head (# of inst‘s)

Without
sharing

444224 2400 446624 0

Static 260288 4370 264663 0

Dynamic 260288 2400 263703 14400

VII. Conclusions

This paper presents software synthesis techniques to deal
with non-primitive data type from graphical dataflow pro-
grams based on the synchronous dataflow (SDF) model. To
minimize the buffer requirements for non-primitive data
types, we separate global data buffers and local pointer buff-
ers. The proposed approach first allocates the minimum
global buffer size and next binds the local buffers to the
global buffers by static binding or dynamic binding. In two
experiments, we could reduce 40% and 60% of the global
buffer size through buffer sharing.

While we share buffers of the same type in this paper, we
will extend this work to share buffers of different types in the
future. Furthermore, we will develop an efficient scheduling
algorithm to consider global buffer sharing.
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struct Block8x8 _output_0_[2];
int p_freeList__output_0_[2] = {1,-1};
int p_freeList_head__output_0_ = 0;
int p_freeList_tail__output_0_ = 1;
int p_allocBuffer(int* theFreeList,int* theHead) {

int buffer = *theHead;
*theHead = theFreeList[*theHead];
return buffer; }

void p_freeBuffer(int theBuffer, int* theFreeList, int* theHead,
int*theTail) {

theFreeList[*theTail] = theBuffer;
*theTail = theBuffer;
theFreeList[*theTail] = -1;
if(*theHead==-1) *theHead = theBuffer; }

/* main function */
int main(int argc, char *argv[]) {
struct Block8x8* output_0;
…
{ int sdfLoopCounter_5;for (sdfLoopCounter_5 = 0; sdfLoopCounter_5
< 10; sdfLoopCounter_5++) {
output_0=&_output_0_[p_allocBuffer(p_freeList__output_0_,
&p_freeList_head__output_0_)];

{  /*DCT*/ … }
output_1=&_output_0_[p_allocBuffer(p_freeList__output_0_,
&p_freeList_head__output_0_)];
p_freeBuffer(output_0,_output_0_,p_freeList__output_0_,&p_freeList
_head__output_0_,&p_freeList_tail__output_0_);

{  /* Zigzag*/ …}
… }}

Figure 11. Dynamic buffer binding
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