
Abstract- Multimedia, image processing and other signal 
processing applications often involve data stored in large 
arrays. Due to chip area limitation, arrays are typically 
assigned to off-chip memories, such as DRAM. This being the 
case, we try to optimize off-chip memory accesses to improve 
performance. We take the characteristics of the current 
mainstream SDRAM memory into account. We propose an 
algorithm to allocate arrays to different banks to increase the 
probability of utilizing SDRAM’s multi-bank characteristic. 
Experimental results show significant improvement over 
traditional approaches.  

I. INTRODUCTION 
  Memory system has become the bottleneck of system 
performance nowadays. In order to close the performance 
gap between memory and processor, cache memories are 
often introduced. They are suitable for general-purpose 
computation, but not for multimedia DSP applications. The 
memory subsystem often needs to be customized in order to 
fit the application specific requirement.  
  The trend of embedding DRAM into the chip relieves the 
bottleneck between main memory and processor. This being 
the case, the existence of on-chip cache should be 
reconsidered because it often takes up a great portion of the 
chip area. If the chip is dedicated to a special application, we 
can try to remove cache memories, thus reduce the area cost 
and control complexity.  
  In this paper, we focus on system chips without cache - 
the performance of DRAM plays an important role. The 
development of DRAMs, from the old FPM (Fast Page 
Mode) DRAM [10], to its successor EDO (Extended Data 
Out) DRAM [12], and the current mainstream SDRAM 
(Synchronous DRAM) [3], even Rambus DRAM [13] in the 
future, has made significant improvements in speed. If we 
can fully utilize their special features, the overall system 
performance can be greatly improved. We will discuss how 
to allocate arrays to make a better scheduling by taking the 
SDRAM’s characteristics into account. 

II. RELATED WORK 

  There are many topics on alleviating the bottleneck 
between memory and processor but only a few researchers 
consider the utilization of off-chip memory characteristics. 
Panda, Dutt, and Nicolau proposed incorporating EDO 
DRAM access model into high-level synthesis [1]. Their 
main object is to utilize the page mode access. They modeled 
EDO DRAM’s memory access modes for high level 
synthesis and proposed algorithms to incorporate them. 
Several techniques are used to transform input behavior for 
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further optimizations. The memory controller must supply 
individual DRAM commands, such as row decode, column 
decode, and precharge, so that the user program can control 
the opening or closing of DRAM pages.  
  On-chip memories, like cache and scratch pad memory, 
are used to improve memory system performance. 
Exploration and optimization of local memory in an 
embedded system is discussed in [5]. An analytical 
estimation to tailor on-chip memory configuration is 
proposed. The impact of on-chip memory size, partition of 
cache and scratch pad memory, and cache line size, are 
discussed. 
  Prefeching techniques are introduced to hide memory 
latencies. The general idea is to prefetch data as soon as 
possible if there are no data dependencies. The authors of [6] 
proposed a technique for cache coherent processors by using 
low-overhead cache miss traps.  
  Another topic that affects the system performance and cost 
is array mapping to physical memories. It involves the 
memory configuration used and the grouping and binding of 
arrays to memory components. For example, mapping arrays 
to fast but expensive memory improves the performance 
with higher cost. A more detail discussion on this subject can 
be found in [7]. In our work, we map arrays to different 
memory banks. 

III. MOTIVATION 

A. DRAM operations 
  The address of a DRAM word is divided into two parts: 
row address and column address. They must be provided 
sequentially to the memory. Fig.1 shows the addressing of a 
traditional DRAM and a 2-bank SDRAM. Data with 
different row addresses belong to different memory pages. 
For SDRAM, pages with different bank addresses (part of 
row address) belong to different memory banks.  
  There are three phases when accessing a DRAM: row 
decode, column decode, and precharge. The row decode 
phase provides row address, and the column decode phase 
provides column address with the write enable signal 
indicating whether the access is a read or a write. The 
required operation is then performed. The precharge 
command is performed if the succeeding access is to a 
different page. We call the situation when the succeeding 
access refers to the currently open page as page hit and 
otherwise page miss . A page miss causes the precharge and 
row decode commands and is much slower than a page hit. 
Note that for an SDRAM, each bank has its own open page 
and precharging one bank will not affect open pages of other 
banks. 
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Fig. 1. Addressing for (a) a traditional DRAM  

(b) a 2-bank SDRAM 

B. SDRAM’s multi-bank architecture 
  An SDRAM has multiple pages, often two or four. Each 
bank has its own open page independent of the other(s). For 
example, the 2-bank SDRAM shown in Fig.1 (b) can have 
two open pages. The old EDO DRAM can have only one 
page open. Thus, using SDRAM, the probability of page hit 
is higher and it increases with the number of banks. 

C. Motivational example 
  Here we use an example to illustrate the advantages of 
multiple-bank over single-bank architecture. Assume that we 
have three memory controllers. Controller I can utilize 
SDRAM’s multiple-bank feature but Controller II can not. 
Controller III is also aware of multiple-bank but always 
performs precharge after a read/write access. Controller I and 
III show the behaviors of SDRAM controllers and Controller 
II shows the behaviors of EDO DRAM controller. 
  Assume that Data1 and Data3 are in the same page of a 
bank, and Data2 and Data4 are in another page of another 
bank. The access sequence is Data1, Data2, Data3, and then 
Data4. Fig.2, Fig.3 and Fig.4 illustrate the behavior of the 
three controllers. Controller I needs 10 cycles in this case 
while controller II needs 27 cycles. Controller III is slower 
than Controller I because it always performs precharge after 
read/write access, but faster than Controller II because it 
takes advantage of bank interleaving access. 

BA
1

BP
1

BP
2

BA
2 R1 R2

Command Bus (Address Bus)

Dat
a1

Dat
a2

Data

Bus

R3 R4

Dat
a3

Dat
a4

10 Cycles
1 2 3 4 5 6 7 8 9 10

 
Fig. 2. Interleavingly readi ng four data from two pages (Controller I)  
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Fig. 3. Interleavingly reading four data from two pages (Controller II) 

 Fig. 4. Interleavingly reading four data from two pages (Controller III) 
  In the three figures, “BA” represents a bank active 
command of SDRAM, which sends row address. It equals to 
EDO DRAM’s row decode command. “R” represents a read 
command, which sends column address and read/write 
signal. It equals to EDO DRAM’s column decode command. 
“BP” represents a bank precharge command, which 
precharges a bank, and equals to EDO DRAM’s precharge 
command. 
  Note that two consecutive BA commands for different 
banks must be separated by at least 2 cycles. After an R 
command is performed, data is ready 3 cycles later. After a 
BP command is performed, the corresponding bank does not 
accept any new command for 2 cycles. Accesses can be 
pipelined and we can send commands for new accesses to 
the SDRAM without waiting for the completion of the 
current access. 

IV. ARCHITECTURE CONSIDERATIONS 

A. System architecture 
  Both the address mapping from logical to physical 
memory and the processor instruction set influence the 
schedule and address assignments. Although page size is 
decided by DRAM’s column address, the mapping from host 
address (in processor) to memory address (in DRAM) may 
cause the size of a continuous host addressing space within 
page smaller than DRAM’s actual page size.  
  For example, we make a mapping for a 17-bit host address 
to a 9x8 (Row address 9bits x Column address 8bits) 
SDRAM memory address, shown in Table 1. The actual 
page size is 256 words (because the Column address has 8 
bits) but in processor’s view the page size is 128 words 
because while a7 changes, the address maps to another row. 
In the table, “BA”, “A7”~”A0” represent memory address 
pins. “a16”~”a0” represent host address pins. Row and 
Column Address share the memory address pins 
“BA”~”A0”. The pin labeled with “BA” is the Bank Active 
pin, which selects the bank of SDRAM. 

TABLE 1  
A 9x8 SDRAM ADDRESS MAPPING TABLE 

 BA A7 A6 A5 A4 A3 A2 A1 A0 
Row.Addr a7 a16 a15 a14 A13 A12 a11 a10 a9 
Col.Addr  a8 a6 a5 A4 A3 a2 a1 a0 

 

  For SDRAM, the mapping of Bank Select pin(s) decides 
the interleaving size of banks. For the example in Table 1, 
the bank interleaving size is 128 words. If we exchange the 
mapping of a7 and a0, the mapping becomes word 
interleave. 
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  The programmer and compiler can take the advantages of 
different memories by assigning different variables into 
corresponding host addresses if they know the address 
mapping from host to physical memory. If the processor 
provides instructions to open/close single memory page, the 
programmer can have additional opportunities to optimize 
memory access. 

B. Paging policies 

  Paging policies of the DRAM controller also influence the 
system performance. If the controller keeps the memory page 
open until a page miss happens, we can benefit from the 
faster page mode access (like Fig.2). If the controller always 
performs precharge after a read/write access, there is no 
chance to utilize page mode because it always has to active 
the bank/page again before any new access. But, some 
optimizations may be still possible for SDRAM, such as 
interleaving access among banks (like Fig.4). 

V. SOLVING THE PROBLEM 

A. System architecture 
  We assume the system is based on the Harvard 
Architecture, which has separated program and data 
memory. Thus we can focus on the access of data from the 
memory, without the interference of fetching instructions. 
We have tried experiments on a PC, which is a non-Harvard 
architecture, but the results are not always as expected 
because program fetching and system interrupts all impact 
the memory access sequence.  
  The memory controller behaviors like Intel’s BX chipsets 
[2]. It is aware of the existence of banks, perform precharge 
command only at page miss, and can have as many pages 
open at once as the number of SDRAM banks. 

B. Problem inputs/outputs 
1. Inputs 
i) A data flow graph (DFG), whose nodes represent 
operations, and edges represent data dependencies. It defines 
the program behavior. ii) Resource constraints, which 
specify the number of function units, the number of clock 
cycles needed to complete the operation, and the type of the 
function units. iii) Memory system configurations, such as 
timing constraints of the SDRAM, the number of banks, and 
the number of DRAM modules. 
2. Processing steps 
i) Read the input data and create internal data structures. ii) 
Call our bank allocation algorithm to allocate each array to a 
suitable bank. iii) Call a static list scheduling algorithm to 
schedule the operations, with consideration of SDRAM’s 
timing constraints. 
3. Outputs 
i) The scheduling results, including function units used and 
nodes scheduled at every time step. Every loop is scheduled 
for one iteration here. ii) Total cycle counts, taking into 
account loop iterations. iii) Bank allocation table, which 
specifies the mapping of arrays to SDRAM banks. 

C. Timing verification 

  In order to verify that our scheduling results meet 
SDRAM timing constraints, the scheduler generates a 

Verilog file that contains SDRAM commands for each clock 
cycle in the schedule. Simulated with an SDRAM simulation 
model compatible with Intel’s PC SDRAM spec, our 
scheduling results indeed meet the SDRAM timing 
constraints. 

D. DRAM refresh 
  The need of refreshing periodically is one important 
property of all DRAMs. But from Panda’s work, we know 
that the effect of refresh to the performance is quite modest. 
For simplicity’s sake, our work does not take this property 
into account and modification to the scheduling need to be 
done in the succeeding step. 

VI. BANK ALLOCATION ALGORITHM 

A. Definition 
  Our bank allocation algorithm is based on an array 
distance table. The table contains the distance from one 
array-accessing node to another in the DFG. An array pair 
(X,Y) with short distance means that the accesses to array X 
and array Y are strongly related. They may be two input 
sources of an operator, such as an “+” or “*”. The operator 
“+’ or “*” can be scheduled only after its two operands are 
fetched from the memory. This being the case, we can 
allocate them to different banks, thus shortens the time 
needed to fetch them both. On the other hand, an array pair 
(Z,W) with long distance means that accesses to Z and W are 
separated by several operations, and it’s not urgent to access 
them concurrently. So, they can be allocated to the same 
bank, without increasing the schedule length. 

B. Calculating array distance  
  We use the Successive Over-Relaxation algorithm 
(SOR.C) shown in Fig.5 to illustrate how to calculate array 
distance. There are 7 two-dimensional arrays in the example. 
We assume that a memory page is large enough to contain 
any row of any array. For each of array a-f, only one row is 
accessed per iteration. For array u, three rows (i-1, i, i+1) are 
accessed per iteration. Therefore, for each loop iteration, 
accessing array u involves three DRAM pages, while 
accessing array a-f involves one DRAM page each. 
 

Fig.5. SOR.C 

main() 
{ 
 float a[N][N], b[N][N], C[N][N], d[N][N], e[N][N], f[N][N]; 
 float omega, resid, u[N][N]; 
 int j,l; 
 
for (j=2; j<N; j++) 
  for (l=1;l<N;l+=2) { 
      resid=a[j][l]*u[j+1][l]+ 
                b[j][l]*u[j-1][l]+ 
                c[j][l]*u[j][l+1]+ 
                d[j][l]*u[j][l-1]+ 
                e[j][l]*u[j][l] – 
                f[j][l]; 
     u[j][l] -= omega*resid/e[j][l]; 
   } 
} 
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  Before calculating the array distance, we must know the 
node distance. For each node, the distance from it to its 
nearest array-accessing node is called node distance. Fig.6 
shows the DFG of SOR.C. The node distances are shown in 
the parentheses of each node in the following order: a[i] to 
f[i], u[i], u[i+1], u[i-1]. A ‘-‘ means that the distance to the 
corresponding array has not been determined yet.  
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Fig. 6. DFG of the SOR example 

 
  Algorithm for calculating the node distances is proposed 
in Fig.7. After node distances are known, array distance (x, 
y) is calculated by: 

Fig. 6. Algorithm for calculating node distance 

1) Initially, all array distances are set to positive infinity. 
2) For each node, add the sum of the node distances to x and 

y if both distances are determined. 
3) If the result in 2) is smaller than the existing array 

distance (x, y), update the distance to the new value. 
The resulting array distance table of the SOR example is 
shown in Table 2. 

C. Allocating arrays to memory banks 
  After the array distance table is created, the bank 
allocation algorithm below is performed. It allocate arrays 
with strong relation (thus with short array distance) to 
different DRAM banks, to maximize the possibility of 
concurrent access.  
 
1) Find the smallest distance in the table that has not been 

traversed and get two arrays x and y. 
2) If both array x and y have not been assigned 

Choose a least used bank and assign array x to it. 
3) If either x or y has not been assigned 

Except the bank that either x or y has been assigned to, 
choose a least used bank and assign it to the array that is 
not assigned. 

4) Goto 1) until all arrays are assigned. 
 
Note that once we allocate a row of an array to a bank, the 
other rows of the same array are allocated accordingly. For 
example, once row u[i+1] is assigned to bank 1 in a 2-bank 
configuration, row u[i] is accordingly assigned to bank 0, 
row u[i-1] to bank 1, and so on. 
  For our SOR example, we get from Table 2 that (a, 
u[i+1]), (b, u[i-1]), (c, u[i]), (d, u[i]), (e, u[i]) all have the 
smallest array distance of 2 (0s in the diagonal line, 
represents  distance to the array itself, are of course 
ignored). It tells us that we should allocate row u[i] in a bank 
different from row [i] of array c, d, e and row u[i+1] from 
row a[i], row u[i-1] from row b[i], respectively. Assume that 
there are 2 banks, our choice is to assign row [i] of c, d, e to 
bank 0, and row [i] of array u to bank 1. Now, since row u[i] 
is assigned to bank 1, row u[i-1] and row u[i+1] are assigned 
to bank 0, accordingly. Thus, row [i] of array a and b are 
assigned to bank 1. Next, array (f, u) got the distance of 3, 
and since array u is assigned to bank 1, we assign array f to a 
different bank, that is bank 0. Therefore all arrays are 
allocated and our algorithm is terminated. 

Algorithm CalNodeDistance(node) { 
//Input: The DFG, and the starting node 
//Output: Distance to arrays for each succeeding node 
//Initially, traverse from the top nodes of the DFG 
 f o r (each succeeding node) d o 
   begin 
     f o r (each distance to an array) d o 
       begin 
          i f (the distance == ‘-‘) //not determined yet 
            //propagate the information to succeeding node  
            update the distance as current node’s +1; 
          else 
            //maintain the minimum value 
            update the distance as min(original distance, 
                             current node’s distance+1); 
       e n d 
     CalNodeDistance(succeeding node); //traverse down 
   e n d  } 

TABLE 2  
ARRAY DISTANCE TABLE FOR SOR 

 a[i] b[i] c[i] d[i] e[i] f[i] u[i] u[i+1] u[i-1] 
a[i] 0 4 6 6 7 6 6 2 4 
b[i] 4 0 6 6 7 6 6 4 2 
c[i] 6 6 0 4 7 6 2 6 6 
d[i] 6 6 4 0 7 6 2 6 6 
e[i] 7 7 7 7 0 3 2 7 7 
f[i] 6 6 6 6 3 0 3 6 6 

u[i] 6 6 2 2 2 3 0 6 6 
u[i+1] 2 4 6 6 7 6 6 0 4 
u[i-1] 4 2 6 6 7 6 6 4 0 
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VII. EXPERIMENTAL RESULTS 

  We choose several benchmark examples that process large 
data stored in arrays to explore the effect of our work. The 
experiments were run on different memory configurations.  

A. Benchmark characteristics 

  The benchmark “dhrc,” “compress,” “laplace,” “sor,” and 
“lowpass” are taken from the high-level synthesis design 
repository [4]. They are “differential heat  release 
computation, ” “image compress scheme,” “Laplace 
algorithm,” and “low pass filter for image,” respectively. 
“Dequant” is the dequantization routine of the MPEG 
decoder taken from [8]. “Leafcomp” is also from the MPEG 
decoder application. “Mmult” is a matrix multiplication 
routine from Panda’s paper [1]. “Fir” is taken from a text 
book [9]. “Wiener”, “dct”, and “sobel” are taken from 
another text book [11]. 
  We partition the benchmarks into two groups. 
Benchmarks in the first group access multiple 
one-dimensional arrays. Those in the second group access 
single two -dimensional array. SOR is a special case that 
accesses multiple two-dimensional arrays. It is placed in the 
first group, however. 
  For the first group, our bank allocation algorithm is 
applied on each array. The address mapping is assumed to 
allow each array to be entirely contained in one bank. As for 
the second group, the algorithm is applied to each row of the 
array. For example, A[i][j] and A[i+1][j] are assigned to 
different pages. We assume here that the page is large 
enough to contain a row of the array.  
  We also experiment on the architecture with 
word-interleave address mapping. It means that if A[j][i] is 
in bank 0, A[j][i+1] will be placed in bank 1. The 
experiments are for the second group only, because they 
access array elements of different indexes during one loop 
iteration. Unlikely, benchmarks in the first group always 
access arrays with fixed indexes during one loop iteration. 
Since the first group won’t benefit from this architecture, 
they are excluded here. 

B. Environment setup 

  Table 3 lists the resource constraints used in our 
experiments. We use SDRAM, with timing rules 
following Intel’s spec [3]. We make the options for 
CL=3, Trp=2, and Trcd=2, with burst length set to 1. 
 

C. Results 
  Results of the first group are shown in Fig.8, and the 
second group in Fig.9. In the second group, benchmarks with 
“2” in their name shows the results targeted toward the 
word-interleave architecture. We compare our results with 
Panda’s work in Fig.10. Average schedule length of the first 
and second group are shown in Table 4. 
  Scheduling results that treat each memory access as a 
multi-cycle operation are shown in “Coarse”. Reading data 
are assumed to be available after the precharge command is 
completed. Writing data should be ready before the operation 
is scheduled. Scheduling in other experiments treats each 
memory access as 3 operations: Decode, Read/Write, and 
Precharge. The data are available after the completion of 
read command, and should be ready before write command.  
  Memory configurations are varied from 1 bank, 2 banks, 
to 4 banks, with one memory module used. We also try the 
condition “2 chips” and “4 chips”, which means 2 or 4 
independent DRAM modules with only one bank are used. 
These two configurations are proposed here to show the 
effects of relaxing command bus contention. For these two 
configurations, our algorithm assigns arrays to different 
chips instead of different banks. The resource constraints and 
SDRAM timing are the same as referred in Table 3. The 
cycle counts are normalized with coarse scheduling result 
equals to 100%. 
  Experiments labeled with “+P” utilize page mode accesses 
whenever possible. A benchmark could utilize the page 
mode if there exists at least one array whose allocated bank 
does not contain any other array during the same loop 
iteration. For example, if there are 3 arrays: a, b, and c, and 
there are 2 banks. If we allocate array a and c to bank 0, 
array b to bank 1, then array b enjoys page mode access in 
the loop body. Because the row addresses sent to bank 1 are 
always belonging to array b and therefore we have to send it 
just once.  
  Notice that there are no page mode results for the “word 
interleaving” architecture.  Because the accessing page 
changes every loop iteration, it’s impossible to utilize page 
mode access. It can still benefit from multiple banks, 
however. 

 Fig.8. Results of the first group benchmarks 
 

TABLE 4 
AVERAGE SCHEDULE LENGTH OF DIFFERENT CONFIGURATIONS  
Configuration 1 Chip  

/2 Banks 
1 Chip  
/4 Banks 

2 Chips 
/1 Bank 

4 Chips 
/1 Bank 

W/O PageMode 70.20% 62.28% 64.93% 54.51% 
W/ PageMode 53.38% 43.36% 52.52% 42.02% 

 

TABLE 3 RESOURCE CONSTRAINTS 
Function Unit ALU Multiplier Divider SDRAM SDRAM 
Supported Op +,-,>,S * / BA,BP R,W 
Clocks 1 2 4 2 3 
Quantity  1 1 1 2 2 
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 Fig.9. Results of the second group benchmarks 
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Fig. 10. Results compare to Panda’s work 

D. Discussions 

  From the results in Fig.8 and Fig.9, we can see that with 
our bank allocation algorithm, scheduling taking SDRAM’s 
characteristics into account do improve the overall 
performance. For 2-bank cases, we get the schedule length 
reduced to 70% in average. For 4-bank cases, the average 
schedule length is reduced to 62%. If page mode is 
utilizable, the schedule length can be further reduced to 53% 
and 43%, respectively.  
  The use of multiple DRAM modules provides the ability 
of concurrent access to memory. From our results, using 
multiple modules with one bank helps reduce approximately 
8% schedule length without the use of page mode, compares 
to only one module with 2 or 4 banks. If page mode is 
utilized, the improvements are only about 1%. This is due to 
the reduced number of command send to SDRAM. Without 
page mode, it needs 3 commands to complete each 
read/write operation, thus increase the probability of 
command bus contention.  
  From Fig.10, we can see that our work performs much 
better than Panda’s work in “dhrc,” “sor,” and “lowpass”. 
The results of “mmult” are nearly the same. There are still 
two cases that Panda’s work performs better. We have to 
state that the comparisons are made just to show the 
advantages of using multi-bank SDRAM. Our work and 
Panda’s are targeted to different architecture. In Panda’s 
work, several behavioral transformation techniques were 
used. Our work does not make any transformation to the 

program. Our work shows the effect of bank assignment 
under common paging policies, and it can be integrated 
with other optimization techniques.  

VIII. CONCLUSIONS & FUTURE WORK  

  In this paper, we have presented a bank allocation 
algorithm and a scheduler that takes SDRAM’s 
characteristic into account. The scheduling meets timing 
constraints of Intel’s PC SDRAM’s spec and our 
experiments are based on common paging policies. 
Experimental results show a significant improvement by 
utilizing SDRAM’s multi-bank characteristic. We 
propose our work to show the importance of utilizing 
memory’s special characteristics. Other scheduling 

optimization techniques can be applied together to get better 
results. 
  We also experimented on several different memory 
configurations. System designer can decide on an 
appropriate configuration for his or her application by our 
simulation flow. After the configuration is made, results of 
our bank allocation algorithm can be integrated into 
compilers to allocate arrays to suitable addresses. 
  Our future work includes grouping and mapping arrays to 
incorporate burst transfer, extending to Rambus DRAM, and 
the integration of our algorithm with other scheduling 
techniques. 
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