Array Allocation Taking into Account SDRAM Characteristics

Hong-Ka Chang YounLongLin
Department of Computer Science
Nationa Tsing HuaUniversity
Hsinchu, 300, Taiwan, R.O.C

Abstract- Multimedia, image processing and other signal
processing applications often involve data stored in large
arrays. Due to chip area limitation, arrays are typically
assigned to off-chip memories, such as DRAM. This being the
case, we try to optimize off-chip memory accesses to improve
performance. We take the characteristics of the current
mainstream SDRAM memory into account. We propose an
algorithm to allocate arrays to different banks to increase the
probability of utilizing SDRAM’s multi-bank characteristic.
Experimental results show significant improvement over
traditional approaches.

I. INTRODUCTION
Memory system has become the bottleneck of system
performance nowadays. In order to close the performance
gap between memory and processor, cache memories are
often introduced. They are suiteble for genera -purpose
computation, but not for multimedia DSP applications. The
memory subsystem often needs to be customized in order to

fit the application specific requirement.

The trend of embedding DRAM into the chip relieves the
bottleneck between main memory and processor. This being
the case, the existence of on-chip cache should be
reconsidered because it often takes up a great portion of the
chip area. If the chip is dedicated to a specid application, we
can try to remove cache memoaries, thus reduce the area cost
and cortrol complexity.

In this paper, we focus on system chips without cache -
the performance of DRAM plays an important role. The
development of DRAMSs, from the old FPM (Fast Page
Mode) DRAM [10], to its successor EDO (Extended Data
Out) DRAM [12], and the current mainstreesm SDRAM
(Synchronous DRAM) [3], even Rambus DRAM [13] in the
future, has made significant improvements in speed. If we
can fully utilize their specia features, the overal system
performance can be greatly improved. We will discuss how
to alocate arrays to make a better scheduling by taking the
SDRAM’ scharacteristicsinto account.

Il. ReELATED WORK

There are many topics on dleviating the bottleneck
between memory and processor but only a few researchers
consider the utilization of off-chip memory characterigtics.
Panda, Dutt, and Nicolau proposed incorporating EDO
DRAM access modd into highlevel synthesis [1]. Their
main object isto utilize the page mode access. They modeled
EDO DRAM’s memory access modes for high leve
synthesis and proposed dgorithms to incorporate them.
Severa techniques are used to transform input behavior for

T Supported in part by the National Science Council, R.O.C, under contract
no. NSC 89-2215-E-007-005

© 2000 |EEE ISBN 0-7803-5974-7

497

further optimizations. The memory controller must supply
individual DRAM commands, such as row decode, column
decode, and precharge, so that the user program can control
the opening or closing of DRAM pages.

On-chip memories, like cache and scratch pad memory,
ae used to improve memory system performance.
Exploration and optimization of locd memory in an
embedded system is discussed in [5]. An andytica
edimation to tailor ornrchip memory configuration is
proposed. The impact of on-chip memory size, partition of
cache and scraich pad memory, and cache line sze, are
discussed.

Prefeching techniques are introduced to hide memory
latencies. The generd idea is to prefetch data as soon as
possibleif there are no data dependencies. The authors of [6]
proposed a technique for cache coherent processors by using
low-overhead cache misstraps.

Another topic that affects the system performance and cost
is array mapping to physical memories. It involves the
memory configuration used and the grouping and binding of
arrays to memory components. For example, mapping arrays
to fast but expensive memory improves the performance
with higher cost. A more detail discussion on thissubject can
be found in [7]. In our work, we map arrays to different
memory banks.

I1l. MOTIVATION

A. DRAM operations

The address of a DRAM word is divided into two parts:
row address and column address. They must be provided
sequentially to the memory. Fig.1 shows the addressing of a
traditiond DRAM and a 2-bank SDRAM. Data with
different row addresses belong to different memory pages.
For SDRAM, pages with different bank addresses (part of
row address) belong to different memory banks.

There are three phases when accessing a DRAM: row
decode, column decode, and precharge. The row decode
phase provides row address, and the column decode phase
provides column address with the write enable signd
indicating whether the access is a read or a write. The
required operation is then performed. The precharge
command is performed if the succeeding access is to a
different page. We call the situation when the succeeding
access refers to the currently open page as page hit and
otherwise page miss. A page miss causes the precharge and
row decode commands and is much dower than a page hit.
Note that for an SDRAM, each bank has its own open page
and precharging one bank will not affect open pages of other
banks.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368434.368769&domain=pdf&date_stamp=2000-01-28

(Adgess RS> >C
(B‘XRDQ D
\ N

GOORYE
T

[DatIDatJ

Col umn Col umn Command Bus
&)
N1
Row Row, . T
Bark(Bankl Data
a) (b) Bus

Fig. 1. Addressing for (a) atraditional DRAM
(b) a2-bank SDRAM

B. SDRAM’ s multi-bank architecture

An SDRAM has multiple pages, often two or four. Each
bank has its own open page independent of the other(s). For
example, the 2bank SDRAM shown in Fig.1 (b) can have
two open pages. The old EDO DRAM can have only one
page open. Thus, using SDRAM, the probability of page hit
ishigher and it increases with the number of banks.

C. Moativational example

Here we use an example to illustrate the advantages of
multiplebank over single-bank architecture. Assume that we
have three memory controllers. Controller | can utilize
SDRAM’ s multiplebank feature but Controller Il can not.
Controller Il is adso aware of multiple-bank but dways
performs precharge after a read/write access. Controller | and
[11 show the behaviors of SDRAM controllers and Controller
I1 showsthe behaviors of EDO DRAM controller.

Assume that Datal and Data3 are in the same page of a
bank, and Daa2 and Datad are in another page of another
bank. The access sequence is Datal, Data2, Data3, and then
Daad. Fig.2, Fig.3 and Fig.4 illustrate the behavior of the
three controllers. Controller | needs 10 cycles in this case
while controller 1l needs 27 oycles. Controller 111 is Sower
than Controller | because it dways performs precharge after
read/write access, but faster than Controller 11 because it
takes advantage of bank interleaving access.

Command Bus (A}MW\

BA:
BankActive

R: Read
BP:
10 Bank-Precha

10 Cycl e rge
Fig. 2. Interleavingly readi ng four data from two pages (Controller 1)
Command Bus

ONOREGEORORNG

: Data : : Dat Dat
H Bus . . . al a2

2 3 4 5 7 8 9 10 11 12 13 14

10 11 12 13

14 15

[DatIDatJ
16 Cycles

Fig. 4. Interleavingly reading four data from two pages (Controller I11)

In the three figures, “BA” represents a bank active
command of SDRAM, which sends row address. It equalsto
EDO DRAM’ s row decode command. “R” represents a read
command, which sends column address and read/write
signdl. It equalsto EDO DRAM'’ s column decode command.
“BP’ represents a bank precharge command, which
precharges a bank, and equals to EDO DRAM’ s precharge
command.

Note that two consecutive BA commands for different
banks must be separated by at least 2 cycles. After an R
command is performed, data is ready 3 cycles later. After a
BP command is performed, the corresponding bank does not
accept any new command for 2 cycles. Accesses can be
pipelined and we can send commands for new accesses to
the SDRAM without waiting for the completion of the
current access.

IV. ARCHITECTURE CONSIDERATIONS

A. Systemarchitecture

Both the address mapping from logica to physical
memory and the processor ingtruction set influence the
schedule and address assignments. Although page size is
decided by DRAM'’ s column address, the mapping from host
address (in processor) to memory address (in DRAM) may
cause the size of a continuous host addressing space within
page smaler than DRAM’ sactual page size.

For example, we make a mapping for a 17-bit host address
to a 9x8 (Row address 9bits x Column address 8hits)
SDRAM memory address, shown in Table 1. The actua
page size is 256 words (because the Column address has 8
bits) but in processor’ s view the page size is 128 words
because while a7 changes, the address maps to another row.
In the table, “BA”, “A7" ~"AQ" represent memory address
pins. “al6’~"ad" represent host address pins. Row and
Column Address share the memory address pins
“BA”~"AQ". The pin labeled with “BA” is the Bank Active
pin, which selects the bank of SDRAM.

TABLE 1
A 9x8 SDRAM ADDRESSMAPPING TABLE
BA |A7 |A6 |A5 |A4 |A3 |A2 |Al |AO
Row.Addr |a7 |al6 |al5 |al4 |A13 |A12 |all |al0 |a9
Col.Addr a8 Ja6 |a5 |A4 |A3 a2 Jal |a0

oMo ””@ IECNONNUE
A Sa

EData
. Bus . .
15 16 17 18 19 20

Fig. 3. Interleavingly reading four data from two pages (Controller 1)

498

For SDRAM, the mapping of Bank Select pin(s) decides
the interleaving size of banks. For the example in Table 1,
the bank interleaving sizeis 128 words. If we exchange the
mappl ng of a7 and &), the mapping becomes word

The programmer and compiler can take the advantages of
different memories by assigning different variables into
corresponding host addresses if they know the address
mapping from host to physical memory. If the processor
provides instructions to open/close single memory page, the
programmer can have additional opportunities to optimize
Memory access.

B. Paging policies

Paging policies of the DRAM controller also influence the
system performance. If the controller keeps the memory page
open until a page miss happens, we can benefit from the
faster page mode access (like Fig.2). If the controller dways
performs precharge after a read/write access, there is no
chance © utilize page mode because it always has to active
the bank/page again before any new access. But, some
optimizations may be ill possible for SDRAM, such as
interleaving access among banks (like Fig.4).

V. SOLVINGTHE PROBLEM

A. Systemarchitecture

We assume the system is based on the Harvard
Architecture, which has separated program and data
memory. Thus we can focus on the access of data from the
memory, without the interference of fetching instructions.
We have tried experiments on a PC, which is a non-Havard
architecture, but the results are not adways as expected
because program fetching and system interrupts al impact
the memory access sequence.

The memory controller behaviors like Intel’ s BX chipsets
[2]. It is aware of the existence of banks, perform precharge
command only a page miss, and can have as many pages
open a once as the number of SDRAM banks.

B. Probleminputs/outputs

1. Inputs
i) A daa flow graph (DFG), whose nodes represent
operations, and edges represent data dependencies. It defines
the program behavior. ii) Resource constraints, which
specify the number of function units, the number of clock
cycles needed to complete the operation, and the type of the
function units. iii) Memory system configurations, such as
timing congtraints of the SDRAM, the number of banks, and
the number of DRAM modules.
2. Processing steps
i) Read the input data and create interna data structures. ii)
Cdll our bank allocation agorithm to alocate each array to a
suitable bank. iii) Call a static list scheduling algorithm to
schedule the operations, with consideration of SDRAM’ s
timing constraints.
3. Outputs
i) The scheduling results, including function units used and
nodes scheduled at every time step. Every loop is scheduled
for one iteration here. ii) Totd cycle counts, taking into
account loop iterations. iii) Bank allocation table, which
specifies the mapping of arraysto SDRAM banks.
C. Timing verification

In order to verify that our scheduling results meet

SDRAM timing congraints, the scheduler generates a

499

Verilog file that contains SDRAM commands for each clock
cyclein the schedule. Simulated with an SDRAM simulation
model compatible with Inte’s PC SDRAM spec, our
scheduling results indeed meet the SDRAM timing
constraints.

D. DRAM refresh

The need of refreshing periodicaly is one important
property of al DRAMs. But from Panda s work, we know
that the effect of refresh to the performance is quite modest.
For simplicity’ s sake, our work does not take this property
into account and modification to the scheduling need to be
done in the succeeding step.

V1. BANK ALLOCATION ALGORITHM

A. Definition

Our bank allocation algorithm is based on an array
distance table The table contains the distance from one
array-accessing node to another in the DFG. An array pair
(X,Y) with short distance means that the accesses to array X
and aray Y are strongly related. They may be two input
sources of an operator, such as an “+" or “*”. The operator
“+ or “*" can be scheduled only after its two operands are
fetched from the memory. This being the case, we can
dlocate them to different banks, thus shortens the time
needed to fetch them both. On the other hand, an array pair
(ZW) with long distance means that accessesto Z and W are
separated by several operations, and it’ s not urgent to access
them concurrently. So, they can be dlocated to the same
bank, without increasing the schedule length.

B. Calculating array distance

We use the Successve Over-Relaxation algorithm
(SOR.C) shown in Fig.5 to illustrate how to calculate array
distance. There are 7 two-dimensiona arraysin the example.
We assume that a memory page is large enough to contain
any row of any array. For each of array a-f, only one row is
accessed per iteration. For array u, three rows (i-1, i, i+1) are
accessed per iteration. Therefore, for each loop iteration,
accessing array u involves three DRAM pages, while
accessing array a-f involves one DRAM page each.

main()

float a[N][N], b[N][N] C[N][N] d[N][NJ. [NJ[N], f[N][NI;
float Iomega resd, u[N][N
int j,

for (j=2; j<N; j++)
for (I=1;1<N;l+=2) {
resid=afj]{I]* ufj+1][11+
B[l -1][1]+
cI[*ulj][l+1]+
diilf*ufiif -1+
e[J][']*U[J]['] -
Il

) ufj]ll] -=omega*resid/efj][l];

Fig.5. SOR.C

Before calculating the array distance, we must know the 1) Initialy, al array di stances are set to positive infinity.
node distance For each node, the distance from it to its 2) For each node, add the sum of the node distancesto x and

nearest array-accessing node is caled node distance. Fig.6 y if both distances are determined.

shows the DFG of SOR.C. The node distances are shown in 3) If the result in 2) is smaller than the existing array
the parentheses of each node in the following order: a[i] to distance (x, y), update the distance to the new value.

f[i], u[i], u[i+1], u[i-1]. A * - means that the distance to the The resuting array distance table of the SOR exampleis
corresponding array has not been determined yet. showninTable2.

ulj+1101]

TABLE 2
, 1’ - } ARRAY DISTANCE TABLE FOR SOR

P S . 0 D M

2. 2) afjl of 4 ¢ 6 7 6 6 24 4

v 4 bil 4 d 6§ o 7 6§ 6 4 2

i 6§ O 4 7 8§ 2 4§ 6

a6 § 4 0o 7 § 2 4§ 6

1 el 71 1 7 7 o 3 2 7 7

’ Ml 6 & 6 6 3 0o 3 4§ 6

w6 d 2 2 2 3 9 § §

3,3,3,3,-,-,83,3,3 [2l 4 6 6 7 6§ 6§ d 4

1-) wr 4 2 6 6 7 6§ 6§ 4 0

C. Allocating arraysto memory banks

b2, After the array digtance table is created, the bank

alocation agorithm below is performed. It dlocate arrays

Loaiy! omega With strong relation (thus with short array distance) to

{4,4,4,4,3 /2, 3, 4fifferent DRAM banks, to maximize the posshility of
concurrent access.

1) Find the smallest distance in the table that has not been

traversed and get two arraysx and y.
AD,B,5,.5 4.3 Qflf%gt rayxgmdy ha/;%ot been);\ss‘gned
Choose aleast used bank and assign array X toit.
{6,6,6,6,1,4,5,6, 6}3)|fathax0ryh%n0tb%mgnw

Except the bank that either x or y has been assigned to,
c1.7,2,5,1,7,7} choose aleast used bank and assign it to the array that is
GLiT00] not assigned.
4) Goto 1) until all arrays are assigned.

Fig. 6. DFG of the SOR example Note tha once we dlocate a row of an array to a bank, the

Algorithm for calculating the node distances is proposed ~ Other rows of the same array are allocated accordingly. For
in Fig.7. After node distances are known, array distance (x, ~ e€xample, oncerow ufi+1] is assigned to bank 1 in a 2-bank
y) is calculated by: configuration, row u[i] is accordingly assigned to bank O,

row u[i-1] to bank 1, and so on.

N cuimodeni ¢nad For our SOR example, we get from Table 2 that (a,
M PR p Rl ™M BEETOINY fhe st ar o uigl) dedi-1)), (@ Ui]), @ ulil), @ uli]) dl have the
/' OQutput: Distance to arrays |forsméeles rarayudistanceddf 29 (08 ¢nd the diagona line,
/f/ gl rn(:}l at CI ha | sI uyc' . et er uﬂaignegr Sneo OIf er om the tfgﬁf)ﬁt%tdtgi§a$éat°;gi ?éaloigg‘;bware[.]qfn g%lgnslf

egin | . u W U ufif 1
f gg%a}cnh di stancreayo an a different from row [i] of array c, d, e and row u[i+1] from
ifthe distance /=m0t det el mi K[eow ufi-1] fromrow bi], respectively. Assume that
I'/'propagate the inffor thereae?banks cunchoicesstd asdgnTowd[d of ¢, d, eto
ol .. updatethe distwlice yag ol b6 H b &L%o bank 1. Now, sncerow uli]

'} . . h | C . .

update n}ahle?it(d% Irsri]t giti rm?aal rgtlx insI tm‘gaﬂﬁ| VI%I toLbank. L IYO\NTuh[I 1] and rOqu[|+1] arz?gsgned
O (-) ot e o 5
end _ _ assigned to . Next, array (f, u) got the distance of 3,
Cean;dNOd eDi ¢swenceeding node) |/ /dnd §pice &rfaf u F52&%%ned to bank 1, we assign array f to a
different bank, that is bank 0. Therefore dl arrays are

Fig. 6. Algorithm for calculating node distance alocated and our algorithm isterminated.

500

VIl. EXPERIMENTAL RESULTS

We choose several benchmark examples that process large
data stored in arrays to explore the effect of our work. The
experiments were run on different memory configurations.

A. Benchmark characteristics

The benchmark “dhrc,” “compress,” “laplace,” “sor,” and
“lowpass’ are taken from the high-level synthesis design
repostory [4]. They ae “differentil heat reease
computetion, " “image compress scheme” “Laplace
algorithm,” and “low pass filter for image,” respectively.
“Deguant” is the deguantizetion routine of the MPEG
decoder taken from [8]. “ Leafcomp” is aso from the MPEG
decoder application. “Mmult” s a matrix multiplication
routine from Panda s paper [1]. “Fir” is taken from a text
book [9]. “Wiener”, “dct”, and “sobd” are taken from
another text book [11].

We partition the benchmarks into two groups.
Benchmarks in the first group access multiple
one-dimensiond arrays. Those in the second group access
single two-dimensional array. SOR is a special case that
accesses multiple two-dimensiona arrays. It is placed in the
first group, however.

For the first group, our bank allocation agorithm is
goplied on each array. The address mapping is assumed to
alow each array to be entirely contained in one bank. Asfor
the second group, the algorithm is applied to each row of the
array. For example, A[i][j] and Ali+1][j] are assigned to
different pages. We assume here that the page is large
enough to contain arow of the array.

We dso expeiment on the architecture with
word-interleave address mapping. It means that if A[j][i] is
in bank O, A[j][i+1] will be placed in bank 1. The
experiments are for the second group only, because they
access array elements of different indexes during one loop
iteration. Unlikely, benchmarks in the first group aways
access arrays with fixed indexes during one loop iteration.
Since the first group won' t benefit from this architecture,
they are excluded here.

B. Environment setup

C. Results

Results of the first group are shown in Fig.8, and the
second group in Fig.9. In the second group, benchmarks with
“2" in their name shows the results targeted toward the
word-interleave architecture. We compare our results with
Panda swork in Fig.10. Average schedule length of the first
and second group are shown in Table 4.

Scheduling results that treat each memory access as a
multi-cycle operation are shown in “ Coarse”. Reading data
are assumed to be available after the precharge command is
completed. Writing data should be ready before the operation
is scheduled. Scheduling in other experiments treats each
memory access as 3 operations: Decode, Read/Write, and
Precharge. The data are available after the completion of
read command, and should be ready before write command.

Memory configurations are varied from 1 bank, 2 banks,
to 4 banks, with one memory module used. We aso try the
condition “2 chips’ and “4 chips’, which means 2 or 4
independent DRAM modules with only one bank are used.
These two configurations are proposed here to show the
effects of relaxing command bus contention. For these two
configurations, our agorithm assigns arrays to different
chipsinstead of different banks. The resource constraints and
SDRAM timing are the same as referred in Table 3. The
cycle counts are normalized with coarse scheduling result
equals to 100%.

Experiments labeled with “ +P" utilize page mode accesses
whenever possible. A benchmark could utilize the page
mode if there exists at |least one array whose allocated bank
does not contain any other array during the same loop
iteration. For example, if there are 3 arrays: a, b, and ¢, and
there are 2 banks. If we dlocate array a and ¢ to bank 0,
aray b to bank 1, then array b enjoys page mode access in
the loop body. Because the row addresses sent to bank 1 are
aways belonging to array b and therefore we have to send it
just once.

Notice that there are no page mode results for the “word
interleaving” architecture. Because the accessng page
changes every loop iteration, it' s impossible to utilize page

Table 3 lists the resource constraints used in our
experiments. We use SDRAM, with timing rules
following Intel’ s spec [3]. We make the options for
CL=3, Trp=2, and Trcd=2, with burst length set to1.

TABLE 3RESOURCE CONSTRAINTS
Function Unit |ALU Multiplier [Divider |[SDRAM |SDRAM
Supported Op |+,-,>,S |* / BABP [RW
Clocks 1 2 4 2 3
Quantity 1 1 1 2 2

Normalized Cyprle

TABLE 4
AVERAGE SCHEDULE LENGTH OF DIFFERENT CONAGURATIONS
Configuration 1 Chip 1 Chip 2 Chips |4 Chips
/2 Banks [/4 Banks |/1 Bank [/1 Bank

100

9 0[] =

809

709

609

509
409

mode access. It can ill benefit from multiple banks,
309
209

however.
1 0 ’ ﬁ

===l

0 ot . . L L

dhr dequawitenedct mmullteaf cdmp s

o

r
Benchmark

OCoar{dd Band2BanM@4Ban@2Chi @t Chilfps
O2Ban@4Ban@2Ehi dsk€mi ps+P

W/O PageMode [70.20% [62.28% [64.93% [54.51%
W/ PageMode 53.38% |43.36% |52.52% (42.02%

Fig.8. Resultsof thefirst group benchmarks

501

ol00

program. Our work shows the effect of bank assignment

>
390
809

under common paging policies, and it can be integrated

with other optimization techniques.

©709
~

=50
_40“
0300
=2

20
10
0 9ot

k

VIll. ConcLusons& FUTURE WORK

In this paper, we have presented a bank alocation
adgorithm and a scheduler that takes SDRAM's
characteristic into account. The scheduling meets timing
condraints of Intd’s PC SDRAM’s spec and our

comprkapl asebel owpasmprkeaplaselel @Wpesyperiments are based on common paging pO”CiES.
Benchmark

OCoarO&tBanO2Ban®M4Ban@2Chi MéChi [d2Ban
HM4BanB2ehi J4e®Pi ps+P

Experimenta results show a significant improvement by
P utilizing SDRAM’s multi-bank characteristic. We
propose our work to show the importance of utilizing
memory’ s specid characteristics. Other scheduling

Fig.9. Results of the second group benchmarks

dhr dequavtullteaf cesmp | owplas

Benchmark

OCoar0Og&#Banid2BanM4Bani@2Chi @4 Chii
O2BanM4Ban@2Rhi N4 €Ri MPaPda

P S

D. Discussions

Fig. 10. Results compareto Panda’ swork

From the results in Fig.8 and Fig.9, we can see that with
our bank alocation agorithm, scheduling taking SDRAM’ s
characteristics into account do improve the overal
performance. For 2bank cases, we get the schedule length
reduced to 70% in average. For 4bank cases, the average
schedule length is reduced to 62%. If page mode is
utilizable, the schedule length can be further reduced to 53%

and 43%, respectively.

The use of multiple DRAM modules provides the ability
of concurrent access to memory. From our results, using
multiple modules with one bank hel ps reduce approximately
8% schedule length without the use of page mode, compares
to only one module with 2 or 4 banks. If page mode is
utilized, the improvements are only about 1%. Thisis dueto
the reduced number of command send to SDRAM. Without
page mode, it needs 3 commands to complete each
read/write operation, thus increase the probability of
command bus contention.

From Fig.10, we can see that our work performs much
better than Panda s work in “dhrc,” “sor,” and “lowpass’.
The results of “mmult” are nearly the same. There are il
two cases that Panda s work performs better. We have to
dtate that the comparisons are made just to show the
advantages of using multi-bank SDRAM. Our work and
Panda s are targeted to different architecture. In Panda s
work, severa behavioral transformation techniques were
used. Our work does not make any transformation to the

502

optimization techniques can be applied together to get better
results.

We adso experimented on severd different memory
configurations. System designer can decide on an
approprige configuration for his or her application by our
simulation flow. After the configuration is made, results of
our bank dlocation agorithm can be integrated into
compilersto alocate arrays to suitable addresses.

Our future work includes grouping and mapping arrays to
iﬂcorporate burgt transfer, extending to Rambus DRAM, and
the integration of our agorithm with other scheduling
techniques.

IX. BIBLIOGRAPHY

[1] P.R.Panda N.D. Dutt, and A. Nicolau, “Incorporating DRAM access
modes into highlevel synthesis”, in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 17,
No.2, Feb. 1998, P.96-109.

[2] Intel 440BX AGPset: 82443BX host bridge/controller datasheet, from
Intel” sweb site: hitp://www.intel.conv.

[3] PC SDRAM specification, version 1.51, from Intel corporation, Nov
1997.

[4] P. R. Panda and N. D. Dutt, “1995 high level synthesis design
repository”, in Proceedings of International Symposium on System
Synthesis, 1995, P.170-174.

[5] P.R. Panda N.D. Dutt, and A. Nicolau, “Loca memory exploration
and optimization in embedded systems’, |EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 18,
No.1, Jan. 1999, P.3-13.

[6] J. Skeppstedt and M. Dubois, “Hybrid compiler/hardware prefetching
for multiproceesors using lowoverhead cache miss traps’, in
Proceedings of the International Conference on Parallel Processing,
1997, P.298-305.

[71 H. Schmit and D. E. Thomas, “Array mapping in behaviora
synthesis’, in Proceedings of the International Symposium on System
Synthesis, 1995, P.90-95.

[8] P.R.Panda, N.D. Dutt, and A. Nicolau, “Memory issuesin embedded
systems-on-chip optimizations and exploration”, Kluwer Academic
Publishers, 1999.

[9] P. M. Embree and B. Kimble, “C language algorithms for digital
signa processing”, Prentice Hall, 1991.

[10] FPM dram datasheet., http://www.etron.com/614081.html

[11] I. Pites, “ Digital image processing algorithms”, Prentice-Hall, 1993.

[12] EDORAM datasheet, http://mww.etron.com/615162.html

[13] Rambusdatasheet,
http://www.rambus.com/devel oper/quickfind_documents.html

