
Abstract- Multimedia, image processing and other signal
processing applications often involve data stored in large
arrays. Due to chip area limitation, arrays are typically
assigned to off-chip memories, such as DRAM. This being the
case, we try to optimize off-chip memory accesses to improve
performance. We take the characteristics of the current
mainstream SDRAM memory into account. We propose an
algorithm to allocate arrays to different banks to increase the
probability of utilizing SDRAM’s multi-bank characteristic.
Experimental results show significant improvement over
traditional approaches.

I. INTRODUCTION
 Memory system has become the bottleneck of system
performance nowadays. In order to close the performance
gap between memory and processor, cache memories are
often introduced. They are suitable for general-purpose
computation, but not for multimedia DSP applications. The
memory subsystem often needs to be customized in order to
fit the application specific requirement.
 The trend of embedding DRAM into the chip relieves the
bottleneck between main memory and processor. This being
the case, the existence of on-chip cache should be
reconsidered because it often takes up a great portion of the
chip area. If the chip is dedicated to a special application, we
can try to remove cache memories, thus reduce the area cost
and control complexity.
 In this paper, we focus on system chips without cache -
the performance of DRAM plays an important role. The
development of DRAMs, from the old FPM (Fast Page
Mode) DRAM [10], to its successor EDO (Extended Data
Out) DRAM [12], and the current mainstream SDRAM
(Synchronous DRAM) [3], even Rambus DRAM [13] in the
future, has made significant improvements in speed. If we
can fully utilize their special features, the overall system
performance can be greatly improved. We will discuss how
to allocate arrays to make a better scheduling by taking the
SDRAM’s characteristics into account.

II. RELATED WORK

 There are many topics on alleviating the bottleneck
between memory and processor but only a few researchers
consider the utilization of off-chip memory characteristics.
Panda, Dutt, and Nicolau proposed incorporating EDO
DRAM access model into high-level synthesis [1]. Their
main object is to utilize the page mode access. They modeled
EDO DRAM’s memory access modes for high level
synthesis and proposed algorithms to incorporate them.
Several techniques are used to transform input behavior for

† Supported in part by the National Science Council, R.O.C, under contract
no. NSC 89-2215-E-007-005

further optimizations. The memory controller must supply
individual DRAM commands, such as row decode, column
decode, and precharge, so that the user program can control
the opening or closing of DRAM pages.
 On-chip memories, like cache and scratch pad memory,
are used to improve memory system performance.
Exploration and optimization of local memory in an
embedded system is discussed in [5]. An analytical
estimation to tailor on-chip memory configuration is
proposed. The impact of on-chip memory size, partition of
cache and scratch pad memory, and cache line size, are
discussed.
 Prefeching techniques are introduced to hide memory
latencies. The general idea is to prefetch data as soon as
possible if there are no data dependencies. The authors of [6]
proposed a technique for cache coherent processors by using
low-overhead cache miss traps.
 Another topic that affects the system performance and cost
is array mapping to physical memories. It involves the
memory configuration used and the grouping and binding of
arrays to memory components. For example, mapping arrays
to fast but expensive memory improves the performance
with higher cost. A more detail discussion on this subject can
be found in [7]. In our work, we map arrays to different
memory banks.

III. MOTIVATION

A. DRAM operations
 The address of a DRAM word is divided into two parts:
row address and column address. They must be provided
sequentially to the memory. Fig.1 shows the addressing of a
traditional DRAM and a 2-bank SDRAM. Data with
different row addresses belong to different memory pages.
For SDRAM, pages with different bank addresses (part of
row address) belong to different memory banks.
 There are three phases when accessing a DRAM: row
decode, column decode, and precharge. The row decode
phase provides row address, and the column decode phase
provides column address with the write enable signal
indicating whether the access is a read or a write. The
required operation is then performed. The precharge
command is performed if the succeeding access is to a
different page. We call the situation when the succeeding
access refers to the currently open page as page hit and
otherwise page miss . A page miss causes the precharge and
row decode commands and is much slower than a page hit.
Note that for an SDRAM, each bank has its own open page
and precharging one bank will not affect open pages of other
banks.

Array Allocation Taking into Account SDRAM Characteristics †

Hong-Kai Chang Youn-Long Lin
 Department of Computer Science

National Tsing Hua University
 Hsinchu, 300, Taiwan, R.O.C

© 2000 IEEE ISBN 0-7803-5974-7

497

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368434.368769&domain=pdf&date_stamp=2000-01-28

Row

Column

Row

Column

Bank1Bank0

 (a) (b)
Fig. 1. Addressing for (a) a traditional DRAM

(b) a 2-bank SDRAM

B. SDRAM’s multi-bank architecture
 An SDRAM has multiple pages, often two or four. Each
bank has its own open page independent of the other(s). For
example, the 2-bank SDRAM shown in Fig.1 (b) can have
two open pages. The old EDO DRAM can have only one
page open. Thus, using SDRAM, the probability of page hit
is higher and it increases with the number of banks.

C. Motivational example
 Here we use an example to illustrate the advantages of
multiple-bank over single-bank architecture. Assume that we
have three memory controllers. Controller I can utilize
SDRAM’s multiple-bank feature but Controller II can not.
Controller III is also aware of multiple-bank but always
performs precharge after a read/write access. Controller I and
III show the behaviors of SDRAM controllers and Controller
II shows the behaviors of EDO DRAM controller.
 Assume that Data1 and Data3 are in the same page of a
bank, and Data2 and Data4 are in another page of another
bank. The access sequence is Data1, Data2, Data3, and then
Data4. Fig.2, Fig.3 and Fig.4 illustrate the behavior of the
three controllers. Controller I needs 10 cycles in this case
while controller II needs 27 cycles. Controller III is slower
than Controller I because it always performs precharge after
read/write access, but faster than Controller II because it
takes advantage of bank interleaving access.

BA
1

BP
1

BP
2

BA
2 R1 R2

Command Bus (Address Bus)

Dat
a1

Dat
a2

Data

Bus

R3 R4

Dat
a3

Dat
a4

10 Cycles
1 2 3 4 5 6 7 8 9 10

Fig. 2. Interleavingly readi ng four data from two pages (Controller I)

BA
1

BP
1

BP
2

BA
2R1 R2

Command Bus (Address Bus)

Dat
a1

Dat
a2

Data

Bus

BA
1

BP
1

BP
2

BA
2R1 R2

Command Bus (Address Bus) Continued

Dat
a3

Dat
a4

Data
Bus

27 Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14

16 17 18 19 20 21 22 23 24 25 26 27 2815

Fig. 3. Interleavingly reading four data from two pages (Controller II)

 Fig. 4. Interleavingly reading four data from two pages (Controller III)
 In the three figures, “BA” represents a bank active
command of SDRAM, which sends row address. It equals to
EDO DRAM’s row decode command. “R” represents a read
command, which sends column address and read/write
signal. It equals to EDO DRAM’s column decode command.
“BP” represents a bank precharge command, which
precharges a bank, and equals to EDO DRAM’s precharge
command.
 Note that two consecutive BA commands for different
banks must be separated by at least 2 cycles. After an R
command is performed, data is ready 3 cycles later. After a
BP command is performed, the corresponding bank does not
accept any new command for 2 cycles. Accesses can be
pipelined and we can send commands for new accesses to
the SDRAM without waiting for the completion of the
current access.

IV. ARCHITECTURE CONSIDERATIONS

A. System architecture
 Both the address mapping from logical to physical
memory and the processor instruction set influence the
schedule and address assignments. Although page size is
decided by DRAM’s column address, the mapping from host
address (in processor) to memory address (in DRAM) may
cause the size of a continuous host addressing space within
page smaller than DRAM’s actual page size.
 For example, we make a mapping for a 17-bit host address
to a 9x8 (Row address 9bits x Column address 8bits)
SDRAM memory address, shown in Table 1. The actual
page size is 256 words (because the Column address has 8
bits) but in processor’s view the page size is 128 words
because while a7 changes, the address maps to another row.
In the table, “BA”, “A7”~”A0” represent memory address
pins. “a16”~”a0” represent host address pins. Row and
Column Address share the memory address pins
“BA”~”A0”. The pin labeled with “BA” is the Bank Active
pin, which selects the bank of SDRAM.

TABLE 1
A 9x8 SDRAM ADDRESS MAPPING TABLE

 BA A7 A6 A5 A4 A3 A2 A1 A0
Row.Addr a7 a16 a15 a14 A13 A12 a11 a10 a9
Col.Addr a8 a6 a5 A4 A3 a2 a1 a0

 For SDRAM, the mapping of Bank Select pin(s) decides
the interleaving size of banks. For the example in Table 1,
the bank interleaving size is 128 words. If we exchange the
mapping of a7 and a0, the mapping becomes word
interleave.

BA:
BankActive

R: Read

BP:
Bank-Precha
rge

BA
1

BP
1

BP
2

BA
2 R1 R2

Command Bus (Address Bus)

Dat
a1

Dat
a2

Data
Bus

BA
1

BP
1

BP
2

BA
2 R1 R2

Dat
a3

Dat
a4

16 Cycles
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

498

 The programmer and compiler can take the advantages of
different memories by assigning different variables into
corresponding host addresses if they know the address
mapping from host to physical memory. If the processor
provides instructions to open/close single memory page, the
programmer can have additional opportunities to optimize
memory access.

B. Paging policies

 Paging policies of the DRAM controller also influence the
system performance. If the controller keeps the memory page
open until a page miss happens, we can benefit from the
faster page mode access (like Fig.2). If the controller always
performs precharge after a read/write access, there is no
chance to utilize page mode because it always has to active
the bank/page again before any new access. But, some
optimizations may be still possible for SDRAM, such as
interleaving access among banks (like Fig.4).

V. SOLVING THE PROBLEM

A. System architecture
 We assume the system is based on the Harvard
Architecture, which has separated program and data
memory. Thus we can focus on the access of data from the
memory, without the interference of fetching instructions.
We have tried experiments on a PC, which is a non-Harvard
architecture, but the results are not always as expected
because program fetching and system interrupts all impact
the memory access sequence.
 The memory controller behaviors like Intel’s BX chipsets
[2]. It is aware of the existence of banks, perform precharge
command only at page miss, and can have as many pages
open at once as the number of SDRAM banks.

B. Problem inputs/outputs
1. Inputs
i) A data flow graph (DFG), whose nodes represent
operations, and edges represent data dependencies. It defines
the program behavior. ii) Resource constraints, which
specify the number of function units, the number of clock
cycles needed to complete the operation, and the type of the
function units. iii) Memory system configurations, such as
timing constraints of the SDRAM, the number of banks, and
the number of DRAM modules.
2. Processing steps
i) Read the input data and create internal data structures. ii)
Call our bank allocation algorithm to allocate each array to a
suitable bank. iii) Call a static list scheduling algorithm to
schedule the operations, with consideration of SDRAM’s
timing constraints.
3. Outputs
i) The scheduling results, including function units used and
nodes scheduled at every time step. Every loop is scheduled
for one iteration here. ii) Total cycle counts, taking into
account loop iterations. iii) Bank allocation table, which
specifies the mapping of arrays to SDRAM banks.

C. Timing verification

 In order to verify that our scheduling results meet
SDRAM timing constraints, the scheduler generates a

Verilog file that contains SDRAM commands for each clock
cycle in the schedule. Simulated with an SDRAM simulation
model compatible with Intel’s PC SDRAM spec, our
scheduling results indeed meet the SDRAM timing
constraints.

D. DRAM refresh
 The need of refreshing periodically is one important
property of all DRAMs. But from Panda’s work, we know
that the effect of refresh to the performance is quite modest.
For simplicity’s sake, our work does not take this property
into account and modification to the scheduling need to be
done in the succeeding step.

VI. BANK ALLOCATION ALGORITHM

A. Definition
 Our bank allocation algorithm is based on an array
distance table. The table contains the distance from one
array-accessing node to another in the DFG. An array pair
(X,Y) with short distance means that the accesses to array X
and array Y are strongly related. They may be two input
sources of an operator, such as an “+” or “*”. The operator
“+’ or “*” can be scheduled only after its two operands are
fetched from the memory. This being the case, we can
allocate them to different banks, thus shortens the time
needed to fetch them both. On the other hand, an array pair
(Z,W) with long distance means that accesses to Z and W are
separated by several operations, and it’s not urgent to access
them concurrently. So, they can be allocated to the same
bank, without increasing the schedule length.

B. Calculating array distance
 We use the Successive Over-Relaxation algorithm
(SOR.C) shown in Fig.5 to illustrate how to calculate array
distance. There are 7 two-dimensional arrays in the example.
We assume that a memory page is large enough to contain
any row of any array. For each of array a-f, only one row is
accessed per iteration. For array u, three rows (i-1, i, i+1) are
accessed per iteration. Therefore, for each loop iteration,
accessing array u involves three DRAM pages, while
accessing array a-f involves one DRAM page each.

Fig.5. SOR.C

main()
{
 float a[N][N], b[N][N], C[N][N], d[N][N], e[N][N], f[N][N];
 float omega, resid, u[N][N];
 int j,l;

for (j=2; j<N; j++)
 for (l=1;l<N;l+=2) {
 resid=a[j][l]*u[j+1][l]+
 b[j][l]*u[j-1][l]+
 c[j][l]*u[j][l+1]+
 d[j][l]*u[j][l-1]+
 e[j][l]*u[j][l] –
 f[j][l];
 u[j][l] -= omega*resid/e[j][l];
 }
}

499

 Before calculating the array distance, we must know the
node distance. For each node, the distance from it to its
nearest array-accessing node is called node distance. Fig.6
shows the DFG of SOR.C. The node distances are shown in
the parentheses of each node in the following order: a[i] to
f[i], u[i], u[i+1], u[i-1]. A ‘-‘ means that the distance to the
corresponding array has not been determined yet.

R
R

*

R
R

*

R
R

*

R
R

*

R
R

*

R

+

+

+

+

-

a

b

c

d

e

f

u[j+1][l]

resid

u[j-1][l]

u[j][l+1]

u[j][l-1]

u[j][l]

{1,-,-,-,-,-,-,1,-}

{-,1,-,-,-,-,-,-,1}

{2,2,-,-,-,-,-,2,2}

{-,-,1,-,-,-,1,-,-}

{-,-,-,1,-,-,1,-,-}

{-,-,-,-,2,1,2,-,-}

{-,-,2,2,-,-,2,-,-}

{3,3,3,3,-,-,3,3,3}

{4,4,4,4,3,2,3,4,4}

{-,-,-,-,1,-,1,-,-}

/

*

omega

-

W u[j][l]

{5,5,5,5,4,3,4,5,5}

{6,6,6,6,1,4,5,6,6}

{7,7,7,7,2,5,1,7,7}

Fig. 6. DFG of the SOR example

 Algorithm for calculating the node distances is proposed
in Fig.7. After node distances are known, array distance (x,
y) is calculated by:

Fig. 6. Algorithm for calculating node distance

1) Initially, all array distances are set to positive infinity.
2) For each node, add the sum of the node distances to x and

y if both distances are determined.
3) If the result in 2) is smaller than the existing array

distance (x, y), update the distance to the new value.
The resulting array distance table of the SOR example is
shown in Table 2.

C. Allocating arrays to memory banks
 After the array distance table is created, the bank
allocation algorithm below is performed. It allocate arrays
with strong relation (thus with short array distance) to
different DRAM banks, to maximize the possibility of
concurrent access.

1) Find the smallest distance in the table that has not been

traversed and get two arrays x and y.
2) If both array x and y have not been assigned

Choose a least used bank and assign array x to it.
3) If either x or y has not been assigned

Except the bank that either x or y has been assigned to,
choose a least used bank and assign it to the array that is
not assigned.

4) Goto 1) until all arrays are assigned.

Note that once we allocate a row of an array to a bank, the
other rows of the same array are allocated accordingly. For
example, once row u[i+1] is assigned to bank 1 in a 2-bank
configuration, row u[i] is accordingly assigned to bank 0,
row u[i-1] to bank 1, and so on.
 For our SOR example, we get from Table 2 that (a,
u[i+1]), (b, u[i-1]), (c, u[i]), (d, u[i]), (e, u[i]) all have the
smallest array distance of 2 (0s in the diagonal line,
represents distance to the array itself, are of course
ignored). It tells us that we should allocate row u[i] in a bank
different from row [i] of array c, d, e and row u[i+1] from
row a[i], row u[i-1] from row b[i], respectively. Assume that
there are 2 banks, our choice is to assign row [i] of c, d, e to
bank 0, and row [i] of array u to bank 1. Now, since row u[i]
is assigned to bank 1, row u[i-1] and row u[i+1] are assigned
to bank 0, accordingly. Thus, row [i] of array a and b are
assigned to bank 1. Next, array (f, u) got the distance of 3,
and since array u is assigned to bank 1, we assign array f to a
different bank, that is bank 0. Therefore all arrays are
allocated and our algorithm is terminated.

Algorithm CalNodeDistance(node) {
//Input: The DFG, and the starting node
//Output: Distance to arrays for each succeeding node
//Initially, traverse from the top nodes of the DFG
 f o r (each succeeding node) d o
 begin
 f o r (each distance to an array) d o
 begin
 i f (the distance == ‘-‘) //not determined yet
 //propagate the information to succeeding node
 update the distance as current node’s +1;
 else
 //maintain the minimum value
 update the distance as min(original distance,
 current node’s distance+1);
 e n d
 CalNodeDistance(succeeding node); //traverse down
 e n d }

TABLE 2
ARRAY DISTANCE TABLE FOR SOR

 a[i] b[i] c[i] d[i] e[i] f[i] u[i] u[i+1] u[i-1]
a[i] 0 4 6 6 7 6 6 2 4
b[i] 4 0 6 6 7 6 6 4 2
c[i] 6 6 0 4 7 6 2 6 6
d[i] 6 6 4 0 7 6 2 6 6
e[i] 7 7 7 7 0 3 2 7 7
f[i] 6 6 6 6 3 0 3 6 6

u[i] 6 6 2 2 2 3 0 6 6
u[i+1] 2 4 6 6 7 6 6 0 4
u[i-1] 4 2 6 6 7 6 6 4 0

500

VII. EXPERIMENTAL RESULTS

 We choose several benchmark examples that process large
data stored in arrays to explore the effect of our work. The
experiments were run on different memory configurations.

A. Benchmark characteristics

 The benchmark “dhrc,” “compress,” “laplace,” “sor,” and
“lowpass” are taken from the high-level synthesis design
repository [4]. They are “differential heat release
computation, ” “image compress scheme,” “Laplace
algorithm,” and “low pass filter for image,” respectively.
“Dequant” is the dequantization routine of the MPEG
decoder taken from [8]. “Leafcomp” is also from the MPEG
decoder application. “Mmult” is a matrix multiplication
routine from Panda’s paper [1]. “Fir” is taken from a text
book [9]. “Wiener”, “dct”, and “sobel” are taken from
another text book [11].
 We partition the benchmarks into two groups.
Benchmarks in the first group access multiple
one-dimensional arrays. Those in the second group access
single two -dimensional array. SOR is a special case that
accesses multiple two-dimensional arrays. It is placed in the
first group, however.
 For the first group, our bank allocation algorithm is
applied on each array. The address mapping is assumed to
allow each array to be entirely contained in one bank. As for
the second group, the algorithm is applied to each row of the
array. For example, A[i][j] and A[i+1][j] are assigned to
different pages. We assume here that the page is large
enough to contain a row of the array.
 We also experiment on the architecture with
word-interleave address mapping. It means that if A[j][i] is
in bank 0, A[j][i+1] will be placed in bank 1. The
experiments are for the second group only, because they
access array elements of different indexes during one loop
iteration. Unlikely, benchmarks in the first group always
access arrays with fixed indexes during one loop iteration.
Since the first group won’t benefit from this architecture,
they are excluded here.

B. Environment setup

 Table 3 lists the resource constraints used in our
experiments. We use SDRAM, with timing rules
following Intel’s spec [3]. We make the options for
CL=3, Trp=2, and Trcd=2, with burst length set to 1.

C. Results
 Results of the first group are shown in Fig.8, and the
second group in Fig.9. In the second group, benchmarks with
“2” in their name shows the results targeted toward the
word-interleave architecture. We compare our results with
Panda’s work in Fig.10. Average schedule length of the first
and second group are shown in Table 4.
 Scheduling results that treat each memory access as a
multi-cycle operation are shown in “Coarse”. Reading data
are assumed to be available after the precharge command is
completed. Writing data should be ready before the operation
is scheduled. Scheduling in other experiments treats each
memory access as 3 operations: Decode, Read/Write, and
Precharge. The data are available after the completion of
read command, and should be ready before write command.
 Memory configurations are varied from 1 bank, 2 banks,
to 4 banks, with one memory module used. We also try the
condition “2 chips” and “4 chips”, which means 2 or 4
independent DRAM modules with only one bank are used.
These two configurations are proposed here to show the
effects of relaxing command bus contention. For these two
configurations, our algorithm assigns arrays to different
chips instead of different banks. The resource constraints and
SDRAM timing are the same as referred in Table 3. The
cycle counts are normalized with coarse scheduling result
equals to 100%.
 Experiments labeled with “+P” utilize page mode accesses
whenever possible. A benchmark could utilize the page
mode if there exists at least one array whose allocated bank
does not contain any other array during the same loop
iteration. For example, if there are 3 arrays: a, b, and c, and
there are 2 banks. If we allocate array a and c to bank 0,
array b to bank 1, then array b enjoys page mode access in
the loop body. Because the row addresses sent to bank 1 are
always belonging to array b and therefore we have to send it
just once.
 Notice that there are no page mode results for the “word
interleaving” architecture. Because the accessing page
changes every loop iteration, it’s impossible to utilize page
mode access. It can still benefit from multiple banks,
however.

 Fig.8. Results of the first group benchmarks

TABLE 4
AVERAGE SCHEDULE LENGTH OF DIFFERENT CONFIGURATIONS
Configuration 1 Chip

/2 Banks
1 Chip
/4 Banks

2 Chips
/1 Bank

4 Chips
/1 Bank

W/O PageMode 70.20% 62.28% 64.93% 54.51%
W/ PageMode 53.38% 43.36% 52.52% 42.02%

TABLE 3 RESOURCE CONSTRAINTS
Function Unit ALU Multiplier Divider SDRAM SDRAM
Supported Op +,-,>,S * / BA,BP R,W
Clocks 1 2 4 2 3
Quantity 1 1 1 2 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

dhrcdequantwienerdct mmultleafcompfir sor

Benchmark

N
o
r
m
a
l
i
z
e
d

C
y
c
l
e

Coarse1Bank2Bank4Bank2Chips4Chips

2Bank+P4Bank+P2Chips+P4Chips+P

501

 Fig.9. Results of the second group benchmarks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

dhrcdequantmmultleafcompsorlowpass
Benchmark

N
o
r
m
a
l
i
z
e
d

C
y
c
l
e
s

Coarse1Bank2Bank4Bank2Chips4Chips

2Bank+P4Bank+P2Chips+P4Chips+PPanda

Fig. 10. Results compare to Panda’s work

D. Discussions

 From the results in Fig.8 and Fig.9, we can see that with
our bank allocation algorithm, scheduling taking SDRAM’s
characteristics into account do improve the overall
performance. For 2-bank cases, we get the schedule length
reduced to 70% in average. For 4-bank cases, the average
schedule length is reduced to 62%. If page mode is
utilizable, the schedule length can be further reduced to 53%
and 43%, respectively.
 The use of multiple DRAM modules provides the ability
of concurrent access to memory. From our results, using
multiple modules with one bank helps reduce approximately
8% schedule length without the use of page mode, compares
to only one module with 2 or 4 banks. If page mode is
utilized, the improvements are only about 1%. This is due to
the reduced number of command send to SDRAM. Without
page mode, it needs 3 commands to complete each
read/write operation, thus increase the probability of
command bus contention.
 From Fig.10, we can see that our work performs much
better than Panda’s work in “dhrc,” “sor,” and “lowpass”.
The results of “mmult” are nearly the same. There are still
two cases that Panda’s work performs better. We have to
state that the comparisons are made just to show the
advantages of using multi-bank SDRAM. Our work and
Panda’s are targeted to different architecture. In Panda’s
work, several behavioral transformation techniques were
used. Our work does not make any transformation to the

program. Our work shows the effect of bank assignment
under common paging policies, and it can be integrated
with other optimization techniques.

VIII. CONCLUSIONS & FUTURE WORK

 In this paper, we have presented a bank allocation
algorithm and a scheduler that takes SDRAM’s
characteristic into account. The scheduling meets timing
constraints of Intel’s PC SDRAM’s spec and our
experiments are based on common paging policies.
Experimental results show a significant improvement by
utilizing SDRAM’s multi-bank characteristic. We
propose our work to show the importance of utilizing
memory’s special characteristics. Other scheduling

optimization techniques can be applied together to get better
results.
 We also experimented on several different memory
configurations. System designer can decide on an
appropriate configuration for his or her application by our
simulation flow. After the configuration is made, results of
our bank allocation algorithm can be integrated into
compilers to allocate arrays to suitable addresses.
 Our future work includes grouping and mapping arrays to
incorporate burst transfer, extending to Rambus DRAM, and
the integration of our algorithm with other scheduling
techniques.

IX. BIBLIOGRAPHY
[1] P. R. Panda, N. D. Dutt, and A. Nicolau, “Incorporating DRAM access

modes into high-level synthesis”, in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 17,
No.2, Feb. 1998, P.96-109.

[2] Intel 440BX AGPset: 82443BX host bridge/controller datasheet, from
Intel’s web site: http://www.intel.com/ .

[3] PC SDRAM specification, version 1.51, from Intel corporation, Nov
1997.

[4] P. R. Panda and N. D. Dutt, “1995 high level synthesis design
repository”, in Proceedings of International Symposium on System
Synthesis, 1995, P.170-174.

[5] P. R. Panda, N. D. Dutt, and A. Nicolau, “Local memory exploration
and optimization in embedded systems”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 18,
No.1, Jan. 1999, P.3-13.

[6] J. Skeppstedt and M. Dubois, “Hybrid compiler/hardware prefetching
for multiproceesors using low-overhead cache miss traps”, in
Proceedings of the International Conference on Parallel Processing,
1997, P.298-305.

[7] H. Schmit and D. E. Thomas, “Array mapping in behavioral
synthesis”, in Proceedings of the International Symposium on System
Synthesis, 1995, P.90-95.

[8] P. R. Panda, N. D. Dutt, and A. Nicolau, “Memory issues in embedded
systems -on-chip optimizations and exploration”, Kluwer Academic
Publishers, 1999.

[9] P. M. Embree and B. Kimble, “C language algorithms for digital
signal processing”, Prentice Hall, 1991.

[10] FPM dram datasheet., http://www.etron.com/614081.html
[11] I. Pitas, “Digital image processing algorithms”, Prentice-Hall, 1993.
[12] EDORAM datasheet, http://www.etron.com/615162.html
[13] Rambus datasheet,

http://www.rambus.com/developer/quickfind_documents.html

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

compresslaplacesobellowpasscompress2laplace2sobel2lowpass2

Benchmark

N
o
r
m
a
l
i
z
e
d

C
y
c
l
e

Coarse1Bank2Bank4Bank2Chips4Chips2Bank+P

4Bank+P2Chips+P4Chips+P

502

