Check for
Updates

ALGORITHM 112

POSITION OF POINT RELATIVE TO POLYGON
M. SHIMRAT

University of Alberta, Calgary, Alberta, Canada

Boolean procedure POINT IN POLYGON (n, z, y, 20, y0);
value n, 20, y0; integer n; array z,y; real 20, y0;
comment if the points (z[7], y[Z]) ¢ = 1, 2, ---, n) are—in
this eyclic order—the vertices of a simple closed polygon and
(x0, y0) is a point not on any side of the polygon, then the pro-
cedure determines, by setting ‘‘point in polygon” to true,
whether (z0, y0) lies in the interior of the polygon;
begin integer 7; Boolean b;
z[n + 1] := z[1]; yln + 1] :=y[l]; b := true;
for ¢ = 1step 1 until n do
if (y <ylg] =y >yli+1D A
20 — z[i] ~ (W0 — y[i) X @li + 1] — =]/ wli + 11 ~ yli]) <0
then b := — b;
POINT IN POLYGON := — b;
end POINT IN POLYGON

ALGORITHM 113

TREESORT

RoserT W. Froyp

Computer Associates, Inc., Woburn, Mass.

procedure TREESORT (UNSORTED, n, SORTED, k); value
n, k;

integer n, k; array UNSORTED, SORTED;

comment TREESORT sorts the smallest k elements of the n-
component array UNSORTED into the k-component array
SORTED (the two arrays may be the same). The number of
operations is on the order of 2 X n + k& X logz(n). The number
of auxiliary storage cells required is on the order of 2 X n. It is
assumed that procedures are available for finding the minimum
of two quantities, for packing one real number and one integer
into a word, and for obtaining the left and right half of a packed
word. The value of infinity is assumed to be larger than that of
any element of UNSORTED:;

begin integer 7, j; array m[l1:2 X n — 1];

for i := 1 step 1 until n do mn + 7 — 1] := pack (UNSORTED
El,n + 4 —1);

for i := n — 1 step — 1 until 1 do m[¢] := minimum (m[2 X 7],
ml[2 X ¢ + 1]);

for j := 1 step 1 until k do
begin SORTED [j] := left half (m[l]); % := right half (m[1]);

m[t) := infinity;
fori := { + 2 whiled > 0 do m[i] := mintmum (m[2 X], m[2 X
1+ 1))

end

end TREESORT

434 Communications of the ACM

H. J. WEGSTEIN, Editor

ALGORITHM 114

GENERATION OF
STRAINTS

FrANK STOCKMAL

System Development Corp., Santa Monica; Calif.

procedure CP GENERATOR (N, K, H, p, F, Z); integer
N, K, H; integer array p; Boolean F, Z;

comment CP GENERATOR generates a partition of N into K
parts, no part greater than H. Each partition is represented by
the array of parts p[1] thru p[K], where p{1] = p[2] 2 --- = p{K].
Initial entry is made with ¥ = true and Z = true if parts = 0
are allowable, or F = true and Z = false if only nonzero parts
are desired. Upon initial entry, procedure ignores the input
array p, sets F = false, and generates the initial parti-
tion. Subsequent calls made with F = false will cause
procedure to operate upon the input partition to produce
another partition if one exists, so that all possible unpermuted
partitions with the specified constraints will be produced if CP
GENERATOR is allowed to operate upon its previous output.
When this scheme is followed, and initial entry is made with
F = true, Z = true, K = N, H = N, all possible un-
permuted partitions of N will be produced. Upeon generating
the last partition, procedure resets FF to true. The input param-
eters are restricted as follows: K = 1, H = 1, p[l] = p[2]
= ... = plK]. For Z = true, N is restricted to the range
0 £ N £ KH, and for Z = false, K= N = KH. A call should
not be made with p[l] — p[K] < 2 and F = false;

begin integer a, b, ¢, j, ¢, 7;
if F then go to first;
a:=plll —pl2] —2; j:=2;

test: if p[l] — plj] = 2 then go to divide;
a:=a—14+ixX @Yl —pli+1D); j:=7+1; gotoliesi;

first: if Z then go to alpha;
a:=N— K; p[K}]:=0; go to beta;

alpha: a:=N; p[K]:= —1;

beta: F := false; j:= K;

divide: b:= H — 1 — plj]; ¢q:= entier (a/b); r:=a—bX g;
for i := 1 step 1 until ¢ do p[f] := H;
if ¢ = K then go to last;
fori := g+ lstepluntil jdopli] :=1+ plil;
ple +1] :=r + plg + 1%
if p[1] — p[K] = 2 then go to exit;

last: F := true;

exit: end CP GENERATOR

PARTITIONS WITH CON-

ALGORITHM 115

PERM

H. F. TROTTER

Princeton University, Princeton, N. J.
procedure PERM (z, n); value n;
integer n; array &;

comment This algorithm was inspired by the procedure
PERMUTE of Peck and Schrack (Algorithm 86, Comm. ACM

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368637.368709&domain=pdf&date_stamp=1962-08-01

Apr. 1962) and performs the same function. Each call of PERM
changes the order of the first n components of z, and n! succes-
sive calls will generate all n! permutations. A nonlocal Boolean
variable “irst’ is assumed, which must be true when PERM is
first called, to cause proper initialization. The first call of PERM
makes “irst’ false, and it remains so (unless changed by the
external program) until the exit from the (n!)th call of PERM.
At that time z is restored to its original order and “irst’ is made
true.

The excuse for adding PERM to the growing pile of permuta-
tion generators is that, at the expense of some extra own storage,
it cuts the manipulation of z to the theoretical minimum of n!
transpositions, and appears to offer an advantage in speed. It
also has the (probably useless) property that the permutations
it generates are alternately odd and even;

begin own integer array p, d[2: n]; integerk, q; reall;
if first then initialize:
begin for k := 2 step 1 until n do
begin plk] := 0; dk] := 1 end;

first := false
end initialize;
k= 0;
INDEX: p[n] := q := pln] + dn);
if ¢ = n then
begin d{n] := —1; go to LOOP end;

if ¢ % 0 then go to TRANSPOSE;
dn] :=1; k:=4k+ 1;
LOOP: if n > 2 then begin
comment Note that n was called by value;
n :=mn — 1; go to INDEX end LOOP;
Final exit: q := 1; first := true;

TRANSPOSE: q:=q+ k; t:= z[q];
zlql 1= zlg + 1]; =zlg + 1] := ¢
end PERM;

ALGORITHM 116

COMPLEX DIVISION

RoprrT L. SMmrrH

Stanford University, Stanford, Calif.

procedure complexdiv (a, b, ¢, d) results:
value a, b, ¢, d; reala, b, ¢, d;
comment complexdiv yields the complex quotient of a + b
divided by ¢ + 7d. The method used here tends to avoid arith-
metic overflow or underflow. Such spills could otherwise occur
when squaring the component parts of the denominator if the
usual method were used;
begin real », den;
if abs (c) = abs (d) then
begin r := d/c;
den := ¢+ r X d;
¢ := (a+ b X r)/den;
f:= (b —aX r)/den;

end

(e, N);

else
begin r := ¢/d;
den :=d + r X ¢;
e := (a X r -+ b)/den;
f:=(0Xr—a)/den;
end
end complexdiv

ALGORITHM 117

MAGIC SQUARE (EVEN ORDER)

D. M. CoLrisoN

Elliott Brothers (London) Limited, Borehamwood, Herts.,
England

procedure magiceven (n, z); value n;
teger n;
comment the method of Devedec for even n is described in
“Mathematical Recreations’’ by M. Kraitchik, pp. 150-2. Enter
with side of square n to produce a magic square of the integers
1—n12inz, wheren = 4;
begin integer a, b, n2, nn; Boolean p, g, r;
n2:=n+2; nn:i=nXn;
begin
procedure alpha (p, q, a, h);
Boolean h;
Comment pattern 0/0/0/ --- ;
begin integer r;
for r := p step 1 until ¢ do begin
z[r,a] := ifh then (a X n — n + r) else (nn — a X n +
14+ n—1); hi= —hend;
end alpha;
procedure beia (p, ¢, a, h);
Boolean h;
comment patternl — 1 —1— ... ;
begin integer r;
for r := p step 1 until ¢ do begin
z[r,a] ;= ifhthen[nn —aX n+) else (a X n + 1 — 7);
h:= = h end;
end beta;
procedure gamma (p, q, a, h);
Boolean h;
comment pattern /—/—/— ... ;
begin integer r;
for r := p step 1 until ¢ do begin
zlr,a]l ;= ifhthen (mn —aXn+n—7+ 1) elsel@aXn
+1—=r); h
end gamma;
comment program begins;
pi=¢g:=n—(n~+4)X4=0);r:= true;
for g := 1 step 1 until (n2 — 1) do begin
beia (1,a — 1,a,7); alpha (@, n2 — 1, a, true);
z[n2, a] := if gthen (nn — a X n + n2 + 1) else (nn — a X
n + n2);
alpha n2 + 1, n, a, = q);
g:=gq; r:= —rend;
alpha (1, n2 — 1, n2, = p); alpha (n2 + 2, n, n2, false);
gomma (1,72 — 1,72+ 1,p); gamma (n2 + 2, n,n2 + 1, true);
g :=p;
for a := (n2 + 2) step 1 until n do begin
beta 1,n —a,a,q9); zln—a+lal:=aXn—-—a+1;
beta (n —a+ 2,n2 — 1, a, true);
if r then for b := n2, n2 + ldozb,a] :=nn —a X n -+
n—=0b+1
else begin z[n2, a] := nn — a X n 4+ n2;
zn2+1l,al:=aXn—n2+ 1end;
beta (n2 4 2,0 — 1,a, = r); alpha (a,n,a, true);
q:=—¢q; 7:=—7end;
forag:=n2,n24 1doford :=n2,7n2+1do
zlb,a] :=ifpthen @ X n —n+ b) else (nn —a X n+n—
b -+ 1);
if - p then begin
fora:=n2,n2+ ldozn2 —1,a]:=aXn—n2+2;
forb:=n2,n2+ 1dozb,n2+2]:=nXn2—2Xn-+ bend;
end end magiceven

integer array z; in-

value p, ¢, a, h;

integer p, q, a;

value p, ¢, a, h; integer p, q, a;

value p, ¢, a, h; integer p, g, a;

= — h end;

T = true;

Communications of the ACM 435

ALGORITHM 118

MAGIC SQUARE (ODD ORDER)

D. M. CoLrisoN

Elliott Brothers (London) Limited, Borehamwood, Herts.,
England

procedure magicodd (n, x);
array z;
comment for given side n the procedure generates a magic
square of the integers 1 — n T 2. For the method of De la
Loubére, see M. Kraitchik, “Mathematical Recreations,”’ p.
149. n must be odd and n = 3;
begin integer 17, j, k;
for 7 := 1 step 1 until » do
for j := 1 step 1 until n do z[z, j] := 0;
ti=(n-+1)+2; j:=mn;
for k := 1 step 1 until » X n do begin
ifz[, j] # Othen begini : =17 —1; j:=j;—2; :
ifi <ltheni:=¢+4n; ifj<1thenj:=j+4+ nend;
zle, 71 = k;
t:=14+1; ifi>ntheni:=7—
ji=j74+1; ifj> nthenj:
end;
end magicodd

value n; integer n; integer

ALGORITHM 119

EVALUATION OF A PERT NETWORK
Burron EisENMAN AND MARTIN SHAPIRO
United Nuclear Corp., White Plains, N. Y.

procedure pert (nmazx, 1, j, le, st, emaz, 1, es, at);

comment An algorithm deseribing an iterative procedure for
evaluating a PERT network that permits the use of arbitrarily
ordered activities and event identifiers such that an upper
triangular matrix type of solution is unnecessary.

It has been observed by investigations of PERT networks,
that an N X N matrix whose rows are designated as predecessor
and whose columns are designated as successor events, has an
entry in the (Z, 7)-element representing the activity time re-
quired in going from event 7 to event j. By elementary transfor-
mations, the matrix is transformed generally into an upper
triangular matrix. The resultant upper triangular matrix is well
ordered (i.e. any activity time appearing in a column is not
dependent upon those activity times which appear in columns
to the right of it).

This precise manipulation generally demands considerable
running time. By direct evaluation not requiring a collection of
elementary transformations, it is possible to evaluate the net-
work with considerable reduction of running time;

integer nmax, emaz;

real si;

integer array ¢4, j,/;

real array e, es, at;

comment Given the total number of activities, nmaz, the pre-
ceding and succeeding event identifiers, 7, and j,, the cor-
responding expected time, te, for each activity, and the starting
time, si, of the network, this procedure computes the early start
and late finish times, es, and at. , for each event, I, in the net-
work;

begin

procedure scan (e, £, 1);

integer e, t;

integer array [;

comment Given the number of events, e—1, contained thus far
in vector array, [, and an event identifier 7, or j, , stored in ¢,

436 Communications of the ACM

this procedure scans the existing array, I, to determine whether
the event should be added to the list or not. If it is to be added,
it becomes I, and e replaces the event identifier. If it is not
added, k replaces the event identifier.;
begin
integer Fk;
if e = 1 then go to add;
for k := ¢—1 step —1 until 1 do

begin if ¢t = [[k] then
begin t:=k;
go to out
end
end;
add: lle} := ¢;
t:=e;
e:=¢+ 1;
out:
end scan;
integer n,e, s, I, k;
real a, x;
e:=1;
for n := 1 step 1 until nmaz do
begin t = jlnl;
scan (e, ¢, 1);
jlnl :=¢;
t = ¢n);
scan (e, 1, 1);
tn] := ¢
end;

comment By means of the switch, s, we will either compute the
activity times, af, , and transfer the values to the early start
vector, es, , or we will compute af, without any transfer process,
in which case the late finish times will be obtained.;

emar 1= e — 1;
s:=1;
a = st;
sl: k = emacz;
for e := 1 step 1 until emaz do
atle] := a;
s2: for n := 1 step 1 until nmar do
begin if l[{[n]] > 0 then
begin switch s := b1, b2;
bl: z 1= abs (atlZ[n]]) + te[nl;
if x > abs (at[j[n]]) then go to I1;
go to [2;
b2: x 1= abs (atft[n]]) — te[n];
if x < abs (at[j[n]]) then
{1 atljn]] := — =z;
12:
end
end;
for ¢ := 1 step 1 until emar do
begin if lle] < 0 then
begin if atle] < 0 then
begin le] := abs (Ile]);
kE:=k+1;
s3: atle] := abs (atle]);
go to I3
end;
go to [3
end;
if atle] = 0 then
begin lle] := — llel;
k:=k—1;
go to I3
end;
g0 to $3;

13:

end;
if £ # 0 then go to s2;
switch s := g1, g2;

gl: s 1= 2;

for n := 1 step 1 until nmazr do
begin t:= i[n];

i[n] := jln];

jin} := 1t

end;

a = 0;

for ¢ := 1 step 1 until emaz do
begin esle] := atle];

lle] := abs (le]);

if atle] > a then

a 1= atle]

end;
go to sl;

g2: for ¢ := 1 step 1 until emaz do
lle] := abs (l[e]);

end pert

ALGORITHM 120
MATRIX INVERSION II
Ricaarp Greorce*

Particle Accelerator Division Argonne National Labora-
tory Argonne, Illinois
* Work supported by the U. 8. Atomic Energy Commission.

procedure INVERSION II (n, a, epstlon, ALARM , delta);

comment This is a revision of Algorithm 58. It accomplishes in-
version of the matrix a, with the result stored in matrix a. The
order of the matrix is n. If in the process of calculating, any
pivot element has an absolute value less than epsilon, there
will be a jump to the non-local label ALARM . The variable delta
will contain the value of the determinant of the original matrix
on normal exit, zero or a very small number on exit to ALARM.;

value n;

array a;

real epstlon, delta;

integer n;

begin
array b, ¢[l:n]; real w, y;
integer array z[l:n]; integer <, j, k, I, p;

delta := 1.0;

for j := 1 step 1 until n do
zlj] == 4;

for ¢ := 1 step 1 until n do
begin

k=<, y:=ali,i]; | :=1-1; p:=1i+1;
for j := p step 1 until n do

begin

w = ali, jl;
if abs(w) > abs(y) then

begin
k= j;
Y i=w

end;

end;

delta 1= delta X y;
if abs(y) < epsilon then go to ALARM;
y:=10/y;
for j := 1 step 1 until » do
begin
cli] := als, kI;

alj, k] := alj, il;
alj, 1] := — cli] X y;
blj] := ali, j] == ali, j1 X ¥
end;
a[%: 'L] =Y,
i = z[il;
z[i] = 2[k];
zlk] := 3;
for % :=

1 step 1 until /, p step 1 until n do
for j := 1 step 1 until [, p step 1 until n do
alk, 71 := alk, 51 — B[] X c[k]
end;
for i := 1 step 1 until » do
begin
REPEAT: k := z [{];
if k=17 then go to ADVANCE;
for j := 1 step 1 until n do
begin
w = a lZ, j);
[z, 41 := a [k, 5];
[k, 7] i== w
end;
p =z [i];
z |7] := z [k];
2 [k] := p;
delta := — delta;
go to REPEAT;

end;

a
a

ADVANCE:
end

CERTIFICATION OF ALGORITHM 18
RATIONAL INTERPOLATION BY CONTINUED
FRACTIONS
[R. W. Floyd, Comm. ACM., Sept. 1960]
Henxry C. ToacHER, JR.*
Reactor Engineering Div.,
Argonne, I11.
* Work supported by the U. 8. Atomic Energy Commission

Argonne National Lab.,

The body of procedure confr was tested with the ALcowu trans-
lator system written for the LGP-30 computer by the Dartmouth
College Computer Center. No syntactical errors were found in the
procedure body, except for a missing semicolon after the array
delcaration. The translated algorithm gave satisfactory results
when tested on values of (4z 4 1)/(x + 4) at any three of the points
z = 1,2, 3, 4. When all four points were used, a division overflow
occurred in the statement for ¢ := 1 step 1 until j—1 do aa :=
(zz — w[2])/(eaa—ali]); which forms the reciprocal differences. An
overflow of this type will oceur whenever y[j] is approximated to
high accuracy by one of the continued fractions based only on the
points z[i], ¢ = 1,2, --- , k with & less than j. Unless ¢ = j—1, the
difficulty may be overcome by setting aa equal to the largest real
representable in the computer whenever division overflow would
ocecur. When ¢ = j—1, the difficulty is irretrievable, and the data
points must be reordered.

Communications of the ACM 437

CERTIFICATION OF ALGORITHM 19

BINOMIAL COEFFICIENTS [Richard R. Kenyon,
Comm. ACM Oct., 1960]

Ricaarp GrorGe®

Particle Accelerator Div., Argonne National Lab., Ar-
gonne, 1.

* Work supported by the U. 8. Atomic Energy Commission.

This procedure was tested on the LGP-30, using the compiler
ALcoL-30 from Dartmouth College Computation Center. The fol-
lowing changes were found necessary:

(1) Within the comment, the line

Ciy = (n — DC/ G+ 1)
should be
Cihi=(n —)C™E + 1)

(2) The line defining the iteration loop
for 7 := 0 step 1 until b do
should be
for 7 := 0 step 1 until b—1 do

(8) The sequence

end C:=a end
should be

end; C:=aq end

CERTIFICATION OF ALGORITHM 35

SIEVE [T. C. Wood, Comm. ACM. Mar. 1961]

J. S. HiLLMORE

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England

The statement:
go to if n/p[t] = n + p[i] then bl else b2;
was changed to the statement: .
go to if (n -+ p[i]) X pli] = n then bl else b2;

This avoids any inaccuracy that might result from introducing
real arithmetic into the evaluation of the relation.

The modified algorithm was successfully run using the Elliott
ALcoL translator on the National-Elliott 803.

CERTIFICATION OF ALGORITHM 37

TELESCOPE 1 [K. A. Brons, Comm. ACM, Mar., 1961]

Henry C. THACHER, JR.*

Reactor Engineering Div.,
Argonne, I1I.

Argonne National Lab.,

* Work supported by the U. 8. Atomic Energy Commission.

The body of Telescope I was compiled and tested on the LGP-30
using the ALcoL 60 translator system developed by the Dartmouth
College Computer Center. No syntactical errors were found, and
the program ran satisfactorily. The 10th degree polynomial ob-
tained by truncating the exponential series was telescoped using
lim = .1y — 2 and L = 1.0. The result was N = 3, eps =
.210300510 — 3, and coefficients +.9997892, —.9930727, +.4636493,
— .1026781. The error curve for the telescoped polynomial was
computed for z = 0(.02)1.0. The error extrema were bounded by
eps to within 0.5%. The discrepancy is within the range of input
conversion and round-off error.

438 Communications of the ACM

CERTITICATION OF ALGORITHM 52
A SET OF TEST MATRICES [J. R. Herndon, Comm.
ACM, Apr. 1961]
J. S. HiLLMORE
Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England
The algorithm was corrected as recommended by H. E. Gilbert
in his certification [Comm. ACM, Aug. 1961] and then successfully
run using the Elliott ALcoL translator on the National-Elliott 803.
The matrices so generated were used to test the matrix inversion

procedure GJR given by H. R. Schwarz in his article ‘““An Intro-
duction to ALcor” [Comm. ACM, Feb. 1962].

CERTIFICATION OF ALGORITHM 57

BER OR BEI FUNCTION [John R. Herndon, Comm.
ACM, Apr. 1961]

Henry C. THAcHER, JR.*

Reactor Engineering Div,,
Argonne, Il

Argonne National Lab.,

* Work supported by the U. 8. Atomic Energy Commission.

The body of Algorithm 57 was tested on the LGP-30 using the
AvcoL 60 translator developed by the Dartmouth College Com-
puter Center. No syntactical errors were found. Forz = 0.1(0.1)1.0,
with a 7+ significant decimal arithmetie routine, the program
gave results with errors less than 5 (and for z = 1(1)5 less than 12)
in the seventh digit. For large values of 2, serious cancellation
errors may occur. For example, for z = 20, more than 2 decimals
of significance can be lost in this way.

REMARK ON ALGORITHM 58
MATRIX INVERSION [Donald Cohen, Comm. ACM,
May, 1961]
GEORGE STRUBLE
University of Oregon, Eugene, Oregon
For the last seven lines, beginning with alk, j] := alk, 7], substi-
tute:
alk, 51 := alk, j1 — 0[] X c[k] end;
l:=0;
back: [:=1+1;
again: k := z{l];
if &t # [then
begin for 7 := 1 step 1 until n do
begin w := all, ¢];

all, 7] := alk, 7l;
alk, 2] := w end;
2[l] := z[k];
2kl := k;

go to again end;
else if | ## n go to back
end invert

CERTIFICATION OF ALGORITHM 58

MATRIX INVERSION [Donald Cohen, Comm. ACM,
May, 1961]

Riciarp GEORGE*

Particle Accelerator Div.,
Argonne, 111,

Argonne National Lab.,

* Work supported by the U. 8. Atomic Energy Commission.

This procedure was programmed in ForRTRAN and reduced to
machine code mechanically. It was run on the Argonne-built com-
puting machine, GEORGE. A floating-point routine was used which
allows maximum accuracy to 31 bits.

There are a number of errors of various types:

(1) There are eight begin’s and only seven end’s.
(2) The line

alk, 7} := alk, 7] — b[j] X c[k] end;

should be
alk, 7] := alk, 71 — blj] X ¢clk] end;

(3) The permutation of rows of the inverted matrix and permu-
tation of elements of the integer array z must be carried out simul-
taneously. This algorithm fails to do this, and consequently the
matrix at the time of exit from the procedure is left in a permuted
condition.

(4) The algorithm permits the statement

k= 2[l];

to be executed even though the declarations place an upper limit
of n on the integer array z, and the test for I £ n has not yet been
made. Obviously, Mr. Cohen’s compiling system would allow an
out-of-bounds array look-up. One could easily incorporate into an
AvcoL compiler a guard against such illicit array references, and
therefore the published algorithm might be considered machine
dependent.

(5) This algorithm requires 3n? divisions, most of which are un-
necessary. By inserting the statement

y = 1.0/y;

at the proper place, one may accomplish the obvious economy
of reducing this to only n divisions plus 2n? multiplications.

(6) If a matrix should be singular (or nearly so), some pivot
element will be zero (or very small), and a test should be made,
with provision for a jump to ALARM, a non-local label.

(7) The identifiers w and y should be declared within this pro-
cedure, to avoid trouble.

(8) This algorithm omits calculation of the determinant of the
matrix. This could be computed with very little extra effort.

The revised algorithm was then tested on the LGP-30 com-
puter, using ALcor-30, a small subset of Arcon. Within the re-
strictions of this subset, the program worked satisfactorily on test
matrices.

CERTIFICATION OF ALGORITHMS 63, 64, 65

PARTITION, QUICKSORT, FIND [C. A. R. Hoare,
Comm. ACM, July 1961)}

J. S. HiLLMORE

Elliott Bros.
England

(London) Litd.,, Borehamwood, Herts.,

The body of the procedure find was corrected to read:
begin integer I, J;
if M < N then begin partition (A, M, N, I, J);

if K £ I then find (A, M, J, K)

else if / £ K then find (A, I, N, K)

end
end find
and the trio of procedures was then successfully run using the
Elliott AvcoL translator on the National-Elliott 803.

The author’s estimate of 3(N—M)1n(N—M) for the number of
exchanges required to sort a random set was found to be correct.
However, the number of comparisons was generally less than
2(N—-M)In(N—M) even without the modification mentioned
below.

The efficiency of the procedure quicksort was increased by
changing its body to read:
begin integer I, J;
if M < N—1 then begin partition (A, M, N, I,J);
quicksort (A, M, J);
quicksort (A, I, N)
end
else if N—M = 1 then begin if A[N] < A[M] then
exchange (A[M], AIN])
end
end quicksort
This alteration reduced the number of comparisons involved in
sorting a set of random numbers by 4-5 percent, and the number
of entries to the procedure partition by 25-30 percent.

CERTIFICATION OF ALGORITHM 71

PERMUTATION [R. R. Coveyou and J. G. Sullivan,
Comm. ACM, Nov. 1961]

J. S. HiLLmorEe

Elliott Bros. (London) ILtd., Borehamwood, Herts.,
England

The algorithm was successfully run using the Elliott Avncown
translator on the National-Elliott 803. The integer array = was
made a parameter of the procedure in order to avoid having an
own array with variable bounds.

CERTIFICATION OF ALGORITHM 72

COMPOSITION GENERATOR [L. Hellerman and S.
Ogden, Comm. ACM, Nov. 1961]

D. M. CoLrisoN

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England

After
for j := 1 step 1 until k do d[j] := ¢[j]—1;
the statement
ji=k;
should be inserted (see ArcoL 60 report, para 4.6.5). With this
alteration, the algorithm was successfully run using the Elliott
AvLcouL translator on the National-Elliott 803.

CERTIFICATION OF ALGORITHM 75

FACTORS [J. E. L. Peck, Comm. ACM, Jan. 1962]

J. S. HiLLMoRE

Elliott Bros. (London) Itd.,
England

The following changes had to be made to the algorithm:
1) For ifg>1Ap =1 then
put if¢ > 1Ap = g then
2) For begin ¢ := ¢ X a0; a0 := 1 end
put begin ¢ := ¢ X a[0]; al0] := 1 end
(3) For ifg=0V (an +~ ¢) X ¢ = an then
put if (if ¢ = 0 then true else (an + ¢) X ¢ = an) then
This change is necessary to ensure that the term (an + ¢) is not
evaluated when ¢ = 0.
The algorithm, thus modified, was successfully run using the
Elliott ArgoL translator on the National-Elliott 803.

Borehamwood, Herts.,

Communications of the ACM 439

REMARK ON ALGORITHM 78

RATIONAL ROOTS OF POLYNOMIALS WITH
INTEGER COEFFICIENTS [C. Perry, Comm. ACM,
Feb. 1962]

D. M. CoLLisoN

Elliott Bros. (London) ILtd.,
England

Borehamwood, Herts.,

The algorithm was successfully run using the Elliott AnGoL
translator on the National-Elliott 803. It was noticed that a
multiple rational root will only be printed once by the procedure.

REMARK ON ALGORITHM 84
SIMPSON’S INTEGRATION [Paul E. Hennion. Comm.
ACM, Apr. 1962]
Ricarp GEORGE*
Particle Accelerator
Argonne, 111
* Work supported by the U. S. Atomic Energy Commission.

Div., Argonne National Lab.,

In performing integration by the use of Simpson’s rule, it is well
known that the interval [, b] must be divided evenly into n equal
parts, and that ¢t s essential for n to be an even number.

In the published algorithm, there is neither a comment on this
important restriction, nor a programmed test for the parity of n.
It is therefore a potential trap for the unwary programmer.

CERTIFICATION OF ALGORITHM 85

JACOBI [T. G. Evans, Comm. ACM, Apr. 1962]

. J. 8. HiLLMoRE

Elliott Bros. (London) Ltd.,
England

Borehamwood, Herts.,

The statement

omega := (if mu = 0.0 then 1 else sign (mu))
X (=V2)/sqrt{V2 1 24+mau T 2);
was changed to
omega := if mu = 0.0 then —1.0 else — sign (mu)
X V2/sqrt (V21 24+mu T 2);
When mu = 0, the original statement reduces to
omega 1= —V2/sqrt (V271 2);
and a truncation error in the evaluation of the square root can
make the magnitude of omega slightly greater than unity. As a
result, an error stop occurs during execution of the next statement
when an attempt is made to evaluate sqrt (1 — omega T 2).

In its modified form the algorithm has been successfully run
using the Elliott ALcoL translator on the National-Elliott 803.
Matrices of order up to fifteen have been solved, yielding eigen-
values and eigenvectors with an overall aceuracy of seven decimal
places.

CERTIFICATION OF ALGORITHM 86

PERMUTE [J. E. L. Peck and G. F. Schrock, Comm.
ACM, Apr. 1962]

D. M. CoLuisoN

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England
The algorithm was successfully run using the Elliott Areor

translator on the National-Elliott 803. Values of n used were 0, 1,
2,3, 4.

440 Communications of the ACM

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communications, February, 1960) except that ALGOL 60
notation should be used (see Communications, May 1960).
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Laboratory, National Bureau of Standards,
Washington 25, D. C. Algorithms should be in the Reference
form of ALGOL 60 and written in a style patterned after the
most recent algorithms appearing in this department. For
the convenience of the printer, please underline words that
are delimiters to appear in boldface type.

Although each algorithm has been tested by its contrib-
utor, no warranty, expressed or implied, is made by the con-
tributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the algo-
rithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the editor, or the
association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depars-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

CERTIFICATION OF ALGORITHM 87
PERMUTATION GENERATOR [John R. Howell,
Comm. ACM, Apr. 1962]
D. M. CoLrisoN
Elliott Bros. (London) Itd., Borehamwood, Herts.,
England
The array N was removed from the value list in order that the
permutations might be available outside the procedure. The
algorithm was then run successfully with the Elliott ALgoL trans-
lator on the National-Elliott 803. It was rather slower than
Algorithm 86.

CERTIFICATION OF ALGORITHMS 117 AND 118

MAGIC SQUARE (ODD AND, EVEN ORDERS)
[D. M. Collison, Comm. ACM, Aug. 1962]

D. M. CoLLIsoN

Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England
Both algorithms were checked and timed, using a special AvGoL

program, with the Elliott AvcoL translator on the National-
Elliott 803. The procedure for odd orders was the slower:

Procedure Size of Square Time
Qdd order 9 10 sec.
19 45 sec.
Even order 10 7 sec.
20 23 sec.

Because of the different methods used and the length of the even
order procedure it was decided not to combine the two. The
smallest square of even order generated is given below:—

13 3 2 16
8 10 11 5
12 6 7 9
1 15 14 4

