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In a recent paper, Bellman showed how dynamic program- 
ming could be used to determine the solution to a problem 
previously considered by Stone. The problem comprises the 
determination, given N, of the N points of subdivision of a 
given interval (a,/3) and the corresponding line segments, that 
give the best least squares fit to a function g(x) in the interval. 
Bellman confined himself primarily to the analytical derivation, 
suggesting briefly, however, how the solution of the equation 
derived for each particular point of subdivision u~ could be 
reduced to a discrete search. In this paper, the computational 
procedure is considered more fully, and the slmilaritlesto some 
of Stone's equations are indicated. It is further shown that an 
equation for u~ involving no minimization may be found. In 
addition, it is shown how Bellman's method may be applied 
to the curve-fitting problem when the additional constraints are 
added that the ends of the line segments must be on the curve. 

I n t r o d u c t i o n  

Stone [1] recently posed the problem of determining the 
best least squares fit to a prescribed function g ( x )  in the 
range (a, ~) given that  N points of subdivision uj , • - - , UN 
are permitted and that, within the N + 1 subintervals 
thus formed, line segments 

y = a~ + b jx  u j-1 ~ x ~ u j  (1) 

are fitted, where u0 = a and uN+l = /3. That  is, it is re- 
quired to minimize the function 

F ( a l ,  a2, • • • , aN+l; b l ,  b2, • • • , bN+l ; u l ,  u o, • • . , UN) 

= "~ [g(x) - -  aj - -  b jx]  ~ d x  
j = l  i - i  

o v e r a l l a j , b s a n d a = <  ul=< u2 =< . . .  =< uz~ ~ ~. 
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Stone obtained a method of solution of the problem in a 
classical manner, and indicated the computational method 
involved, while Bellman in a later paper [2], indicated a 
dynamic programming [3] method of solution. We shall 
discuss below the computational aspects of the latter 
method, noting where there are similarities to some of 
Stone's equations, and shall demonstrate that  an equation 
for uj may be determined that  involves an equality sign 
rather than a minimization. In other words, we may reduce 
the problem analytically to a stage where in order to de- 
termine uj computationMly, it is only necessary to solve an 
equation rather than minimize a function. We shall further 
show how dynamic programming produces computa- 
tionally simple equations for the model in which the ends 
of the line segments are constrained to lie on the curve g ( x ) .  

In order to make this discussion self-contained, it will 
be necessary to repeat the functional equations that  
Bellman derives. 

F u r t h e r  R e m a r k s  on  B e l l m a n ' s  S o l u t i o n  

If we define 

rN(~) = Min F, (3) 
[ai,bi,u i ] 

then the functional equations derived in [2] are 

f l ( ~ )  = M i n  [g(x) - -  a l  - -  bl x]  2 d x  
[al,a2,bl,b2,Ul] 

where a ~ ul ~ ~, and 
S 1 + [g(x) -- a2 -- b2x] 2 dx 

Ul 

(4) 

V 
fgG3) = Min ] Min 

c ~ - U N ~  L [aN+l'bN~l] 
(5) 

• [ ( / ( x )  - -  ay+l  -- by+j X] 2 dx + f~_ l (Uy)  
uhr 

L e a s t  S q u a r e  E q u a t i o n s  fo r  aN+l ,  bN+l i n  t e rms  o f  u~. .  

Differentiating partially with respect to a,v+l and b~+l, we 
obtain equations for aN÷~, bg+l in terms of uN similar to 
Stone's. That  is, 

f u  ~ [ g ( x )  - -  aY+l --  b y + l  X] d x  = 0,  (6)  
N 

and 

f ~ x[q(x) - aN+l -- by+iX] dx = 0, (7) 
UN 

from which it follows that 

4(13 2 + 1£N13 -~- UN2)I(13, "ttN) --  6(13 -~- UN)J(13, UN) 
aU+l = (13 --  UN) 3 , (8) 
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and 

where 

612J(/~, u~) - (l~ + UN)I([~, UZ¢)] 
bN+i = (9) (~ - u~)~ 

I(l~, u~v) = g(x) dx, 
U N  

and (10) 

f; J(~, u~) = zg(x) dx. 
N 

Equation for u x .  Differentiating equation (5) with 
respect to uN, the optimal u~ is given by  

ft~ VOaN+, Ob~v+lq 
- 2  ... L- ~ -  + • i ,G- j  tg(z) - a~v+, - -  bN+,  x] dx 

- [g(uN) -- a~+~ -- b~+l uNP + f'~--~(UN) = 0 

which, using equatkms (6) and (7), reduces to 

[g(uz¢) - alv.l - bN+lUN] ~ --f~_l(u~) = O. (11) 

I t  should be pointed out, in order to be more rigorous, 
tha t  the optimal u~ either satisfies equation (11) or equals 
a or/3. Since u~¢ = c~ implies tha t  using no segmentation is 
best, and uN == fl tha t  N - 1 segmentation points are best 
even if we are allowed N - - a n d  this is obviously not true 
since we can always improve on a given (N  - 1)-point 
segmentation by splitting one of the subintervals in two, 
so tha t  fz¢(/3) is a monotonically decreasing function of 
N- -hence  it follows tha t  equation (11) holds in general. 

Method of Computational Solution. I t  is now clear how 
simple computationally it is to determine the solution. 
Given a table for the previously computed fN--l(y), 
a ~ y ~ /~, and hence a table of f~_ f fy ) ,  and also tables 
for I (~ ,  u~) and J(fl ,  U~r)--or alternatively the indefinite 
integrals f g (x)  dx and f xg(x)  dx - - ,  we solve equation 
(11) for UN by  successive approximation, after the expres- 
sions for aN+i and bN+~ in equations (8) and (9) have been 
substi tuted in equation (11). From this value of UN, we 
obtain aN+~ and b~¢+~ from equations (8) and (9), then 
f~(f l )  is determined by substituting for aN+t, by+l, UN in 
equation (5). 

This procedure is used to compute successively 
f2, f~, • - • , and the a~+l,  bN+~, u~ associated with them. 
f~ is first obtained by solving the five equations obtained by 
differentiating equation (4) partially with respect to a~, 
a2 , bl , b2 , and U 1 • 

Note tha t  u~ could also have been obtained, of course, 
by  substituting for a~+l and b,v+l in equation (5) and mak-  
ing a discrete search within a,/3. 

M o d e l  W i t h  A d d i t i o n a l  C o n s t r a i n t s  

We shall now indicate briefly how the same dynamic 
programming approach may  be applied to another line 
segmentation model which has considerable practical 
interest. Unlike in the previous model, where broken line 

segments are permitted, the constraint is added tha t  they 
must  be connected a t  the points Ul, . ' -  , uN, and tha t  
these meeting points must  lie on the curve. T h a t  is, the 
line segments pass through g(a) ,  g(ul ) ,  . . .  , g(u~) ,  g(/3). 
(By exactly the same method, we could also consider the 
model in which the lines must  meet  a t  u~, • • • , uN, but  
need not necessarily meet  on the curve.) 

The function it is now required to minimize is 

F(uj) (12) 

= ~ g ( x ) -  w -  ~-~ 

and the general functional equation is given by  

f~(~) 03) 

=.__<uAr..Min LJuivF[' [g(x) -- {(' -- x)g(uN) + (x-- u')g(f3)} 

+ fN--,(U~) 1, 

with fff/3) given by 

f@) 

= Min 
a~Ui~fl  

(14) 

g(x) . . . . . .  dx 
~ I  ot 

As with the previous model, we now obtain by partial 
differentiation with respect to UN the following equation 
for UN : 

f~_,(..) 

~ ]~ uW J ] \~-u~J (15) 

Eg,(u. ) + g(u~)~Z-L~ g(~)~j dx 
@ 

Although at  first sight this may  appear  to be a compli- 
cated integral, on observation it will be noted that ,  once 
again, all it involves are tile functions 1(/3, uN), J (~ ,  uN) 
and g'(uN). In  fact, of course, equation (15) may  be 
simplified still further, since the last square bracket  may  
be taken outside the integral as it is independent of x, and 
then the second term in the first square bracket  multiplied 
by (/3 -- x) / ( /3  -- UN) may  easily be integrated. Hence the 
eqnation reduces to 

' ~ 2 u N 7  L g(uN) - g(~)q f~_,(u~) - ~ _ g'(*"") + -~ : - -G j 
(16) 

F • l , , ( , . . . ( , , u . ,  ( ,  , , . ,  ÷ 

Hence, as before, given tables of ]~_j ( /3)--and hence 
f~_l( /3)-- that  were computed from those of fx-2(/3), 
equation (16) is now easily solved computationally for u ~ ,  
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using successive approximation.  The fN(~) is obtained by  
subst i tut ing this value of u~ in equat ion (13),  for which we 
also need 

f~  = S(~, uN), say. [g(z)] 2 dx 
hr 

One could al ternat ively determine UN with  greater com- 
puter  t ime consumption,  by  successive approximat ion after  
a discrete search, f rom equat ion (13) directly. The  integral  

in this equat ion reduces to 

2 
f ~g(uN) -- u~g(~)]I(~, ~(~, nN) ~ - u-----N UN) 
k 

(17) 
(~ 

-'F- [g(t3) -- g(uN)]J(f~, UN) "4- -- [g(fl) -4- g(UN)]2~ • 
6 ) 

I t  should finally be noted  tha t  in order to obta in  f~(fl) ,  
the ranges over  which f~ , f2,  • • • , f ~ - l m u s t  be calculated 
are all [c~, ~]. 
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1. I n t r o d u c t i o n  

In  this article, a set of matr ices is defined, and the com- 
plete solution of each matr ix  is given. The matr ices have 
a rb i t r a ry  dimension, and a large number  of parameters .  By  
adjus t ing these parameters ,  a matr ix  of a rb i t ra ry  dimension 
can be constructed which has two eigenvectors t ha t  are 
near ly  coincident,  which is deficient (has fewer than  the 
max imum possible number  of eigenvectors) or is as nearly 
singular as desired. Thus  a set of matr ices  is available 
which forms a convenient  set of check matr ices  for test ing 
compute r  programs which purpor t  to solve ~ or inver t  a 
matrix.  The  matr ices  of the set enjoy certain properties of 
regular i ty  to which the te rm s y m m e t r y  migh t  well be 
applied; however,  the matr ices  are no t  necessarily sym- 
metric in the ordinary  sense. 

For  selected values of the parameters ,  the matr ices  ap- 
pear  as var iance-covariance matr ices  in statistics. In  par- 
t icular cases, the eigenvalues (but not  the eigenvectors) and 
de terminants  have been found [1]. The  methods  of this 

t Sponsored (in part) by Mathematics Research Center, U. S. 
Army, Madison, Wisconsin, under Contract No. DA-11-O22-ORD- 
2059. 

~ I.e., find ~he eigenvMues and corresponding invariant sub- 
spices. 

note are shorter, more elementary,  and more effective; 
f rom them, immedia te  insight into the matr ix  s t ructure  is 
obtained. 

2. Basic  Case 

Let  fi, be the 1 X n column-vector  whose entries are all 
l ' s ; f~* is the corresponding n X 1 row-vector.  For  a rb i t ra ry  
n, k, write Jnk = fnfk*; thus J,,k is the k X n matr ix  whose 
entries are all l ' s .  The  matr ix  J~,, has the following proper-  
ties: fi, is an eigenvector (with cigenvalue n ) ;  every 
vector  v or thogonal  to f,, [f~*v = 0] is an eigenvector,  with 
eigenvalue 0. This space of vectors v is spanned by  

{gl}, gi = f , , -  nee i, i = 1, 2, . . .  , n ,  

and has ex.gr, the first n -- 1 of t~ese for a tasis.  Here  
i en is the 1 X n vector  [0, . . .  ,0 ,  1~, 0, . . .  , 0]*. This 

proves the following theorem. 
THEOREM 1. B y  a change of basis, the ~ a t r i x  aim + b J ~  

can be transformed to diag [a, . . • , a, a ~ bn]. 
Note  tha t  the set of n X n matrices aim ~ bJn~ forms a 

semi-group, and the invertible ones form a group. The  
inverse of aim ~ b Jan is a- l I~  - ba-~(a ~ b n ) - l J ~ .  

3. General  Case 

The general matr ix  t ha t  can be solved by  the above 
methods  is the par t i t ioned matr ix :  

ra, I,~ + b,~J ...... b~2J . . . . .  ", 
A = ~ : ..... .  aJn2 + ....... ", b2t/n,nt. I) 

t_ btlJ'~t,,, . . . ,  atlnv~ t ~- b tJ , , t , , j  

By choosing a suitable basis, the matr ix  A can be t rans-  
formed into 

B = diag[A1, A2 " ' "  , A t ,  A t + i ] ,  

where f o r i  = 1, 2, . . .  , t ,  A t i s t h e n ~ - - l M n ~ - - l s c a l a r  
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