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Let £ = (aq;) be a square matrix of order n whose entries

are elements of an integral domain D. Denote ¢ by ¢ and

0 - .
a:; by aiy. A sequential process for n X n matrices

£ = (@),

will be described which is of such nature that:

1<k =n (1)

(a) each aﬁ'}) is an element of D;

(b) with one exception the elements ais are formed from the ele-
ments af—'f” and indeed in such manner that a specific a;";}
can replace a(pkq—l) in the array leaving available therein all ele-
ments needed for calculating the remaining unfound a,fl,c-);

(c) except for a permutation of rows and columns £™ is the ad-

joint of £©;

if the number of independent rows is m < n then a selection of

m independent rows can be made;

(e) the sequential process can be varied rather arbitrarily (for
example so as to attempt to minimize in the case, say, of real
or Gaussian integers, the size of the new entries formed) and
the required permutation of rows and columns mentioned
in (c¢) can be built as part of the process.

d

~

The technique used can be quickly described as being
essentially Gauss-Jordan elimination, modified to include
the principle of exact elimination except that at each stage
a common factor (one occurring systematically) is re-
moved; the whole process being arranged in a “compact”
manner suggestive of Crout’s' method. Perhaps the tech-
nique for building an adjoint (rather than an inverse) is
new.

At each step k of the recursive process one chooses any
nonzero element aﬁi)ﬂjk g (0 =k =mn— 1) under the
further restrictions that the sequence of sensed pairs

S = ((ilajl): (12 7j2)) Tt (Zn 7jn)> (2>

shall be recorded and that the sequences (2;, %2, -+ , 7,)
and (71, J2, - -+, 7») individually shall have no duplicate
terms. If all entries available for selection are zero at a
given stage then a maximum number of independent rows
will have been found. If this occurs at step n—1, complet-
ing the process still gives the adjoint. The element aﬁﬁ)ﬂ F.
so chosen must be carried over to step k42 and is the ex-
ception mentioned in (b) above as well as the systematic
factor mentioned in the second paragraph.

The sequential matrix ¢, 1 < &k < n, is further defined
as follows, first requiring for notational convenience that

-1
aﬁojo) = 1. Let
(k) (k—2)
Qigiy = Qig_yip-1> (3)

thus a}}, is always one. Proceed by defining

afy = aly” i s .
i = —a$i i 4 g ®

Finally, for j # jy and ¢ = 4 , let
aff = [ Pal5y — oliy  alliVl/atl, - (5)

Ostensibly (5) requires a field. It will be shown subse-
quently that the denominator is a factor of the numerator.
For convenience in proof, the elements of D will be tem-
porarily viewed as rational forms over the quotient field of
D, and the original entries of £ will be considered as n® in-
determinates.

Proof is accomplished by use of related matrices. Let
8;; denote the Kronecker delta, and let

® 1 ®
6" = N=Ta (bij s
Tp—1Jk—1 ( )
k k—1) - . . 6
bﬁj) = 61-]a§k]~k> i j#£ .,
(k) (k)
bis, = ijy -
Define
(0 ) () *) _(e—1)
no =&, n =0"9 , 1=5k=mn (7

Forl 1< mlet AlY = 1if¢=4,andj = j;, and let
A{? = 0 otherwise. Then using (3), (4), (5), (6) and (7)
it follows in routine manner that

)
1 = @);

dii = AFelz i j=7, 1212k (8)
d¥ = a  otherwise.
Define
g0 = g® B _ gy, 1<k<n (9)
It follows, also inductively, that
¢P = (ef);
e = aﬁ'}i for 7 = 1, 1=1=2k; (10)
ef? = 8,05  otherwise.

Now let p denote the n X n permutation matrix which
sends row 7; into row ji , 1 < k& < n. Note that the determi-
nant of pis 1 or —1 and is readily calculated from (2)
without use of determinants. Also, pre- and postmulti-
plication by p can be effected from (2) without actual use
of matrix multiplication. By (7) and (9)

P = g®gED L g0 YR = O (11)

IfI% = (/%) where f&¥ = 1ifi =j=4,,1 1<k
and is otherwise zero, then
NICFON (C ROy
The right side has entries of zero unless 7 = j = 4,
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1 <1k Ifd=j =1, the entry is af¥;’. Thus the
above becomes

lp(k)E(O)PI(k) — agi?kl)l(k). (12)

Multiplying both sides by I® leaves the right side un-
altered. However, observe that 7*6"* has nonzero entries
only in rows 4,, 1 < p = k, and columns ¢,, 1 < ¢ £ k.
Observe also that if such a matrix have as a right multiplier
a matrix of the type §'”, 1 < I £ k, the result again has
nonzero entries in only these rows and columns. Thus by
(1), 1 ®y% has this property. Since £9I™ can have non-
zero entries only in columns 7, , 1 < ¢ < k, the matrix £©
contributes only in the form of elements of the columns
numbered j,, 1 = ¢ = k. Moreover, since the only non-
zero columns of the matrix 7'¢* are those numbered
ig, 1 £ q £ k, the matrix £¥ contributes only elements
from these rows.

A study of (3), (4), and (5) shows inductively that all
of the elements of 1®y¢® are expressible in terms of these
same elements from £®. Thus the left member of (12) is
dependent only on the indeterminates af-qu , 1 =p =k,
l1=qg=k

Proceed by letting £ be the submatrix of order k ob-
tained from {¥, 1 < I < k, by deleting the rows and
columns other than rows 7, and columns j., 1 £ ¢ = k.
Let o be constructed from p by deleting rows other than
those numbered j, and columns other than those numbered
1,1 = q¢=<k Let P and 65" be constructed from x//(l) and
9" respectively by deleting all rows and columns except
rows 7, and columns 4,, 1 £ g = k. The expression (12)
then yields

Welo = ali I, (13)

where I is the identity matrix of order k. It is also true
that

6O = 606 (142)
a(.lfl) k—1
det 0,” = [77_%’—] , (14b)
Qiy_1i1a
provided 1 £ 1 £ k.
Combining (14a) with (13) yields
0 - 060, = aliT,
This in turn leads by virtue of (14b) to
a7 = det 5704, (15)
and since £Fpp = %k), to
90t 0 = det [0l T
or
adj & = [det pulocEt" pi - (16)
In particular, since p, = p, ete.,
adj £ = [det plot”p. (17)

Turn now to the proof that the entries of £ are elements
of the integral domain D. In routine manner the following
formal relations are established using (3), (4} and (5). If
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7 # Jr-1and § # gi then

(k~1) (k—1)
&) (k—2) _ Aif_1i ik—1Jk
a’ik-—lj. ik—1Tk=1 (k—1) (k—1)
Qiri kik
(k=2) (k—2) (18)
k—2 A A
aﬁk_l}k_l Qig_yj Tk_17k
) B2 B2
Aip_sip_2 aﬁk]- ) »Ekjk)
If ¢ # ik_l and 7 = ’L.k then
(=1 (1)
(2 Gijgr Fidy
Qi Fig_1ip_1 — a(.kfl) (k—1)
| Qiriply  igin
) (19)
k=2 (k—2) (k=2
a§,c_1}k_1 Qigip_1  Gigie
) k—2 =2y | "
th—2k—2 aﬁjk_i §J'k )

Also,if ¢ £ 4, %5 %, J & jrandj = jr, then

(=D D) '
k) | (k—2) ¢ Qi
i Ay yig T

(k—1) (k—1)
Qi Gigip

(k—2) (k~2) (k—2)
(o) Aij 15 k-1 Qijy, (2())
. Qg ik (k—2), (k—2) (B—2),
= [—(m—]z k17 Qg1 th17k
Vh—2lk-2 (k=2) (k—2) (k—2)
igd Qigir_y TRik

Proof is by induction, and the postulate is essentially
that £, €77 have entries which are polynomials in the

. . 0 —1 —2
indeterminates a9, and that a{%>" and a§;)_1.a')p_1 are rela-

Tpd
tively prime. It is readily determined that £V and 2 are
polynomials in the a? 1£j<n, 1=1i=n. Moreover,
a!®, and aly;) are relatively prime. Assume true for
p = k — 1. By (3) and (4) it is seen that only the nature
of a¥, 7 # ji and ¢ # 4, need be considered insofar as
polynomial character is concerned. Since o>, and
aﬁijg} ._» are relatively prime by hypothesis, analysis of the
last two members of (18) shows that a{*~%, , must be a
factor of the determinant shown. That being so, analysis of
the first and third members of (18) shows that afj,_, is a
polynomial in the original indeterminates. In the case of
the expressions in (19) and (20) the reasoning is similar. It
remains to show that al”%), | and a{’7,’ have no common
factors.

To accomplish this, consider the submatrix £” which
can be viewed as evolved from £ by bordering with 2k—1
new indeterminates. Since these matrices have as determi-
nantal values (except for sign) the polynomials afis, > and
a$¥®. ., inlight of the presence of the new indeterminates
they can have no common factor.

A program for the IBM 709 has been written which finds
the adjoint of 50 X 50 square matrices, using integer
arithmetic. This program can handle matrices such thatno
caleulated elements of £%, 1 < k < n, can exceed 2™ — 1.

Clearly the components of £* are minors of £ of varying
orders. A preliminary study indicates that this feature may
be used to find the characteristic function of £ A second
line of present investigation is the creation of a similar
compact scheme diagonalizing quadratic forms over

integral domains.



