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Let  ~ = (a~:) be a square matr ix  of order n whose entries 
are elements of an integral domain D. Denote  ~ by  ~(0) and 
ale by  (0) a~¢. A sequential process for n X n matrices 

~(k) : (~) \ 
= ( a i : ) ,  1 =< k =< n ,  ( 1 )  

will be described which is of such nature  tha t :  

(~) i~ (a) e ach  a~i ~ an  e l e m e n t  of D;  
(b) w i t h  one excep t ion  t h e  e l e m e n t s  a ~  ) are  f o r m e d  f rom t h e  ele- 

( k - l )  (k) 
m e n t s  a~  a n d  i ndeed  in  s u c h  m a n n e r  t h a t  a specific avq 

( ~ - i )  • c an  rep lace  avq in  t he  a r r a y  l e a v i n g  ava i l ab l e  t h e r e i n  all ele- 
(k) 

m e n t s  n e e d e d  for c a l c u l a t i n g  t h e  r e m a i n i n g  u n f o u n d  ai~ ; 
(c) excep t  for  a p e r m u t a t i o n  of rows a n d  c o l u m n s  ~(~) is t h e  ad-  

j o in t  of ~(0); 
(d) if t h e  n u m b e r  of i n d e p e n d e n t  rows is m < n t h e n  a se lec t ion  of 

m i n d e p e n d e n t  rows can  be m a d e ;  
(e) t h e  s e q u e n t i a l  p rocess  can  be va r i ed  r a t h e r  a r b i t r a r i l y  (for 

e x a m p l e  so as to  a t t e m p t  to  m i n i m i z e  in t h e  case,  s ay ,  of real 
or  G a u s s i a n  i n t ege r s ,  t h e  size of t h e  new  en t r i e s  fo rmed)  a n d  
t h e  r equ i r ed  p e r m u t a t i o n  of rows a n d  c o l u m n s  m e n t i o n e d  
in (c) c an  be  bu i l t  as  p a r t  of t h e  p rocess .  

The  technique used can be quickly described as being 
essentially Gauss-Jordan elimination, modified to include 
the principle of exact elimination except t ha t  a t  each stage 
a common  factor  (one occurring systematical ly)  is re- 
moved ;  the whole process being arranged in a " c o m p a c t "  
manner  suggestive of Croat ' s '  method.  Perhaps  the tech- 
nique for building an adjoint  ( ra ther  than  an inverse) is 
ne~v.  

A t  each step k of the reeursive process one chooses any  
(~) (0 < k < 1) under  the nonzero element ai~+mj~+x = = n - -  

fur ther  restrictions t h a t  the sequence of sensed pairs 

S = ( ( i s , j r ) ,  ( i2 , j2) ,  - - . ,  ( i , , j , ) )  (2) 

shall be recorded and tha t  the sequences ( i l ,  i~, . - .  , i , )  
and ( ja ,  j 2 ,  . . .  , j n )  individually shall have no duplicate 
terms. If  all entries available for selection are zero at  a 
given stage then a m ax im um  number  of independent  rows 
will have  been found. I f  this occurs a t  step n - 1 ,  complet-  
ing the process still gives the adjoint .  The  element a~)+~i~+~ 
so chosen mus t  be carried over to step k + 2  and is the ex- 
ception ment ioned in (b)  above as well as the systematic  
factor  ment ioned in the second paragraph.  

The  sequential matr ix  ((~), 1 =< k =< n,  is fur ther  defined 
as follows, first requiring for nota t ional  convenience t h a t  

(-- I )  
aloYo = 1. Le t  

a(. k). - -  a (k-2) ~k,k ~k--~k--1 , (3) 

thus (1) is a lways one. Proceed by  defining a i l Y a  

(k) (k-~) if j # j k ;  ai~i = alki 
(4) 

(k) (.~--1) if i # ik a i j k  ~ - - a i j k  

Finally, for j # jk and i # ik, let 
a ( k )  r ( k - - l )  ( k - - l )  ( k - - l ' a ( k - - l h / a ( k )  

~ = ta~ a ~  - - a i y ~  ~y l /  ~ .  (5) 

Ostensibly (5) requires a field. I t  will be shown subse- 
quent ly  tha t  the denominator  is a factor  of the numerator .  
For  convenience in proof, the elements of D will be tem- 
porari ly viewed as rational forms over the quot ient  field of 
D, and the original entries of ~(0) will be considered as n ~ in- 
determinates.  

Proof  is accomplished by  use of related matrices. Let  
&~ denote the Kronecker  delta, and let 

0(~) _ 1 (t)!k) ~ a!~.-2~. 
~k--13k--1 

b(~) &,a~7? if j # i~ (6)  i j  ~ 

b!9 -(~) Z~k ~ ~ t i Jk"  

Define 
v(o) = ~(0), V(k) = 0(k)V(k--1), 1 =< ]C =< n. (7) 

For  1 < 1 < n, let A (z) = = i: = l i f i  = i z a n d j  = j z , a n d l e t  
~(.9 = 0 otherwise. Then  using (3),  (4),  (5),  (6) and (7) z3 

it follows in routine manner  t ha t  

(k) ( d ( k )  
~] = k i j ) ;  

d!~) = A(~)a (k-l) ~3 ij ik:k if j = jZ, 1 --< 1--< k; (8) 

d(k) = a(k) iy ~j otherwise. 

Define 

(~) = 0% ¢(k) = 0(k) b(k-1); 1 NN k NN n. (9) 

I t  follows, also inductively,  t ha t  

~(k) : (k) \ 
= ~e~j ) ; 

(k) (k) for j = i t ,  1 < l < lc; (10) e i j  ~ a i j t  - -  - -  

(k) = 6 a ( k - l )  
eli ~J ~k~ otherwise. 

Now let p denote the n X n permuta t ion  matr ix  which 
sends row ik into row jk ,  1 -< /c -< n. Note  tha t  the determi- 
nan t  of p is 1 or - -1  and is readily calculated f rom (2) 
wi thout  use of determinants .  Also, pre- and postmult i-  
plication by  p can be effected f rom (2) wi thout  actual  use 
of matr ix  multiplication. By  (7) and (9) 

~(k) = O(k)O(k--1) . . .  0(1); ~(k)~(0) = V(k) (11) 

I f I  (k) = (f~)) wherej,¢!~)~ = l i f i  = j = i z , 1  -< 1-< k 
and is otherwise zero, then 

¢(k)~(0)pi(k) = (~)pi(k) .  

The r ight  side has entries of zero unless i = j = iz, 
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= = , a (~-~) Thus the 1 < l < k. I f i  = j = i~ the entry is ~ . 
above becomes 

~k(~)~(°)pI (~) = a~7~l)I (~). (12) 

Multiplying both sides by I (~) leaves the right side an- 
altered. However, observe that  I(~)0 (~) has nonzero entries 
only in rows i , ,  1 ~ p _-< lc, and columns iq, 1 _-< q _-< k. 
Observe also that  if such a matrix have as a right multiplier 
a matrix of the type 0 (~), 1 ~ l =< k, the result again has 
nonzero entries in only these rows and columns. Thus by 
(11), I(~)¢(~) has this property. Since ((°)pI(~) can have non- 
zero entries only in columns iq , 1 ~ q ~ t~, the matrix ~(o) 
contributes only in the form of elements of the columns 
numbered jq  , 1 =<; q ~ k. Moreover, since the only non- 
zero columns of the matrix I(~)~b (~) are those numbered 
iq , 1 =< q _~ It, the matrix ~(0) contributes only elements 
from these rows. 

A study of (3), (4), and (5) shows inductively that  all 
of the elements of I(~)¢(~) are expressible in terms of these 
same elements from ~(o). Thus the left member of (12) is 
dependent only on the indeterminates a !°). 1 < p < ]c, ~pYq , ~ 

l =< q ~ lc. 
Proceed by letting (~) be the submatrix of order/c ob- 

tained from ~(t), 1 =< l =< k, by deleting the rows and 
columns other than rows i~ and columns j , ,  1 _-< q =< k. 
Let  m- be constructed from p by deleting rows other than 
those numbered jq and columns other than those numbered 
iq, 1 ~ q ~ k. Let g,~z) and 0~ *) be constructed from ~(~) and 
0 t*) respectively by deleting all rows and columns except 
rows i~ and columns iq, 1 N q =< k. The expression (12) 
then yields 

,~(~).(0) a ( ~ - l ) /  (13) k ~:k Pk = ikJ k k , 

where I~ is the identity 
that  

det 0~ ~) 

matrix of order k. I t  is also true 

0 (~)~(~-~)~ ~ • .. 0~ 1), (14a) 

F _( / - -1)  7k- - i  
(~ i l J l  = | - ~  [ , (14b) 

L a i l _ ~ Y t _ l ~  

provided 1 _< l -< ]c. 
Combining (14a) with (13) yields 

0(~)a(~:-~) ^O)~(0) = a(~-l)i 
k Ok " ' *  Uk ~k Pk ikJk  k .  

This in turn leads by virtue of (14b) to 

(k--l) = det ~,(0) ~ (15) aikjk [~k Pk], 

and since ~)p~ = ~b~ ~), to 

~(k)p~(~o)p~ = det [(~°)o~]I~, 

o r  

adj ~0) = [det p~]p~)p~. (16) 

In particular, since p~ = p, etc., 

adj ~(o) = [det p]p~(%. (17) 

Turn now to the proof tha t  the entries of ((~) are elements 
of the integral domain D. In routine manner the following 
formal relations are established using (3), (4) and (5). If 

j ~ j~_~ and j ~ j~ then 

a(k) .. _(k--~) 
*k--l$ (~ik-- lJk--1 ~" a}~ -~) 

If i ~ i~_~ and i ~ i~. then 

a(k) _ (k--2) 
i J k _  1 " ~ i k _ l J k _ l  ~- 

Also, if i ¢ i~, 

a(k) a(k--2) 
iS " ik-- lJk--1  

a~-ll}~ 

a(k--D 
ikJk  

a(~-2) 
i k - - l J  

a(k--2) 
ikJ 

@-2) 
a i k _ l J k _ ~  

ik--2Jk--2~ 

(k--2) 
a i k~]~  

a !~-: ~) 
~k~k 

a(k--X) ikJk  

i k _ l J k _ l  a i k j k _ ~  

( k - - 3 )  (k--2) (k--2) 
aik_2Jk_2 aijk_~ a i j k  

i ~ i~_~, j ~ f l a n d j  ~ j ~ _ ~ , t h e n  

a ~  -1) a}~;  1) 

aikj  

(18) 

(k--2) a ( k - 2 )  
aik_~Jk_~ i k ~ l J k  

(19) 

(20) 

Proof is by induction, and the postulate is essentially 
that  ((v), ~(p-1) have entries which are polynomials in the 
• • ( 0 )  ( p - - l )  ( p - - 2 )  r mdetermlnates a ~ ,  and that  ai#p and a{p_l.ip_ 1 a r e  e]a- 
tively prime. I t  is readily determined that  }(') and }(0) are 
polynomials in the a ~q)~J, 1 =< j =< n, 1 -< i -< n. Moreover, 
a(0) and (-1) ilJl aioiO are relatively prime. Assume true for 
p = /c -- 1. By (3) and (4) it is seen that  only the nature 
of (k) a~j, j ¢ jk and i ¢ i k ,  need be considered insofar as 

(k-2) polynomial character is concerned. Since a~k_~k_~ and 
(k-3) a~k_~jk_ ~ are relatively prime by hypothesis, analysis of the 

(k-3) must be a last two members of (18) shows that  aik_~k_~ 
factor of the determinant shown. Tha t  being so, analysis of 
the first and third members of (18) shows that  a ~9~J~_~ is a 
polynomial in the original indeterminates. In the case of 
the expressions in (19) and (20) the reasoning is similar. I t  

a(k-2) (k-~) have no common remains to show that  ~._~ik_~ and a~ki k 
factors. 

To accomplish this, consider the submatrix ~0) which 
~ ( 0 )  - -  can be viewed as evolved from gk-~ by bordering with 2/c-- 1 

new indeterminates. Since these matrices have as determi- 
_ (k--l)  and nantal  values (except for sign) the polynomials u~ki k 

a~.]2~)j~_~, in light of the presence of the new indeterminates 
they can have no common factor. 

A program for the IBM 709 has been written which finds 
the adjoint of 50 X 50 square matrices, using integer 
arithmetic. This program can handle matrices such that  11o 
calculated elements of ~(k), 1 =< /c N n, can exceed 22s° - 1. 

Clearly the components of ~(k) are minors of ~ of varying 
orders. A preliminary study indicates that  this feature may 
be used to find the characteristic function of ~. A second 
line of present investigation is the creation of a similar 
compact scheme diagonalizing quadratic forms over 
integral domains. 
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