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I. Introduction: 
Tables in use today generally give, for each of a set of values of a variable x, the corresponding value 

of the  tabulated function f(x). It  is historically clear why tables are made in this manner, but the de- 
mands of high speed digital computation led the present writer to inquire whether this is indeed the 
useful way to make a table for an automatic computer. 

The normal use of a table of values in digital computation is to store the tabular values, at equally 
spaced arguments, to compute the value of x in some manner, extract the two table entries which sur- 
round x and interpolate linearly for f(x). Since the final product is this interpolated value one is led 
to ask whether the number f(xo + nh) is the "best" number to insert in the n th tabular position if we 
wish to optimize the accuracy, on the average, of the final interpolated function values. It  is immedi- 
ately clear that  it is not, as may be seen most simply by considering a function which always lies above 
the chord connecting any two points on its graph. 

Figures 1 and 2 below illustrate the function f*(x) which is actually used in the computation in the 
case of first, a function tabulated conventionally and second, tabulated by  one of the methods to be 
described below. 

i ,,.4 

f(x) 

X.  Fig. 1 X,,+~ X,~+~ Fig. 2 X,, 

I t  is clear that  in many cases, one can do considerably better, accuracy-wise, if one drops the con- 
straint, which may be unnecessary in digital computation, that the n th tabular entry be exactly 
f(x0 + nh). 

II .  Statement of the Problem: 
Formally, we are given a function f(x) and a set of points xn, where xn = nh + x0 (n = 0, 1, • • . ,  N). 

Let go, gl, • • ", g~ denote the set of entries to be determined. 
Define kn(x) by 

a) ko(x ) = go 
b) k~(xn+l) = gn+l 
c) kn is a straight line. 

Finally, let f*(x) denote the function defined for x0 < x < xN which takes the value k,(x) when x lies 
between x, and xn+1. Then f*(x) is the function which will ultimately be used in the computation. 

Our problem now is to determine go, gl, • • ", gN in such a way that in some sense f*(x) lies as close 
as possible to f(x). 
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I I I .  
The LSR results from minimizing 

XN 

(:1) ¢(g0, g~, • • • gN) = f 

Xo 

The Least Squares Relative (LSR) Modified Table: 

I f*(x) -- f(x) 1 ~ 
f(x) dx, 

gh + i -- gh 
(2 )  kh(x) = gh + h (x - xh), 

a n d  taking partial derivatives of ~ with respect to each of the gh, we get N + 1 simultaneous linear 
a lgebra ic  equations: 
(~) [~p_~ - ~p_~]g,_~ + [~, + ~p - 2a~ + ~p_,]g~ 

+ [ap - -  e~]gp+~ = "rp - -  ~p + ~ , -~  ( p  = 0 ,  1 ,  . . . ,  N)  

t o solve for the gp, where we have written 
Xp+l 

1 / x-x. 
( 4 )  ap = ~ f~(x-----)-- dx (p = 0 . . . .  , N -- 1) 

Xp 

Xp+l 

f ( 5 )  3p = f2(x ) (p = 0 , . . . ,  N -- 1) 

Xp 

Xp~l 

f ( 6 )  7 ,  = f ( x )  ( p  = 0 . . . .  , N - -  1 )  

Xp 

Xp+l 

1 f x - x p  ("7) ~P = h f(x) dx (p = 0,...,N-- I) 

Xp 

Xp+l 

1 /" (x -- Xp) ~ 
(8) 'P - h ~ f~(x) dx (p = O,...,N-- I) 

J 
Xp 

( 0 )  a_, = ~-I = ~-i = 3~r = ,N =aN = WN = ~S = O. 
Because of the form of Eq. 3 the solution may be obtained readily by writing 

( 1 0 )  {gi+lgP= =0 X,g,+1 + ~p 
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s u b s t i t u t i n g  

~ h e r e  we will assume tha t  If(x)] _> c > 0 on [x0, XN]. Writing 
N --  1 Xn+l 

4, (go , ' ' ' , g .~)  = f(x) - 1 dx, 
n = O  

Xn 



from which the recurrence relations 

(11) ~a) X_~ = 0 
b) Xp = - Up{Up_l Xp_, + Vp}- '  

(12) ta)  J£--I • 0 

b) #, = (Cp - u,-1 ~p-1) (u,-1 Xp-1 + V~) -~ 

follow. Here we have written 

(13) u .  = ~. - ~. 

(14) V .  = /~. + ~n - -  .2a. + ~,~--i 

(15) Ca = v. - ~. + G-~ 

IV. 
Here we minimize 

XN 
f D  

(16) ¢(go, gl, g2 , . . . ,  gs) ---- / 

Xo 
which leads to the equations 

(17) 

(18) 

The Least Squares Absolute (LSA) Modified Table: 

[f*(x) -- f(x)] 2 dx 

2gp + Yzg,+, + ~6g,-1 = ap - Sp + ~p_, 

fl-, = g-, = g s + ,  = 0 = as  = f~N 

X p + l  

(19) a p -  h f(x)dx 

Xp 

Xp +1  

(20) 8, = -~ f(x) X h 

Xp 

These can be readily solved by the device previously used. 

V. Conclusions: 
The criterion of least squares integrated error minimization is not the natural one in numerical a p -  

proximations. Much preferable would be M M R  and MMA for minimax relative and absolute e r ror  
modified tables. An elegant and useful algorithm for the construction of such tables has so far e luded 
the author. 

Finally, since these tables are almost always the appropriate kind to use in automatic computat ion,  
it is to be hoped that they will be prepared for all the standard mathematical functions and with a v a r i e t y  
of mesh widths for each. 

VI. An Example: 
We give below a complete LSR modified table for fix) = X/x, x, = n + 1 (n = 0 . . . .  ,9 ) .  
The tabular values are denoted by  4,(x), and the actual values of f(x) are tabulated for comparison.  

I t  will be noted that ~(x~) > f(xn), and that  the line k,(x) cuts f(x) in two points inside of every in terval .  
The maximum relative error from using ¢(x) with linear interpolation is about  1.28%, compared wit ta  
1.49% with f(x) and linear interpolation. 
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Table I 
x ¢(x) f(x) x O(x) f(x) 
1 1.012704 1.000000 6 2.450921 2.449490 
2 1.423418 1.414214 7 2.646876 2.645751 
3 1.735359 1.732051 8 2.829339 2.828427 
4 2.002788 2.000000 9 3.000835 3.000000 
5 2.237870 2.236068 10 3.162847 3.162278 

A P R O G R A M M E D  B I N A R Y  C O U N T E R  F O R  
T H E  I B M  T Y P E  650 C A L C U L A T E R  

B. C. KJZNNY and J. A. HUNTER 
Westinghouse Electric Corporation, Baltimore, Maryland 

In a recent computational job on the IBM 650 (with 653) the authors found it necessary to perform 
a calculation which depended upon a sequence of n yes-no decisions. It  was required to repeat the pro- 
cedure for all 2" possible sequences. Since n was less than eleven, it was convenient to express each 
yes-no sequence by an integer composed of eights and nines. The "Branch on Distributor 8" instruction 
was then used by the program to interpret the current sequence and thereby control the calculation. 

Regarding the sequences as binary numbers with eights representing zeros and nines denoting ones, 
a binary counter was programmed which enabled the computer to step through all sequences in turn. 
The pertinent logic of the main program is illustrated in the accompanying block diagram. 

Following the diagram a specific coding for the counter is given. It  is assumed that this program is 
stored on the magnetic drum in the cells immediately following the location of the current "binary" 
number, b. It  is also understood that  the drum copy of the binary counter routine is read into high 
speed storage afresh before each advance of b. In this way the contents of cells 9001 and 9004 are preset 
automatically. 

It  should be noted that the coding given below carries the implication that n < 10. For n = 10, the 
program must be modified because the simple test indicated at cell 9015 becomes impossible and because 
the scheme for altering the branch instruction in cell 9004 breaks down. 

Core 
Location 

9000 
9001 
9002 
9003 
9004 
9005 
9006 
9007 
9008 
9009 
9010 
9011 
9012 
9013 
9014 
9015 

A Specific Coding of the Binary Counter 
Number or 
Instruction Remarks 

bb bbbb bbbb Binary number, b, to be advanced. 8's and 9's. 
Adjustable constant for altering b. 
Constant for altering instruction in 9004. 
E N T E R  Put  b into D and L. 
Test digit of b. 8 or 9? 
If 9: Change to 8. 

Put  altered b into 9000. 
Put  constant in 9001 into L. 
Left shift one place. 
Replace adjusted constant in 9001. 
Put  test instruction into L. 
Alter it to test next digit of b. 
Replace altered test instruction in 9004. 

If 8: Change to 9. 
Store altered b on drum and in D. 

E X I T  If b < 2% return to program. 
If b = 2", go to output routine. 
X ~ n  + 1  (modl0) .  

00 0000 0001 
01 0000 0000 
65 9000 9004 
91 9013 9005 
16 9001 9006 
20 9000 9007 
65 9001 9008 
35 0001 9009 
20 9001 9010 
65 9004 9011 
15 9002 9012 
20 9004 9003 
15 9001 9014 
20DRUM9015  

9 X P R O G P N C H  
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