
T A B L E S F O R A U T O M A T I C C O M P U T A T I O N

HERBERT S. WILF

Nuclear Development Corporation of America
White Plains, New York

I. Introduction:
Tables in use today generally give, for each of a set of values of a variable x, the corresponding value

of the tabulated function f(x). It is historically clear why tables are made in this manner, but the de-
mands of high speed digital computation led the present writer to inquire whether this is indeed the
useful way to make a table for an automatic computer.

The normal use of a table of values in digital computation is to store the tabular values, at equally
spaced arguments, to compute the value of x in some manner, extract the two table entries which sur-
round x and interpolate linearly for f(x). Since the final product is this interpolated value one is led
to ask whether the number f(xo + nh) is the "best" number to insert in the n th tabular position if we
wish to optimize the accuracy, on the average, of the final interpolated function values. It is immedi-
ately clear that it is not, as may be seen most simply by considering a function which always lies above
the chord connecting any two points on its graph.

Figures 1 and 2 below illustrate the function f*(x) which is actually used in the computation in the
case of first, a function tabulated conventionally and second, tabulated by one of the methods to be
described below.

i ,,.4

f(x)

X. Fig. 1 X,,+~ X,~+~ Fig. 2 X,,

I t is clear that in many cases, one can do considerably better, accuracy-wise, if one drops the con-
straint, which may be unnecessary in digital computation, that the n th tabular entry be exactly
f(x0 + nh).

II . Statement of the Problem:
Formally, we are given a function f(x) and a set of points xn, where xn = nh + x0 (n = 0, 1, • • . , N).

Let go, gl, • • ", g~ denote the set of entries to be determined.
Define kn(x) by

a) ko(x) = go
b) k~(xn+l) = gn+l
c) kn is a straight line.

Finally, let f*(x) denote the function defined for x0 < x < xN which takes the value k,(x) when x lies
between x, and xn+1. Then f*(x) is the function which will ultimately be used in the computation.

Our problem now is to determine go, gl, • • ", gN in such a way that in some sense f*(x) lies as close
as possible to f(x).

$

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368685.368692&domain=pdf&date_stamp=1958-01-01

I I I .
The LSR results from minimizing

XN

(:1) ¢(g0, g~, • • • gN) = f

Xo

The Least Squares Relative (LSR) Modified Table:

I f*(x) -- f(x) 1 ~
f(x) dx,

gh + i -- gh
(2) kh(x) = gh + h (x - xh),

a n d taking partial derivatives of ~ with respect to each of the gh, we get N + 1 simultaneous linear
a lgebra ic equations:
(~) [~p_~ - ~p_~]g,_~ + [~, + ~p - 2a~ + ~p_,]g~

+ [ap - - e~]gp+~ = "rp - - ~p + ~ , -~ (p = 0 , 1 , . . . , N)

t o solve for the gp, where we have written
Xp+l

1 / x-x.
(4) ap = ~ f~(x-----)-- dx (p = 0 , N -- 1)

Xp

Xp+l

f (5) 3p = f2(x) (p = 0 , . . . , N -- 1)

Xp

Xp~l

f (6) 7 , = f (x) (p = 0 , N - - 1)

Xp

Xp+l

1 f x - x p ("7) ~P = h f(x) dx (p = 0,...,N-- I)

Xp

Xp+l

1 /" (x -- Xp) ~
(8) 'P - h ~ f~(x) dx (p = O,...,N-- I)

J
Xp

(0) a_, = ~-I = ~-i = 3~r = ,N =aN = WN = ~S = O.
Because of the form of Eq. 3 the solution may be obtained readily by writing

(1 0) {gi+lgP= =0 X,g,+1 + ~p

9

s u b s t i t u t i n g

~ h e r e we will assume tha t If(x)] _> c > 0 on [x0, XN]. Writing
N -- 1 Xn+l

4, (go , ' ' ' , g .~) = f(x) - 1 dx,
n = O

Xn

from which the recurrence relations

(11) ~a) X_~ = 0
b) Xp = - Up{Up_l Xp_, + Vp}- '

(12) ta) J£--I • 0

b) #, = (Cp - u,-1 ~p-1) (u,-1 Xp-1 + V~) -~

follow. Here we have written

(13) u . = ~. - ~.

(14) V . = /~. + ~n - - .2a. + ~,~--i

(15) Ca = v. - ~. + G-~

IV.
Here we minimize

XN
f D

(16) ¢(go, gl, g2 , . . . , gs) ---- /

Xo
which leads to the equations

(17)

(18)

The Least Squares Absolute (LSA) Modified Table:

[f*(x) -- f(x)] 2 dx

2gp + Yzg,+, + ~6g,-1 = ap - Sp + ~p_,

fl-, = g-, = g s + , = 0 = as = f~N

X p + l

(19) a p - h f(x)dx

Xp

Xp +1

(20) 8, = -~ f(x) X h

Xp

These can be readily solved by the device previously used.

V. Conclusions:
The criterion of least squares integrated error minimization is not the natural one in numerical a p -

proximations. Much preferable would be M M R and MMA for minimax relative and absolute e r ror
modified tables. An elegant and useful algorithm for the construction of such tables has so far e luded
the author.

Finally, since these tables are almost always the appropriate kind to use in automatic computat ion,
it is to be hoped that they will be prepared for all the standard mathematical functions and with a v a r i e t y
of mesh widths for each.

VI. An Example:
We give below a complete LSR modified table for fix) = X/x, x, = n + 1 (n = 0 ,9) .
The tabular values are denoted by 4,(x), and the actual values of f(x) are tabulated for comparison.

I t will be noted that ~(x~) > f(xn), and that the line k,(x) cuts f(x) in two points inside of every in terval .
The maximum relative error from using ¢(x) with linear interpolation is about 1.28%, compared wit ta
1.49% with f(x) and linear interpolation.

10

Table I
x ¢(x) f(x) x O(x) f(x)
1 1.012704 1.000000 6 2.450921 2.449490
2 1.423418 1.414214 7 2.646876 2.645751
3 1.735359 1.732051 8 2.829339 2.828427
4 2.002788 2.000000 9 3.000835 3.000000
5 2.237870 2.236068 10 3.162847 3.162278

A P R O G R A M M E D B I N A R Y C O U N T E R F O R
T H E I B M T Y P E 650 C A L C U L A T E R

B. C. KJZNNY and J. A. HUNTER
Westinghouse Electric Corporation, Baltimore, Maryland

In a recent computational job on the IBM 650 (with 653) the authors found it necessary to perform
a calculation which depended upon a sequence of n yes-no decisions. It was required to repeat the pro-
cedure for all 2" possible sequences. Since n was less than eleven, it was convenient to express each
yes-no sequence by an integer composed of eights and nines. The "Branch on Distributor 8" instruction
was then used by the program to interpret the current sequence and thereby control the calculation.

Regarding the sequences as binary numbers with eights representing zeros and nines denoting ones,
a binary counter was programmed which enabled the computer to step through all sequences in turn.
The pertinent logic of the main program is illustrated in the accompanying block diagram.

Following the diagram a specific coding for the counter is given. It is assumed that this program is
stored on the magnetic drum in the cells immediately following the location of the current "binary"
number, b. It is also understood that the drum copy of the binary counter routine is read into high
speed storage afresh before each advance of b. In this way the contents of cells 9001 and 9004 are preset
automatically.

It should be noted that the coding given below carries the implication that n < 10. For n = 10, the
program must be modified because the simple test indicated at cell 9015 becomes impossible and because
the scheme for altering the branch instruction in cell 9004 breaks down.

Core
Location

9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015

A Specific Coding of the Binary Counter
Number or
Instruction Remarks

bb bbbb bbbb Binary number, b, to be advanced. 8's and 9's.
Adjustable constant for altering b.
Constant for altering instruction in 9004.
E N T E R Put b into D and L.
Test digit of b. 8 or 9?
If 9: Change to 8.

Put altered b into 9000.
Put constant in 9001 into L.
Left shift one place.
Replace adjusted constant in 9001.
Put test instruction into L.
Alter it to test next digit of b.
Replace altered test instruction in 9004.

If 8: Change to 9.
Store altered b on drum and in D.

E X I T If b < 2% return to program.
If b = 2", go to output routine.
X ~ n + 1 (modl0) .

00 0000 0001
01 0000 0000
65 9000 9004
91 9013 9005
16 9001 9006
20 9000 9007
65 9001 9008
35 0001 9009
20 9001 9010
65 9004 9011
15 9002 9012
20 9004 9003
15 9001 9014
20DRUM9015

9 X P R O G P N C H

11

