
TECHNIQUES DEPARTMENT

N E W S

CEIR (The Council for Economic and Industry Research) has announced a program for their 704
which simulates the operation of a 650 and accepts source programs in 650 machine language. This
system is described in a brochure which was distributed at the Eastern Joint Computer Conference in
Washington, D . C . This should be of interest to many since it can serve to alleviate a temporary over-
load of 650 facilities, run programs with excessive storage requirements or act in many ways as a buffer
for various emergency conditions. The full instruction repertoire is accepted and it is asserted that
(on the basis of rental costs for both machines) the cost per answer when run on the simulator is at least
as low as when run on a 650. Many cases have been run where the 650 program has been patched to
use 704 library subroutines, greatly increasing computing speeds. At the present this program is the
exclusive property of CEIR, and further information may be obtained by writing them at 1200 Jefferson
Davis Highway, Arlington 2, Virginia.

The advent of this system prompted this department to make a short survey of systems which accept
the machine language program of another computer and simulate the running of that program. The
chart on page 4 contains all of the information it has been possible to gather from limited sources and
further information is solicited from readers. From all appearances, most of these simulators will never

be overpopular.

V A R I A B L E - W I D T H T A B L E S W I T H B I N A R Y - S E A R C t I F A C I L I T Y

MARK HALPERN, IBM Corporation

The family of subroutines described in this report was designed to create, search and maintain tables
which are to contain entries of different lengths, and yet be amenable to search by partition, or "binary"
search. I t is designed explicitly for fixed-word-length binary machines; the tables in question are the
argument-function type, with the two parts physically separated--i.e., no one machine word contains
both, or parts of both. The family consists at present of seven subroutines, of which four are primitive
and three second-generation. (By "primitive" is meant a self-sufficient routine; a second-generation
routine is one which calls on one or more primitives.) These routines are at present coded for the IBM
709; with a few trivial changes they are ready also for the 704. The primitives are: (1) STT (Start Table),
(2) TLU (Table Look-Up), (3) ITC (Increase Table Capacity), and (4) AOD (Append Ordered Data).
The second-generation routines are: (1) INT (Insert in Table), (2) INX (Insert and Expand), and (3)
ANX (Append and Expand). It is intended that this family be written, with modifications as necessary,
for several stored-program computers. The calling-sequences for any one of the routines will, as far as

possible, be identical on the several machines.

The tables dealt with by this family are organized in the form of matrices, or series of sub-tables, as

shown in Figure 1.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368699.368705&domain=pdf&date_stamp=1958-02-01

A1

B!

Ci

01

2-word
label

S u b t a b l e 1

i i , i i

A2

B2

C2

..... D2

Subtable 2

/

FIGURE i

Table

Figure 1 shows a table in which 4 entries have been
made: A, B, C and D. Each is too long to fit into a
single word, and has accordingly been divided in two. i
The first parts, A1, B1, C1 and D1, have been collected
and stored in subtable 1; the second parts, A~, B2, C2 and
D2, in subtable 2. The order of entries in subtable 1 is
determined by the values of the whole entries A, B, C
and D; the order in subtable 2 is determined solely by the
locations in subtable 1 of the high-order parts of these
entry-segments. Only subtable I entries, then, will neces-
sarily exhibit monotonic increase or decrease in value.
There may be as many such subtables as are required,
and all succeeding subtables will be ordered as was sub-
table 2. If A, B, C and D are not of equal length, these
rules hold: (a) the number of subtables required is that
required by the longest entry, and (b) trail ing zero's will
be attached to shorter entries to bring them up to the
length of the longest.

When this table is to be searched, the first word's
worth of the comparand (the value for which the table
is being searched) is isolated, and a binary search of sub-
table 1 is made until either a match is found, or one of
several special conditions, to be discussed below, is de-
tected. Assume a match found at the N t h location of
subtable 1, which we will call the base-point. The second
word's worth of the comparand is then matched against
the Nth word of subtable 2. If there are more than two
subtables, the process is continued, successive words'
worth of the comparand being matched against the Nth

locations of successive subtables. If matches are obtained straight through to the end, the search has
been successfully completed. If at any stage after the fixing of a base-point a match is not obtained, a
new base-point is defined, equal to the old base-point plus or minus one. (The new base-point will be
higher or lower as the no-match condition dictates.) If the value at the new base-point is equal to that
of the first word's worth of the comparand, the process of attempting matches between successive words'
worth of the comparand and Nth entries (N now being the ordinal number of the new base-point) of
successive subtables may proceed. This process may be repeated as often as no-match conditions re-
quire, provided only that the new base-point required by the no-match condition is equal in value to the
first word's worth of the comparand.,

This process must eventually end in one of two ways: the finding of an entry which matches the com-
parand word-for-word, or the finding of a pair of adjacent entries which bound the value of the comparand.
This pair of values may be used for interpolation if the function is continuous, or, if t he function is dis-
crete, simply as an indication that the comparand has no equivalent in the table. T h e possibility that
the value of the comparand lies outside the upper or lower bound of the table is eliminated at the outset
by attempting a preliminary match between the comparand and the least and greatest argument in the
table. This technique has proven to be highly economical of time. Comparands falling outside the
table can be detected and reported on before even the initialization for the subroutine has been completed.

Assuming the comparand matched perfectly with some argument in the table, the function may then
be ob~ined in either of two ways. If the number of sub-tables required by the arguments is Y, then a
(Y + l) t h sub-table will contain either the first words of the functions associated wi th the arguments
stored above, or simply a series of addresses giving the locations of the functions. If t he first method is
adopted, then functions longer than one word may be broken up and stored in successive sub-tables just

2

as the arguments were. Table-searching will involve only the first Y sub-tables, of course; table modifica-
tion will involve Y+Z, where Z is the mlmber of sub-tables required to store the functions or their ad-
dresses.

The sub-tables, as indicated in Figure 1, are not necessarily contiguous. Let the number of words
per sub-table be N, and the number of words between Nth entries of adjacent sub-tables be A; then

~X _> N. (See Figure 2). Delta is a programmer-supplied parameter, and
l may be used to exert various kinds of control over table operations. If,

for example, the programmer wishes to ensure tha t the table not exceed a
SUB- certain size, Q, he can do so by setting

TABLE I I
q - 2

A A - Y + Z '

. . . . / and using subroutine INT to add entries to the table. This subroutine
compares N against 4 before adding new entries, and transfers to an

SUB- error-return if an at tempt is made to add entries when N = z~. This
TABLE 2 technique also optimizes on time, since a pre-set constant ~, combined

with subroutine INT, means that the sub-tables are not to be moved
further apart.

Where the programmer does not know how many entries to expect, or
where space rather than time is to be optimized on, A should be set to a
value no greater than the minimum number of entries expected (if no

FIGURE 2 estimate of this number can be made, set zx = 1), and subroutine INX
(Insert and Expand) must be used. This subroutine, on finding that

N = A, increases ,~ by spacing the sub-tables out to intervals equal to the number of entries to be added.
The parameters for INX include an absolute limit to expansion, enabling the programmer to ensure that
the table cannot grow to the point where it begins to wipe out wanted information.

Where the entries to be added consist of arguments which are (a) all greater in value than the highest
currently stored in the table, and (b) ordered among themselves, the subroutines to use are AOD (Append
Ordered Data) instead of INT, and ANX (Append and Expand) instead of INX. These Append sub.-
routines, as their names imply, simply attach the new entries to the bottom of the sub-tables, skipping
the space-and-time-co,suming look-ups which are necessary for inserting entries of unknown value.

The family of subroutines which has been described is not complete: new members being worked on
will provide for automatic interpolation, both linear and parabolic and for the deletion of unwanted
entries from the table.

0
Z

c~

!,

~ 0

9

w

0

!

c~

L~

0

I

0

c~

|

° ~

~ 0

~o
c~

° ~

cxl

c~
0

0

0

~o ~ ~0

