
at EOF for operator to change tapes) or to utilize additional tapes if available. This would be of value 
in many emergency situations or where a standard program is written to be run on different machine 
configurations. 
b. Most buffered machines may have more than one buffer, capable of simultaneous reading or writing 
but not capable of handling more than one or two tapes at a time. Given that we wish the computer 
to optimize tape assignment, we will wish it to arrange the placement of files in such a manner as to 
take best advantage of the characteristics of the buffers (of which there may be one or several present). 
As stated this is a fairly simple problem in optimization; a good solution would be of great value to 

the industry. It  seems tha t  the programmer would have to supply some information about the syn- 
chronous or" asynchronous behavior of files. The ideal solution would require a minimum of information 
from the programmer and would operate quickly to determine the optimum assignment :for each run. 
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R E Q U E S I  F O R  M E T H O D S  O R  P R O G R A M S  

HENRY P. T. CORLEY, Captain, USAF; Chief, Research and Analysis Branch, Assistant 
:/'or Data Processing, Comptroller, Tinker Air Force Base, Oklahoma City, Oklahoma 

DISCUSSION OF GENERAL DATA REDUCTION ROUTINE 

The following type of problem is encountered so frequently in almost all fields of research that it is 
considered worthy of special attention in order that automatic computer procedures be developed for 
the rapid solution of said problem. 

Problem Statement 

Given some dynamic system--physical, logistical, economic, biological or otherwise--with much his- 
torical data available concerning the inputs and outputs of the system, it is desired to find a system of 
differential equations which adequately describe the relationship between a particular output variable 
and each input variable. 

It is assumed that  the system can be represented in block diagram form as shown in Figure I (at least 
for the linear cases) where the input variables appear on the left (e.g. F1 (t), F2 (t), etc.), the transfer 
functions in differential operator form appear in the middle (e.g. G1 (s), G2 (s) etc.) and the output vari- 
able, x (t), appears on the right. The end objective of the problem is to determine the transfer functions 
(G~ (s), G2 (s), etc.) relating the input variables to the output variable. All variables would generally 
be expected to be functions of time. 

Observations of input and output variables recorded simultaneously are indicated by having identical 
numbers for the second digits of the subscripts of the input variables and by the subscript of the output 
variable. Thus, the set of variables used for the third observation of a system would appear: F~3 (t) for 
one input variable; F~3 (t) for some other input variable; F,3 (t) for a still different input variable etc. 
and x3 (t) for the output variable. (See Page 3, Case I) 

The following distinct cases of this problem are mentioned in order that each can be considered 
separately. 

CASE I 

The system is assumed to be capable of description by a system of ordinary linear differential equations 
with constant coefficients. All input variables, initial conditions, and the output variable are zero for 
T < 0. The number of observations equals the number of input variables. 

CASE II 

Same as Case I except tha t  the number of observations is greater than the number of input variables. 
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CASE III  

Same as Case I except that the number of observations is less than the number of input variables. 

CASE IV 

One way to attack this problem would be to proceed just as in Case I. If the time constants appearing 
in the transfer functions thus determined were short compared with the length of time of the particular 
observations used, then it might be concluded that  these transfer functions were fairly reliable since the 
effect of the input variables for t < 0 could not be very considerable in the absence of large time constants 
in the transfer functions. Much more theoretical background information is needed before attacking 
this program. 

CASE V 
A combination of the approaches of Cases II and IV appears feasible here. 

CASE VI 
Again some statistical approach might be useful, 

CASES VII through XI I  
Perhaps some converging trial and error procedure could be devised incorporating appropriate appli- 

cations of statistical multiple correlation and Laplace transform routines. No general, proven, straight- 
forward method is known to the author for any of the Cases, I I I  through XII, as described above. 

Use8 
In general, all of the cases described above would be applicable to the same problem areas. However, 

some types of systems could be expected to be more non-linear than others. Certainly no actual systems 
would be perfectly linear. 

Certain general uses immediately come to mind for applying a general purpose data reduction system. 
In the s tudy of economic and logistics systems, the basic underlying relationships might be quickly 

found. Such systems could then be studied more thoroughly by simulation using suitable digital or 
analog computers. 

General equations underlying chemical reactions might be uncovered so that tailor-made chemical 
compounds might be designed mathematically with tremendous savings in time and expense. 

A very  promising application of the above problem solution would be to find differential equations 
peculiar to a certain locality with which the weather could be more accurately predicted, utilizing input 
data from surrounding reporting stations. 

And finally (and inevitably), someone would certainly t ry  to utilize this approach for "playing the 
stock market ."  

Approaches to Case Solutions 

CASE I 
For this case, the following equations can be written: 

LFH (t) Gl(s) + LF21 (t) G~(s) + . . .  LFN~ (t) GN (s) 
LFi~ (t) G~(s) + LF22 (t) G2 (s) + . . .  LF~2 (t) GN (s) 

= L xl (t) 
= L x2 (t) 

LF1N (t) G1 (s) + LF2N (t) G2(s) + . . .  LFNN (t) G~-(s) = LXN (t) 
The solution of this case for any particular transfer function can be theoretically found by suitable 

application of matrix algebra. For example: 

t0 



(;:: (is) :- 

I~ F'~ (t;~ L x~ (t) . . . .  I, FN., (t) 
I~ F~.: (t) I, x,: (i) I, Fx,: (t? 

L F'~- (t) L x>~ (ti L F':~,,- (t.) 

Lt,',~ (t) I,l , '~ (t) . . .  I, Fa-:: (t) 

L F , ~ ( t )  L F ~ x  (t,) . . .  L FN ~ ,  (t) 
The symbol, L, is used above to indicate the Laplace transformation of a function. 
case can be programmed for automat ic  solution by a large scale digital computer.  

Theoretically t:his 

CASE II 
This case can be solved exactly as Case I. In addition, the solution can be repeated using different 

observations in order that  transfer functions already found can be verified. If many  slightly different 
values were found for the same transfer function, they might be "averaged"  in order to find the most 
representat ive one. No rigorous mathematical  justification for such a procedure is known to the author,  
however. 

CASE I [ I  
Perhaps some statistical method may be devised for finding the most probable transfer functions for 

this case. 
CASE IV 

Same as Case [ except that  the initial conditkms are not  known and the values of the variables are not  
known for t < 0. 

CASE V 
Same as Case I[ except thal, initial condilions are unknown. 

CASE V[ 
Same as Case I I [  except tha t  initial conditions are unknown. 

CASES VH X I I  
These are respectively the same as Cases I through VI, except that; one or more of the transfer functions 

is non-linear or one or more of the transfer functions is representat ive of an ordinary linear differential 
equation with variable coefficients, where such coefficients are functions of one or more of the input vari- 
ables, of which there are N. x (t) is the ou tpu t  variable. 
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