
On Addressing M u l t i d i m e n s i o n a l  Arrays 

Dear Editor: 
The article "Addressing Multidimensional Arrays" by H. 

Hellerman in the April issue of the Communications concerns a 
problem that has been of much interest at Rice University. Our 
comptlter was designed and constructed at the University. 
The instruction format provides indirect addressing to any level 
and six general purpose index registers, any number of which 
may be used additively at any level of indirect addressing. 
Since arrays of more than six dimensions are seldom of concern, 
we have available those features which Dr. Hellerman requested 
for his indirect scheme of addressing array elements. In our case, 
we started with flexible hardware and developed programming 
techniques to take advantage of it, whereas the author has 
derived machine specifications from programming theory. 

I make reference to the paper "Array Manipulations and the 
Formula Language" [Rice Computer Programming Memoran- 
dum ~ 1, Mar. 1959] by J. K. Iliffe (now with Ferranti, Ltd., 
London). Most of the ideas presented in this text have since 
been realized in programming systems for the Rice computer, 
and these are described in detail in subsequent internal publica- 
tions, i shall mention some particulars of our scheme for in- 
direct addressing of array elements. 

All words associated with an array that are not elements of 
the array are called codewords. The structure and organization 
of codewords are essentially those described by Dr. Hellerman for 
his "tables." Thus, for a two-dimensionM array the principal 
codeword addresses a vector of codewords, each of which ad- 
dresses a vector of data, a row of the matrix. 

Several features of this scheme have not been emphasized by 
Dr. Hellerman, and in view of our extremely rewarding ex- 
perience I believe they are worth stressing. First, the additional 
storage required may well he offset by the simplicity with which 
an array element may he addressed; that is to say, it is certainly 
easier, and in most cases faster, to set index registers to the 
values i and j and make one indirect reference to memory than 
it is to compute any function of i and j before making a direct 
reference to memory. Second, for any array only the principal 
codeword address need be known for any reference; thus, the 
storage for the remainder of the array may be located arbitrarily 
with respect to those programs which refer to the array. Third, 
the storage of each vector associated with the array (whether it 
contains codewords or data) is entirely independent of every 
other so that the problem of storage allocation becomes one of 
handling several small vectors rather than one of considerable 
length. Fourth, addressing of nonrectangular arrays is exactly 
as easy as addressing of rectangular arrays, which is certainly 
not the case when address computation is carried out; and the 
complexity of addressing is not a function of the dimension of 
arrays. Fifth, the address portion of a codeword may contain 
the number f - k (where f is the address of the first word of the 
vector and k is any integer) so that the first element is addressed 
with index k, a very convenient variable in many applications. 

Sixth, programs may be thought of as vectors and transfers to 
them made through their codewords without indexing; this 
concept generalizes with no difficulty to arrays of programs 
which are often very useful. 

JANE G. JODEIT 
Rice University 
Houston, Texas 

Hardware Convers ion of  Dec imal  and Binary N u m b e r s  

Dear Editor: 
A recent technical note by W. C. Lynch [1] prompts me to 

describe the online hardware conversion system [2, 3] which 
has been in use on tile DRTE solid state computer for th e past 
year and a half [4]. The system is based on a general purpose 
shift register and counter [5] capable of shifting right or left 
one binary place per clock period and adding or subtracting 3 
in one clock period [2]. The same basic method is used for both 
binary-to-decimal and decimal-to-binary conversion of integers, 
fractions and floating-point numbers. The method for integers 
will be described, the extensions for fractions and floating-point 
numbers being fairly obvious. The basic methods will be described 
first, followed by their implementation using shift registers. 

Decimal-to-binary conversion of an integer is accomplished 
by successive division by two. The answer consists of the ac- 
cumulated remainders from each step. Consider conversion of 
the decimal integer 19 to binary. First, write the decimal number 
and the target binary number (initially 0) side by side. 

decimal binary 

19 00000 

Now divide both numbers by 2 and place the remainder, 0 or 
1, from the decimal division in the most significant bit position 
of the binary number. We now have 

decimal binary 

19 + 2 = 9 10000 

Continuing we get: 

decimal binary 

9 + 2 = 4 11000 
4 + 2 = 2 01100 
2 + 2 = 1 00110 
1 + 2 = 0 10011 

Thus, the binary equivalent of 19 is 10011. I t  is apparent that 
if the number of divisions by 2 is equal to the number of bits in 
the binary number, leading zeros will be automatically taken 
care of. There must of course be sufficient binary bits to hold 
the equivalent of the largest decimal number to be converted. 

Conversion from binary to decimM is similar except that 
multiplication by 2 is used instead of division. To reconvert 
the above result we write: 

decimal binary 

0 10011 

Now, multiply both numbers by 2 and add any carry out of the 
binary register into the decimal result. 

decimal binary 

2 X 0 -4- 1 carry = 1 0011- 
2 X 1 --4-0 = 2 011-- 
2 X 2 + 0  = 4 11- - -  
2 × 4 + 1  = 9 1- 
2 X 9 - 4 - 1  = 1 9  
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Again, if the number of multiplications is equal to the number 
of binary digits, leading and trailing zeros are automatically 
accounted for. I t  will now be apparent that  this method requires 
a simple method of multiplying and dividing BCD numbers by 
2. ]n the binary system this is of course accomplished by shifting. 

Binary coded decimal numbers can also be multiplied and 
divided by 2 by shifting, provided corrections are made after 
each shift in accordance with simple rules. Division will be con- 
sidered first. The BCD number (8, 4, 2, 1) is placed in a set of 
4-bit shift registers arranged with the most significant digit on 
the left. The coding is then changed to "excess 6 code" by adding 
3 twice to each decimal digit independently. Division by 2 is 
now accomplished by linking the 4-bit registers and shifting the 
whole number one binary place to the right. Each decimal digit 
is now individually corrected in accordance with the following 
rule: 

RULE 1. If the most significant bit in any decimal digit is 0, 
add 3 to that  decimal digit. If the most significant bit is 1, no 
correction is needed--i.e, if a zero was carried in on the shift, 
add 3; if a one, make no correction. 

The remainder from the division is the bit shifted out of the 
right-hand end of the least significant decimal digit. The com- 
plete conversion of the decimal number 19 is shown below. The 
digits examined for application of this rule are underlined. 

decimal binary 

0001 1001 00000 
add 3 0100 1100 
add 3 0111 1111 
shift 0_011 1_111 10000 
correct 0110 1111 
shift 0_011 0_111 11000 
correct 0110 1010 
shift 0_011 0_101 01100 
correct 01.10 1000 
shift 0-011 0100 00110 
correct 0110 0111 
shift 0011 0011 10011 

Multiplication by 2 follows an analogous procedure except 
that  the "excess 3" code is used for the BCD number; i.e., 3 is 
added only once. After left shifting to multiply by 2, each decimal 
digit is corrected by the following rule. 

RULE 2. If the least significant bit of the next left decimal 
digit is "1", add 3. If the least significant bit of the next left 
digit is "0", subtract 3. I.e. if a "1" was carried out of any digit 
on the preceding shift, add 3 to that  digit; if a "0" was carried 
out, subtract 3. 

The complete binary to decimal conversion is shown below. 

decimal binary 

00O0 0O00 10011 
add 3 0011 0011 
shift 0 0110- 0111 0011 
correct 0011 0100 
shift 0- 0110 1000 011 
correct 0011 0101 
shift 0 0110- 1010 11 
correct 0011 0111 
shift 0- 0110- 1111 1 
correct 0011 1100 
shift 0- 0111, 1001 
correct 0100 1100 
subtract 3 0001 1001 

Digits carried out are underlined. Note that  the BCD register 
must be sufficiently large to contain the largest binary number 
to be converted and in this case the carry out is always "0". 

The final subtraction of 3 is done on all decimal digits and 
is necessary to reduce the result from "excess 3" code to normal 
8, 4, 2, 1 code. 

Assuming the decimal registers are capable of adding or 
subtracting 3 on one clock period, the conversion time for 
decimal to binary is (1 4- 2n)t where n is the number of bits 
in the target binary number and t is the duration of a clock 
period. For the reverse conversion, the time is (2 + 2n)t. For 
a clock period of 5gs and a 40-bit word, these times are 405 and 
410ps, respectively. 

The author is grateful to the Defence Research Board of 
Canada for permission to publish the above work. 
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G. T. LAKE 
Defence Research Telecommunications 

Establishment 
Ottawa, Canada 

C o m p u t a t i o n  o f  e o n  V a r i a b l e  W o r d  L e n g t h  M a c h i n e  

Dear Editor: 
We wish to join Fred Gruenberger of the RAND Corporation 

in praising the variable word length IBM 1620. We have the 
value of e to 9790 decimal places, computed on the basic machine 
with 20,000 memory storage positions and automatic divide 
feature at Wabash College. The computation was done by 
summing one over hi, finding each term by dividing the previous 
term by the appropriate integer, continuing until the quotient 
was zero. The last divisor was 3191. The program took advantage 
of the wrap-around feature of the memory and the automatic 
divide instruction (not programmed division) to work with a 
dividend and quotient length of 9797 places and a divisor length 
of 4 places. 

The time of execution was 18½ hours plus output time. Thus 
the main loop (divide, test for zero quotient, add in latest term, 
reload dividend, increment divisor, branch to divide instruction) 
required an average of 21.5 seconds to execute. 

Our value checks exactly to 2553 places with the Ballistic 
Research Laboratories table of e to 2556 places (published by 
the National Bureau of Standards). The discrepancy is probably 
due to round-off or truncation error in their value. We have not 
yet  checked our value farther. 

DA~Ir;L HERmCK ('63) 
NEAL BUTLER ('65) 
Wabash College 
Crawfordsville, Indiana 
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