
On Addressing M u l t i d i m e n s i o n a l Arrays

Dear Editor:
The article "Addressing Multidimensional Arrays" by H.

Hellerman in the April issue of the Communications concerns a
problem that has been of much interest at Rice University. Our
comptlter was designed and constructed at the University.
The instruction format provides indirect addressing to any level
and six general purpose index registers, any number of which
may be used additively at any level of indirect addressing.
Since arrays of more than six dimensions are seldom of concern,
we have available those features which Dr. Hellerman requested
for his indirect scheme of addressing array elements. In our case,
we started with flexible hardware and developed programming
techniques to take advantage of it, whereas the author has
derived machine specifications from programming theory.

I make reference to the paper "Array Manipulations and the
Formula Language" [Rice Computer Programming Memoran-
dum ~ 1, Mar. 1959] by J. K. Iliffe (now with Ferranti, Ltd.,
London). Most of the ideas presented in this text have since
been realized in programming systems for the Rice computer,
and these are described in detail in subsequent internal publica-
tions, i shall mention some particulars of our scheme for in-
direct addressing of array elements.

All words associated with an array that are not elements of
the array are called codewords. The structure and organization
of codewords are essentially those described by Dr. Hellerman for
his "tables." Thus, for a two-dimensionM array the principal
codeword addresses a vector of codewords, each of which ad-
dresses a vector of data, a row of the matrix.

Several features of this scheme have not been emphasized by
Dr. Hellerman, and in view of our extremely rewarding ex-
perience I believe they are worth stressing. First, the additional
storage required may well he offset by the simplicity with which
an array element may he addressed; that is to say, it is certainly
easier, and in most cases faster, to set index registers to the
values i and j and make one indirect reference to memory than
it is to compute any function of i and j before making a direct
reference to memory. Second, for any array only the principal
codeword address need be known for any reference; thus, the
storage for the remainder of the array may be located arbitrarily
with respect to those programs which refer to the array. Third,
the storage of each vector associated with the array (whether it
contains codewords or data) is entirely independent of every
other so that the problem of storage allocation becomes one of
handling several small vectors rather than one of considerable
length. Fourth, addressing of nonrectangular arrays is exactly
as easy as addressing of rectangular arrays, which is certainly
not the case when address computation is carried out; and the
complexity of addressing is not a function of the dimension of
arrays. Fifth, the address portion of a codeword may contain
the number f - k (where f is the address of the first word of the
vector and k is any integer) so that the first element is addressed
with index k, a very convenient variable in many applications.

Sixth, programs may be thought of as vectors and transfers to
them made through their codewords without indexing; this
concept generalizes with no difficulty to arrays of programs
which are often very useful.

JANE G. JODEIT
Rice University
Houston, Texas

Hardware Convers ion of Dec imal and Binary N u m b e r s

Dear Editor:
A recent technical note by W. C. Lynch [1] prompts me to

describe the online hardware conversion system [2, 3] which
has been in use on tile DRTE solid state computer for th e past
year and a half [4]. The system is based on a general purpose
shift register and counter [5] capable of shifting right or left
one binary place per clock period and adding or subtracting 3
in one clock period [2]. The same basic method is used for both
binary-to-decimal and decimal-to-binary conversion of integers,
fractions and floating-point numbers. The method for integers
will be described, the extensions for fractions and floating-point
numbers being fairly obvious. The basic methods will be described
first, followed by their implementation using shift registers.

Decimal-to-binary conversion of an integer is accomplished
by successive division by two. The answer consists of the ac-
cumulated remainders from each step. Consider conversion of
the decimal integer 19 to binary. First, write the decimal number
and the target binary number (initially 0) side by side.

decimal binary

19 00000

Now divide both numbers by 2 and place the remainder, 0 or
1, from the decimal division in the most significant bit position
of the binary number. We now have

decimal binary

19 + 2 = 9 10000

Continuing we get:

decimal binary

9 + 2 = 4 11000
4 + 2 = 2 01100
2 + 2 = 1 00110
1 + 2 = 0 10011

Thus, the binary equivalent of 19 is 10011. I t is apparent that
if the number of divisions by 2 is equal to the number of bits in
the binary number, leading zeros will be automatically taken
care of. There must of course be sufficient binary bits to hold
the equivalent of the largest decimal number to be converted.

Conversion from binary to decimM is similar except that
multiplication by 2 is used instead of division. To reconvert
the above result we write:

decimal binary

0 10011

Now, multiply both numbers by 2 and add any carry out of the
binary register into the decimal result.

decimal binary

2 X 0 -4- 1 carry = 1 0011-
2 X 1 --4-0 = 2 011--
2 X 2 + 0 = 4 11- - -
2 × 4 + 1 = 9 1-
2 X 9 - 4 - 1 = 1 9

468 Communicat ions of the ACM

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368834.368839&domain=pdf&date_stamp=1962-09-01

Again, if the number of multiplications is equal to the number
of binary digits, leading and trailing zeros are automatically
accounted for. I t will now be apparent that this method requires
a simple method of multiplying and dividing BCD numbers by
2.]n the binary system this is of course accomplished by shifting.

Binary coded decimal numbers can also be multiplied and
divided by 2 by shifting, provided corrections are made after
each shift in accordance with simple rules. Division will be con-
sidered first. The BCD number (8, 4, 2, 1) is placed in a set of
4-bit shift registers arranged with the most significant digit on
the left. The coding is then changed to "excess 6 code" by adding
3 twice to each decimal digit independently. Division by 2 is
now accomplished by linking the 4-bit registers and shifting the
whole number one binary place to the right. Each decimal digit
is now individually corrected in accordance with the following
rule:

RULE 1. If the most significant bit in any decimal digit is 0,
add 3 to that decimal digit. If the most significant bit is 1, no
correction is needed--i.e, if a zero was carried in on the shift,
add 3; if a one, make no correction.

The remainder from the division is the bit shifted out of the
right-hand end of the least significant decimal digit. The com-
plete conversion of the decimal number 19 is shown below. The
digits examined for application of this rule are underlined.

decimal binary

0001 1001 00000
add 3 0100 1100
add 3 0111 1111
shift 0_011 1_111 10000
correct 0110 1111
shift 0_011 0_111 11000
correct 0110 1010
shift 0_011 0_101 01100
correct 01.10 1000
shift 0-011 0100 00110
correct 0110 0111
shift 0011 0011 10011

Multiplication by 2 follows an analogous procedure except
that the "excess 3" code is used for the BCD number; i.e., 3 is
added only once. After left shifting to multiply by 2, each decimal
digit is corrected by the following rule.

RULE 2. If the least significant bit of the next left decimal
digit is "1", add 3. If the least significant bit of the next left
digit is "0", subtract 3. I.e. if a "1" was carried out of any digit
on the preceding shift, add 3 to that digit; if a "0" was carried
out, subtract 3.

The complete binary to decimal conversion is shown below.

decimal binary

00O0 0O00 10011
add 3 0011 0011
shift 0 0110- 0111 0011
correct 0011 0100
shift 0- 0110 1000 011
correct 0011 0101
shift 0 0110- 1010 11
correct 0011 0111
shift 0- 0110- 1111 1
correct 0011 1100
shift 0- 0111, 1001
correct 0100 1100
subtract 3 0001 1001

Digits carried out are underlined. Note that the BCD register
must be sufficiently large to contain the largest binary number
to be converted and in this case the carry out is always "0".

The final subtraction of 3 is done on all decimal digits and
is necessary to reduce the result from "excess 3" code to normal
8, 4, 2, 1 code.

Assuming the decimal registers are capable of adding or
subtracting 3 on one clock period, the conversion time for
decimal to binary is (1 4- 2n)t where n is the number of bits
in the target binary number and t is the duration of a clock
period. For the reverse conversion, the time is (2 + 2n)t. For
a clock period of 5gs and a 40-bit word, these times are 405 and
410ps, respectively.

The author is grateful to the Defence Research Board of
Canada for permission to publish the above work.

REFERENCES :
1. LYNCH, W. C. On a wired-in binary-to-decimal conversion

scheme. Comm. ACM 8 (1962), 159.
2. FLOmDA, C.D. Decimal to binary and binary to decimal con-

version methods with particular reference to their use in
floating point computers. DRTE Report EL5059-4, Oct. 1955.

3. LAKE, G.T. A digital decimal to binary and binary to deci-
mal converter. DRTE Report No. 1044, July 1960.

4. FLORIDA, C.D. The DRTE solid state digital computer. Proc.
Computing and Data Processing Society of Canada (1960).

5. "FLORIDA, C.D. A floating point arithmetic unit. DRTE Re-
port, No. EL 5083-7, Feb. 1959.

G. T. LAKE
Defence Research Telecommunications

Establishment
Ottawa, Canada

C o m p u t a t i o n o f e o n V a r i a b l e W o r d L e n g t h M a c h i n e

Dear Editor:
We wish to join Fred Gruenberger of the RAND Corporation

in praising the variable word length IBM 1620. We have the
value of e to 9790 decimal places, computed on the basic machine
with 20,000 memory storage positions and automatic divide
feature at Wabash College. The computation was done by
summing one over hi, finding each term by dividing the previous
term by the appropriate integer, continuing until the quotient
was zero. The last divisor was 3191. The program took advantage
of the wrap-around feature of the memory and the automatic
divide instruction (not programmed division) to work with a
dividend and quotient length of 9797 places and a divisor length
of 4 places.

The time of execution was 18½ hours plus output time. Thus
the main loop (divide, test for zero quotient, add in latest term,
reload dividend, increment divisor, branch to divide instruction)
required an average of 21.5 seconds to execute.

Our value checks exactly to 2553 places with the Ballistic
Research Laboratories table of e to 2556 places (published by
the National Bureau of Standards). The discrepancy is probably
due to round-off or truncation error in their value. We have not
yet checked our value farther.

DA~Ir;L HERmCK ('63)
NEAL BUTLER ('65)
Wabash College
Crawfordsville, Indiana

C o m m u n i c a t i o n s o f t h e ACM 469

