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NORMDEV

DAvID SHAFER

University of Chicago, Chicago, Ill.

procedure NormDev(Random,A x);
procedure Random; real A z;
comment ‘NormDev' uses (1) a procedure ‘Random(y)’ as-
sumed to produce a random number, 0 < y < 1, and (2) the
constant 4 = sqri(2/pt) X integral [0:1] exp(—=212/2)dz, to
produce a positive normal deviate ‘z’;
begin real y;
Random(z); if z > A then go to large;
z = zx/A;
1: Random(y); ify < exp(—z12/2) then go to EndND;
Random(z); go to 1;
large: z := (@ — A)/(1 — A);
2: x = sgrt(l — 2 X log(x));
Random(y); ify < 1/z then go to EndND;
Random(z); go to 2;
EndND: end

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communications, February, 1960) except that ALGOL 60
notation should be used (see Communications, May 1960).
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Laboratory, National Bureau of Standards,
Washington 25, D. C. Algorithms should be in the Reference
form of ALGOL 60 and written in a style patterned after the
most recent algorithms appearing in this department. For
the convenience of the printer, please underline words that
are delimiters to appear in boldface type.

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.
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TRIDIAGONAL MATRIX
GerarDp F. DIETzZEL

Burroughs Corp., Pasadena, Calif.

procedure TRIDIAG (n,A,U);
integer n; array A,U;
comment This procedure reduces a real symmetric matrix A of
order n to tridiagonal form (UT)AU (UT = transpose of U) by
a sequence of at most (n—1)(n—2)/2 binary orthogonal trans-
formations. Also, the matrix U is calculated. [Cf. W. Givens,
‘“Numerical computation of the characteristic values of a real
symmetric matrix,”” Report ORNL1574 (1954), Oak Ridge Nat.
Lab., Tenn., and D. E. Johansen, “A modified Givens method
for the eigenvalue evaluation of large matrices,”” J. ACM 8, 3
(1961)1;
begin real fact,cl,c2,locl,loc2,temp; integer 1,5,71,72,53,74,n1;
comment Set array U = identity matrix of order n;
for 7 := 1 step 1 until » do
begin
for j := i+1 step 1 until n do Ult,j] := U[j,i] = 0;
Ulig] := 1.0
end;
comment The reduction of the matrix A begins here. Only the
upper triangular elements of A are used in the computation;
nl :=n — 2;
for ¢ := 1 step 1 until nl do
begin
=14+ 1; 2:=44 2;
for j := ;2 step 1 until n do
begin
if A[7,j] = 0 then go to lab;
Jact := 1/ sqri(Ali,j1112 + A[2,5112);
cl := fact X Ali,j1]; ¢2 := fact X Ali,5];
locl := A[j1,71]; loc2 := A[jl,5];
Af71,71] := 172 X locl 4+ 2.0 X ¢1 X ¢2 X loc2 + ¢212 X

Alj,gl;

Afjl,5] := —cl X €2 X locl + (172 — ¢212) X loc2 + ¢l X
€2 X Aljil;

Alj,g] = €272 X locl — 2.0 X ¢1 X ¢2 X loc2 + ¢112 X
Alj gl

B i=3i+1

for k := ;3 step 1 until n do

begin

temp = A(j1,k];
A[j1LE] := ¢l X temp + 2 X Al k];

Al k] = —¢2 X temp + ¢l X A5 k]
end;
A =3—1;
for k := ;2 step 1 until 74 do
begin

temp = A[jlk];
A[jLE] := ¢l X temp + ¢2 X Alk,5];

Alk,jl := —¢c2 X temp + ¢l X Alk,j)
end;
Aft,g1] := ¢l X A[7,71] + ¢2 X Al,5];
Afi,5] = 0;

for k := 1 step 1 until n do
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begin
temp = Ulk,jll;
U[k,yl] = ¢l X temp + ¢2 X Ulk,jl;

Ulk,j] := —c2 X temp + ¢l X Ulk,j]
end;
lab: end
end;
for 7 := 1 step 1 until n do

for j := 7+1 step 1 until n do
Al 2] := Ali,f]
end TRIDIAG
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REAL ERROR FUNCTION, ERF(x)
MartiN CraAwWFORD AND RoBERT TECHO
Georgia Institute of Technology, Atlanta, Ga.

real procedure Erf(z); real z

comment &) = Erf(z) = (2/4/m) % e du can be computed
by using the recursive relation for derivatives with ®'(x) =
(2/\/;)6"2, where ™ (z) = —22¢0D(z) — 2(n—2)d" 2 (1),
for n = 2, 3, --- . The Taylor’s series expansions of ®(a;) are
taken about k41 points on the interval 0 < a; < z and summed
to get ®(x);

begin real A, U, V, W, Y, Z T; integer N;
Z:=10; 1: ifz # 0 then
begin if 0.5 < abs (z) then A := — sign (z) X 0.5
else A := — z;
U:=7V . :=112837917 X exp(—z12); Y :=T := -V X
4; N :=1;
2: if abs(’l') = 10— 10 then-
begin N := N + W:i=-2XzXV-2XUX(N=-2);

T ><W>< /(V><N),
U V Vi=W; Y:=Y+ T,
Z+Y x:=x—|—A;

= Z end Frf

go to 2 end;
go to 1 end;
Erf :
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HANKEIL FUNCTION

Luis J. ScHAEFER

Purdue University, West Lafayette, Ind.

procedure HANKEL(N,X,H); value N,X;
real X; array H;
comment This procedure evaluates the complex valued hankel
function of the first kind for real argument X and integral order
N and assigns it to H. The individual Bessel- and Neuman-func-
tion series are not evaluated separately. Both the real and
imaginary parts are generated from the same terms;
begin real K, P, R, A, S, T, D, L; integer Q;
4 := R :=1; HIl]:= H[2) :=8 := 0;
for @ := 1 step 1 until N do begin R := R X Q; S := 8 +
1/Q end; D := R/N;
R :=1/R; K := X X X/4; P := (X/2)]N;
1.1544313298631;
for @ := 0, Q+1 while Q=NVL=H|2] do
begin L := H[2]; H[1] := H[1] + AXKXR;
H[2) := H[2] + AX(BXKX(T—-S) — (if Q<N then D/P
else 0));
A= AXK/Q; R:=—-R/Q+N); S:=8+1/Q+1/@Q+N);
if Q<N then D := D/(N—Q)
end; H([2] := H[2] X .31830989
end

integer N;

= In(K) +

Notes on
Programming Languages

On the Nonexistence of a
Phrase Structure Grammar for

ALGOL 60

Robert W. Floyd

Computer Associates, Inc., Woburn, Massachusetts

ALGOL 60 is defined partly by formal mechanisms of phrase structure
grammar, partly by informally stated restrictions. It is shown that no formal
mechanisms of the type used are sufficient to define ALGOL 60.

Let a phrase structure grammar be defined as a set of definitions
in the Backus notation used to define ALgoL 60 [1]. A phrase strue-
ture language, then, is a language defined by such a grammar. In
such a language, because of the finite number of syntactic types,
all sufficiently long programs (blocks) contain a substring which
in turn contains a proper substring of the same syntactic type as
itself [2, 3] Thus, the program P takes the form QRSTU, where
RST and 8 are of the same syntactic type so that either may be
substituted for the other, and S is a proper substring of RS7". Now
QRWOST®U is a syntactically correct program for any non-
negative integer 7, where R denotes 7 occurrences of the string R.

Example. An Avcor 60 program might contain the primary

(¢ X d), which in turn contains the primary ¢. It would be pos-

sible, therefore, to replace (¢ X d) by ¢ at that point in the pro-

gram, or to replace ¢ by (¢ X d) obtaining ((¢ X d) X d), ete.,
without destroying the syntactic correctness of the program.

The goal of the present paper is to exhibit a set of AncoL 60
programs of unbounded length, and show that none of them has
the property described by the first paragraph. This implies that
AvLcoL 60 is not definable by a phrase structure grammar alone.

Consider the ArgoL 60 program

begin real z™; ™ := z(" end

where z(® stands for n occurrences of the letter z. If ALgoL 60 is a
phrase structure language, we may choose n sufficiently large to
make applicable the result of the first paragraph. That is,

begin real x™; z™ = z( end

takes the form QRSTU, and QROST Y is a syntactically correct
program P; for all ¢ = 0. A block in ALGoL must contain at least
one declarator, a semicolon, and the words begin and end; since
QSU = P,is ablock, R and T can contain only the characters z and

=. Since the declarator real occurs only once and there are no
commas, only one identifier is declared in each of P;, and only
that identifier may be used in P; . Two cases arise:

(1) Neither R nor T contains :=. Then B = 2@ and T = z®
with 7 and k£ not both zero. One cannot, however, delete 2’s from
P, in two places R and T and still have all identifiers properly
declared in P, ; at least three deletions would have to be made.

(2) R or T contains :=. Since P, does not contain :=, it must
take the form

begin real 2(9; end
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