Check for
Updates

begin
temp = Ulk,jll;
U[k,yl] = ¢l X temp + ¢2 X Ulk,jl;

Ulk,j] := —c2 X temp + ¢l X Ulk,j]
end;
lab: end
end;
for 7 := 1 step 1 until n do

for j := 7+1 step 1 until n do
Al 2] := Ali,f]
end TRIDIAG

ALGORITHM 123

REAL ERROR FUNCTION, ERF(x)
MartiN CraAwWFORD AND RoBERT TECHO
Georgia Institute of Technology, Atlanta, Ga.

real procedure Erf(z); real z

comment &) = Erf(z) = (2/4/m) % e du can be computed
by using the recursive relation for derivatives with ®'(x) =
(2/\/;)6"2, where ™ (z) = —22¢0D(z) — 2(n—2)d" 2 (1),
for n = 2, 3, --- . The Taylor’s series expansions of ®(a;) are
taken about k41 points on the interval 0 < a; < z and summed
to get ®(x);

begin real A, U, V, W, Y, Z T; integer N;

Z:=0; 1: ifz % 0 then

begin if 0.5 < abs (z) then A := — sign (z) X 0.5

else A := — z;
U:=7V . :=112837917 X exp(—z12); Y :=T := -V X
4; N :=1;
2: if abs(’l') = 10— 10 then-
begin N := N + W:i=-2XzXV-2XUX(N=-2);

T: XWX /(VXN),

U V Vi=W; Y:=Y+T; goto?2end;
Z+Y :=x-|—A; go to 1 end;

=Ze

z
Erf : Erf

ALGORITHM 124

HANKEIL FUNCTION

Luis J. ScHAEFER

Purdue University, West Lafayette, Ind.

HANKEL(N,X,H); value N,X;
real X; array H;
comment This procedure evaluates the complex valued hankel
function of the first kind for real argument X and integral order
N and assigns it to H. The individual Bessel- and Neuman-func-
tion series are not evaluated separately. Both the real and
imaginary parts are generated from the same terms;
begin real K, P, R, A, S, T, D, L; integer Q;
4 := R :=1; HIl]:= H[2) :=8 := 0;
for @ := 1 step 1 until N do begin R := R X Q; S := 8 +
1/Q end; D := R/N;
R :=1/R; K := X X X/4; P := (X/2)]N;
1.1544313298631;
for @ := 0, Q+1 while Q=NVL=H|2] do
begin L := H[2]; H[1] := H[1] + AXKXR;
H[2) := H[2] + AX(BXKX(T—-S) — (if Q<N then D/P
else 0));
A= AXK/Q; R:=—-R/Q+N); S:=8+1/Q+1/@Q+N);
if Q<N then D := D/(N—Q)
end; H([2] := H[2] X .31830989
end

rocedure integer N;
P 4 5

= In(K) +

Notes on
Programming Languages

On the Nonexistence of a
Phrase Structure Grammar for

ALGOL 60

Robert W. Floyd

Computer Associates, Inc., Woburn, Massachusetts

ALGOL 60 is defined partly by formal mechanisms of phrase structure
grammar, partly by informally stated restrictions. It is shown that no formal
mechanisms of the type used are sufficient to define ALGOL 60.

Let a phrase structure grammar be defined as a set of definitions
in the Backus notation used to define ALgoL 60 [1]. A phrase strue-
ture language, then, is a language defined by such a grammar. In
such a language, because of the finite number of syntactic types,
all sufficiently long programs (blocks) contain a substring which
in turn contains a proper substring of the same syntactic type as
itself [2, 3] Thus, the program P takes the form QRSTU, where
RST and 8 are of the same syntactic type so that either may be
substituted for the other, and S is a proper substring of RS7". Now
QRWOST®U is a syntactically correct program for any non-
negative integer 7, where R denotes 7 occurrences of the string R.

Example. An Avcor 60 program might contain the primary

(¢ X d), which in turn contains the primary ¢. It would be pos-

sible, therefore, to replace (¢ X d) by ¢ at that point in the pro-

gram, or to replace ¢ by (¢ X d) obtaining ((¢ X d) X d), ete.,
without destroying the syntactic correctness of the program.

The goal of the present paper is to exhibit a set of AncoL 60
programs of unbounded length, and show that none of them has
the property described by the first paragraph. This implies that
AvLcoL 60 is not definable by a phrase structure grammar alone.

Consider the ArgoL 60 program

begin real z™; ™ := z(" end

where z(® stands for n occurrences of the letter z. If ALgoL 60 is a
phrase structure language, we may choose n sufficiently large to
make applicable the result of the first paragraph. That is,

begin real x™; z™ = z(end

takes the form QRSTU, and QROST Y is a syntactically correct
program P; for all ¢ = 0. A block in ALGoL must contain at least
one declarator, a semicolon, and the words begin and end; since
QSU = P,is ablock, R and T can contain only the characters z and

=. Since the declarator real occurs only once and there are no
commas, only one identifier is declared in each of P;, and only
that identifier may be used in P; . Two cases arise:

(1) Neither R nor T contains :=. Then B = 2@ and T = z®
with 7 and k£ not both zero. One cannot, however, delete 2’s from
P, in two places R and T and still have all identifiers properly
declared in P, ; at least three deletions would have to be made.

(2) R or T contains :=. Since P, does not contain :=, it must
take the form

begin real 2(9; end

Communications of the ACM 483

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368834.368895&domain=pdf&date_stamp=1962-09-01

Since £ and 7' consist of z’s with one occurrence of :=, P; for
1 > 0 must take the form

begin real 2U®); U i= gUd) ;= ... ;= zU®) end

containing ¢ occurrences of :=, ¢+2 occurrences of 2 and
therefore (742)(f(¢)) occurrences of z. Since the number of occur-
rences of z is a linear function ¢ + b7 of 7, we have
_a=2+b2+9)
244 2+1

a_——2b
2414

always integer-valued. Then a — 2b is zero, so f(¢) = b; and the
number of occurrences of zin P;forallz = 0is (¢ + 2)b. Then P;is

begin real z®; z® := z® end
and P is
begin real z®; end

which is not a subsequence of P; and cannot be obtained from P,
by deletions.

The conclusion to be drawn is that it is not possible to state the
formation rules of ALgoL 60 as a phrase structure grammar, so
that there must necessarily be syntactic rules stated in other ways.
The principal examples are the rules requiring the declaration of
all variables, procedures, arrays and switches. It seems likely
that similar considerations would apply to any other reasonable
language in which all variables must be declared.

REFERENCES

1. NaAUR, PETER (Ed.) BT AL. Report on the algorithmic language
AvrcoL 60. Comm. ACM 3, 5 (1960), 299-314.

2. CroMsky, N. On certain formal properties of grammars. In-
Jormation and Control 2 (1959), 137-167; A note on phrase
structure grammars. Informaiion and Control 2 (1959), 393
395.

3. Bar-Hitrer, Y., PerLes, M., anp Smamir, E. On formal
properties of simple phrase structure grammars. Zeit. Phone-
tek, Sprachwissenschaft und Kommunikalionsforschung 14
(1961), 143-172.

TALL—A List Processor for the
Philco 2000 Computer

Julian Feldman

System Development Corporation, Santa Monica, Cali-
fornia

Several of the computer languages that are oriented toward
problems in symbol manipulation use a list type of memory
organization.! The advantages of such a memory organization
have been discussed elsewhere and will not be repeated here. The
purpose of this note is to describe the method used in realizing a
list language on the Phileco 2000.

Information Processing Language V (IPL-V) was chosen as
the source language for the list processor for the 2000 because this
language has been well documented and has been implemented on

! Program and Preprints of the ACM Conference on Symbol
Manipulation. Comm. ACM 3, 4 (1960).

484 Communications of the ACM

several computers.? Heretofore, IPL-V has been implemented as an
interpretive system. The interpretive system has three major
components: (1) a loader which translates card images into in-
ternal machine words; (2) an interpreter which decodes instruc-
tions; and (3) a set of primitive processes, the ““J’s,”” which make
up the bulk of the instruction voecabulary. The implementation of
such an interpretive system has been a rather lengthy procedure
usually estimated as taking six man-months.

IPL-V has been implemented on the 2000 as a set of macro-
operations, subroutines and conventions supplementing TAC
(Translator- Assembler-Compiler, the assembly language for the
2000).3 These macro’s, subroutines and conventions will be re-
ferred to as TALL (TAC List Language). TaLL uses the loading
facilities of TAC, the IPL-V primitive processes, and a set of sub-
routines performing the work of the interpreter. The macros aid
in the translation from IPL-V to TAC. The macros and the primi-
tive processes, the J’s, can be placed on the TAC subroutine li-
brary tape and called in as required during assembly.

The implementation of IPL-V in this fashion has several ad-
vantages: (1) the time required to get a basic IPL-V system run-
ning on the 2000 was only three man-weeks; (2) symbolic machine
language instructions can easily be inserted into TALL programs;
(3) IPL-V statements can be used in conjunction with FoORTRAN
statements or JoviaL statements;t and (4) no additional work is
required to make TALL compatible with any monitor system for the
2000. A brief description of the TaLL representations of IPL-V
program and data follows.

TALL Program
The IPL-V program word has the format

P Q SYMB LINK

where P is an octal digit representing an operation code, Q is an
octal digit specifying the degree of indirection represented by
SYMB, SYMB is a machine address, and LINK is the machine
address of the next instruction. In the TarLn system, the P-Q
combinations are represented as maero-operations which have
SYMB and LINK as inputs. Thus the IPL-V program word is
represented by the following line of TAC code:

L COMMAND ADDRESS
PQnn SYMB; LINK

The macro PQnn expands this line of code into two computer
words. The first word has SYMB in the address of the left half-
word and LINK in the address of the right half-word. The second
word has a left half-word instruction which loads the first word
into the A-register and a right half-word instruction which trans-
fers to the subroutine PQnnX which finds its input parameters,
SYMB and LINK, in the A-register. The conversion of program
from IPL-V format to TaLL format is a rather simple and straight-
forward procedure that can easily be accomplished by EAM
equipment (an example is provided in the Appendix).

TALL Data

The TPL-V data word takes on various forms. The format for
IPL-V symbolic data is the same as the format for program. The
TaLL format for symbolic data is the same as the program format
with the exception that a “D”’ is added after the “PQnn.”’

!NEWELL, A., ET AL. Information processing language V
manual. Englewood Cliffs, Prentice-Hall, 1961.

Philco 2000 TAC Manual. Philco Corp., Computer Div,,
Willow Grove, Penn., May 1961.

4 Philco 2000 ALTAC Manual. Phileco Corp., Computer Div.,
Willow Grove, Penn., Feb. 1961; C. J. Suaw, JOVIAL Manual.
TM-555, System Development Corp., Santa Monica, Calif., 1961.

