
b e g i n
temp := U[k,jl];
U[k,jl] := cl X temp + c2 X U[k,j];
U[k,j] := - c 2 X temp + cl X U[k,j]

end ;
lab : e n d

end ;
f o r i := 1 s t e p 1 u n t i l n do

for j := i + 1 s t e p 1 u n t i l n do
A[/, i] := All, l]

end T R I D I A G

ALGORITHM 123
REAL ERROR FUNCTION, ERF(x)
M A R T I N CRA~VFORD AND R O B E R T TECHO

Georgia Institute of Technology, Atlanta, Ga.
real p r o c e d u r e Erf(x); real x;
c o | n m e n t (I,(x) = Er f (x) = (2/~¢/~)f~ e -~2 du can be c o m p u t e d

by u s i n g t h e r ecu r s i ve r e l a t i on for d e r i v a t i v e s wi th ,i,~(x) =
(2/V/~)e - ~ , where ¢(~)(x) = - 2x¢ ('-~) (x) - 2 (n--2)cI, ('-~) (x),
for n = 2, 3, T h e T a y l o r ' s ser ies e x p a n s i o n s of ¢(ak) a re
t a k e n a b o u t k + l p o i n t s on t h e i n t e r v a l 0 < ak ~ x a n d s u m m e d
to ge t ¢ (x) ;

b e g i n real A, U, V, W, Y, Z, T; i n t e g e r N ;
Z := 0; 1: i f x # 0 t h e n

b e g i n i f 0.5 < abs (x) t h e n A := -- sign (x) X 0.5
e lse A := -- x;
U := V := 1.12837917 X exp(-xT2) ; Y := T := - V X

A; N : = 1;
2: i f abs(T) => 10-- 10 then-
b e g i n N := N + 1; W := - -2 X x X V - 2 X U X (N - - 2) ;

T := T X W X A / (V X N) ;
U := V; V := W; Y := Y + 7'; go t o 2 e n d ;
Z := Z + Y; x := x + A ; go t o 1 e n d ;
E~:f := Z end E r r

ALGORITHM 124
HANKEL FUNCTION
Lwls J. SCHAEFER
Purdue University, West Lafayette, Ind.

p r o c e d u r e HANKEL(N,X,H); v a l u e N,X; i n t e g e r N;
r e a l X ; array H;

c o m m e n t T h i s p r o c e d u r e e v a l u a t e s t he c o m p l e x v a l u e d h a n k e l
f u n c t i o n of t h e first k i n d for real a r g u m e n t X a n d i n t e g r a l order
N a n d a s s igns i t to H. T h e i n d i v i d u a l Besse l - a n d N e u m a n - f u n c -
t i on ser ies are n o t e v a l u a t e d s e p a r a t e l y . B o t h t h e real and
i m a g i n a r y p a r t s a re g e n e r a t e d f rom t he s a m e t e r m s ;

b e g i n real K, P , R, A, S, T, D, L ; i n t e g e r Q;
A := R := 1; H[1] := H[2] := S := 0;
f o r Q := 1 s t e p 1 u n t i l N d o b e g i n R := R X Q; S := S +

1/Q e n d ; D := R / N ;
R := 1/R; K := X >< X / 4 ; P := (X/2)~N; T := ln(K) +

1.1544313298631 ;
for Q := 0, Q + I w h i l e Q=<NVL#H[2] do
b e g i n L := H[2]; H[1] := H[1] + A × K X R ;

H[2] := H[2] + A × (R × K × (T - S) - (i f Q < N t h e n D / P
e l se 0)) ;

A : = A X K / Q ; R : = - R / (Q + N) ; S : = S + I / Q + I / (Q + N) ;
i f Q < N t h e n D := D / (N - Q)

e n d ; H[2] := H[2] > .31830989
e n d

Notes on
Programming Languages

On the Nonexistence of a
Phrase Structure Grammar for
ALGOL 60

Robert W. Floyd
Computer Associates, Inc., Woburn, Massachusetts

ALGOL 60 is defined partly by formal mechanisms of phrase structure
grammar, partly by informally stated restrictions. It is shown that no formal
mechanisms of the type used are sufficient to define ALGOL 60.

Le t a p h r a s e s t r u c t u r e g r a m m a r be def ined as a se t of de f in i t ions
in t h e B a c k u s n o t a t i o n u sed to define ALGOL 60 [1]. A p h r a s e s t r u c -
t u r e l a n g u a g e , t h e n , is a l a n g u a g e def ined by s u c h a g r a m m a r . I n
s u c h a l a n g u a g e , because of t h e f ini te n u m b e r of s y n t a c t i c t y p e s ,
all suffl3.ciently long p r o g r a m s (blocks) c o n t a i n a s u b s t r i n g w h i c h
in t u r n c o n t a i n s a p rope r s u b s t r i n g of t h e s a m e s y n t a c t i c t y p e as
i t se l f [2, 3] T h u s , t he p r o g r a m P t a k e s t h e fo rm QRSTU, wh ere
R S T a n d S are of t h e s a m e s y n t a c t i c t y p e so t h a t e i t h e r m a y be
s u b s t i t u t e d for t h e o the r , a n d S is a p rope r s u b s t r i n g of RST . N o w
QR(1)ST(i)U is a s y n t a c t i c a l l y co r r ec t p r o g r a m for a n y n o n -
n e g a t i v e i n t ege r i , where R (i) d e n o t e s i occu r rences of t h e s t r i n g R.

Example. An ALGOL 60 p r o g r a m m i g h t c o n t a i n t h e p r i m a r y
(c X d), w h i c h in t u r n c o n t a i n s t h e p r i m a r y c. I t wo u ld be pos-
s ible , t he re fo re , to rep lace (e X d) by c a t t h a t p o in t in t h e pro-
g r a m , or to rep lace c by (c X d) o b t a i n i n g ((c X d) X d), e tc . ,
w i t h o u t d e s t r o y i n g t h e s y n t a c t i c c o r r e c t n e s s of t h e p r o g r a m .

T h e goal of t h e p r e s e n t p a p e r is to exh ib i t a se t of ALGOL 60
p r o g r a m s of u n b o u n d e d l e n g t h , and show t h a t none of t h e m h as
t h e p r o p e r t y desc r ibed by t h e first p a r a g r a p h . T h i s imp l i e s t h a t
ALGOL 60 is n o t def inable by a p h r a s e s t r u c t u r e g r a m m a r a lone .

C o n s i d e r t h e ALGOL 60 p r o g r a m

b e g i n real x(n); x ('o := x (n) e n d

where x(') s t a n d s for n occu r r ences of t h e l e t t e r x. If ALGOL 60 is a
p h r a s e s t r u c t u r e l a n g u a g e , we m a y choose n s u ~ . c i e n t l y l a rge to
m a k e app l i cab le t h e r e su l t of t h e f irst p a r a g r a p h . T h a t is,

b e g i n real x('); x ('*) := x (n) end

t a k e s t h e fo rm QRSTU, a n d QR(i)ST(oU is a s y n t a c t i c a l l y co r r ec t
p r o g r a m P i for all i >= 0. A b lock in ALGOL m u s t c o n t a i n a t l ea s t
one dec l a r a to r , a semico lon , a n d t h e words b e g i n a n d e n d ; s ince
QSU = Pc is a b lock, R a n d T can c o n t a i n on ly t h e c h a r a c t e r s x a n d
: = . Since t h e d e c l a r a t o r real occurs on ly once a n d t h e r e a re no
c o m m a s , on ly one iden t i f i e r is dec l a red in each of P i , a n d on ly
t h a t iden t i f i e r m a y be u sed in Pi . T w o cases ar ise :

(1) N e i t h e r R nor T c o n t a i n s : = . T h e n R = x(J) a n d T = x (k)
w i t h] a n d k n o t b o t h zero. One c a n n o t , howeve r , de le te x ' s f r o m
P~ in two p laces R a n d T a n d s t i l l h a v e all iden t i f i e r s p r o p e r l y
dec la red in P0 ; a t l ea s t t h r e e de l e t i ons wou ld h a v e to be m a d e .

(2) R or T c o n t a i n s : = . Since P0 does n o t c o n t a i n : = , i t m u s t
t a k e t h e fo rm

b e g i n real x(J); e n d

C o m m u n i c a t i o n s of t h e ACM 483

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368834.368895&domain=pdf&date_stamp=1962-09-01

Since R and 7' consist of x's with one occurrence of := , Pi for
i > 0 must take the form

b e g i n r e a l x(S(1)); x(S(,)) := x(S(O) : := x(S(1)) e n d

containing i occurrences of := , i + 2 occurrences of x(S(~)), and
therefore (i+2)(f (i)) occurrences of x. Since the nmnber of occur-
rences of x is a linear function a + bi of i, we have

a + b i a - 2b + b (2 + i) a - - 2b
f (i) -- = b + - - - -

2 + i 2 + i 2 + i

always integer-valued. Then a -- 2b is zero, so f (i) = b; and the
number of occurrences of x in Pi for all i ~ 0 is (i + 2)b. Then P1 is

b e g i n rea l x(b); x (b) : = X (b) e n d

and P0 is

b e g i n r ea l x(2b); e n d

which is not a subsequence of P~ and cannot be obtained from P~
by deletions.

The conclusion to be drawn is tha t it is not possible to s tate the
formation rules of ALGOL 60 as a phrase s t ructure grammar, so
tha t there must necessarily be syntact ic rules s ta ted in other ways.
The principal examples are the rules requiring the declarat ion of
all variables, procedures, arrays and switches. I t seems likely
tha t sinfilar considerations would apply to any other reasonable
language in which all variables must be declared.

R E F E R E N C E S

1. NAUR, PETER (Ed.) ET AL. Report on the algorithmic language
ALGOL 60. Comm. A C M 3, 5 (1960), 299-314.

2. C~OMSKY, N. On certain formal properties of grammars. In -
formation and Control 2 (1959), 137-167; A note on phrase
s t ructure grammars. Informat ion and Control 2 (1959), 393-
395.

3. BAR-HILLEL, Y., PERLES, ~VI., AND SKAMIR, E. On formal
propert ies of simple phrase s t ructure grammars. Zeit . Phone-
tik, Sprachwissenschaft und Kommunikat ionsforschung 1~
(1961), 143-172.

several computers3 Heretofore, IPL-V has been implemented as an
interpret ive system. The interpret ive system has three major
components: (1) a loader which t ransla tes card images into in-
ternal machine words; (2) an in terpre ter which decodes instruc-
t ions; and (3) a set of primitive processes, the " J ' s , " which make
up the bulk of the instruct ion vocabulary. The implementat ion of
such an interpret ive system has been a ra ther lengthy procedure
usually es t imated as taking six man-months .

IPL-V has been implemented on the 2000 as a set of macro-
operations, subroutines and conventions supplement ing TAC
(Translator-Assembler-Compiler , the assembly language for the
2000)? These macro's , subroutines and conventions will be re-
ferred to as TALL (T A C List Language). TALL uses the loading
facilities of TAC, the IPL-V primitive processes, and a set of sub-
routines performing the work of the in terpreter . The macros aid
in the t ransla t ion from IPL-V to TAC. The nmcros and the primi-
t ive processes, the J 's , can be placed on the TAC subroutine li-
brary tape and called in as required during assembly.

The implementat ion of IPL-V in this fashion has several ad-
vantages: (1) the t ime required to get a basic IPL-V system run-
ning on the 2000 was only three man-weeks; (2) symbolic machine
language instruct ions can easily be inserted into TALL programs;
(3) IPL-V s ta tements can be used in conjunction with FOlZTRAN
s ta tements or JOVIAL s ta tements ; 4 and (4) no addit ional work is
required to make TALL compatible with any monitor system for the
2000. A brief description of the TALL representat ions of IPL-V
program and data follows.

TALL P r o g r a m

The IPL-V program word has the format

P Q SYMB L I N K

where P is an octal digit represent ing an operation code, Q is an
octal digit specifying the degree of indirection represented by
SYMB, SYMB is a machine address, and L I N K is the machine
address of the next instruct ion. In the TALL system, the P-Q
combinations are represented as macro-operat ions which have
SYMB and L I N K as inputs. Thus the IPL-V program word is
represented by the following line of TAC code:

TALL A List Processor for the
Philco 2000 Computer

Julian Feldman
System Development Corporation, Santa Monica, Cali-
fornia

L C O M M A N D A D D R E S S

PQnn SYMB; L I N K

The macro PQnn expands this line of code into two computer
words. The first word has SYMB in the address of the left half-
word and L I N K in the address of the right half-word. The second
word has a left half-word inst ruct ion which loads the first word
into the A-register and a right half-word inst ruct ion which t rans-
fers to the subroutine PQnnX which finds its input parameters ,
SYMB and LINK, in the A-register. The conversion of program
from IPL-V format to TALL format is a ra ther simple and s t ra ight-
forward procedure tha t can easily be accomplished by EAM
equipment (an example is provided in the Appendix).

T A L L D a t a

Several of the computer languages tha t are oriented toward
problems in symbol manipulat ion use a list type of memory
organizat ion? The advantages of such a memory organization
have been discussed elsewhere and will not be repeated here. The
purpose of this note is to describe the method used in realizing a
list language on the Philco 2000.

Informat ion Processing Language V (IPL-V) was chosen as
the source language for the list processor for the 2000 because this
language has been well documented and has been implemented on

1 Program and Prepr ints of the ACM Conference on Symbol
Manipulat ion. Comm. A C M 3, 4 (1960).

The IPL-V data word takes on various forms. The format for
IPL-V symbolic data is the same as the format for program. The
TALL format for symbolic data is the same as the program format
with the exception tha t a " D " is added after the " P Q n n . "

2NEWELL, A., ET AL. Informat ion processing language V
manual. Englewood Cliffs, Prentice-Hall , 1961.

3Philco 2000 TAC Manual. Philco Corp., Computer]_)iv.,
Willow Grove, Penn. , May 1961.

4 Philco 2000 ALTAC Manual. Philco Corp., Computer Div. ,
Willow Grove, Penn. , Feb. 1961; C. J. SrlAW, JOVIAL Manual.
TM-555, System Development Corp., Santa Moniea, Calif., 1961.

484 C o m m u n i c a t i o n s o f t h e A C M

