Check for
Updates

ALGORITHM 125

WEIGHTCOEFF

H. RUTISHAUSER

Eidg. Technische Hochschule, Zurich, Switzerland

procedure weighicoeffl (n,q,e,eps,w,x); value n; real eps;
integer n; array ¢,6,w,T;

comment Computes abscissae i and weight coefficients w; for

a Gaussmn quadrature method fo w(x)f(x) de =~ ZL L wif (o),

where fo w(z) dz = 1 and w(x) = 0. The method requires the order
n, a tolerance eps and the 2n—1 first coeflicients of the continued

fraction
fwl@ Ul rl o o _
foz—x‘“‘lz [T PR TR P

to be given, the latter as two arrays ¢[1:n] and e[l:n—1] all com-
ponents of which are automatically positive by virtue of the con-
dition w(z) = 0. The method works as well if the upper bound b
is actually infinity (note that b does not appear directly as param-
eter!) or if the density w(z) dz is replaced by da(x) with a mono-
tonically increasing a(z) with at least n points of variation. The
tolerance eps should be given in accordance to the machine ac-
curacy, e.g. as 10— 10 for a computer with a ten-digit mantissa. The
result is delivered as two arrays w[l:n] (the weight coefficients)
and z[l:n] (the abscissae). For a description of the method see
H. Rutishauser, “On a modification of the QD-algorithm with
Graeffe-type convergence’ [Proceedings of the IFIPS Congress,
Munich, 1962].;
begin
integer k;
Boolean ifest;
real m, p;
array g[l:n];
procedure red (a,f,n); value n; integer n; array a,f;
comment subprocedure red reduces a heptadiagonal matrix
a to tridiagonal form as described in the paper Joe. cit. Since
the bulk of the computing time of the whole method is spent
in this subprocedure, it would pay to write it in machine
code.;
begin
real ¢; integer jk;
for k := 1 step 1 until n—1 do

begin
for j := k step 1 until n—1 do
begin
¢ := —fli] X al5,71/alj,2];
alf,7] := 0;

alj+12] := a[j+1,2] + ¢ X aly,5];
0/[].,1] = a/[]yl] —c¢X f Xa[] 4
alj 6] := alj 6] — ¢ X als+1,1];

alj+1,3] := a[j+1,3] — ¢ X alj+1,6];
end j;
for j := k step 1 until n—1 do
begin

510 Communications of the ACM

J. H. WEGSTElN Editor

¢ := —flj] X alj,4l/ali1];

aljd] := 0;

alj+1,1] := alj+1,1] + ¢ X als ,6];
alj-+1,6] alj+1,6) + ¢ X a[j+1,3];

ali 5] = ali5] — ¢ X ali+1,2];

alj41,0] := alj+1,0] — ¢ X alj+1,5];
end j;
for j := k41 step 1 until n—1 do
begin
c

—alj,31/ali—1,6};

alj,3] = 0;
ali 6] := alj,6] + ¢ X alj,1];
ali—1,5] := alj—=1,5] — ¢ X fli1 X fl5] X aly,0];
alj,2] := alj,2] — ¢ X f[] I X fl5] X als,5];
ali,7] = alj,7] — ¢ X fli1 X al7+41,2];
end j;
for j := k-1 step 1 untiln—1do
begin
¢ 1= —alj,0]/ali—1,5];
alj,0] := 0;
alj+1,2] 1= ali+1,2] + ¢ X fli] X al,7];
alj,b) := a[f, 1+ ¢ X alf,2];
alj,1] := alj,1]1 — ¢ X [I7] X Jl7] X alj.6];
alj 4] := afj4] — ¢ X fli] X ali+1,1];
end j;
end k;
end red;

procedure gdgracfle (n,h,g,f); value n;
integer n; array h,g,f;
comment Subprocedure gdgra¢ffe computes for a given
finite continued fraction

1] €1 qz L0
- gl

another one, the poles of which are the squares of the poles of
f(2). However gdgracffe uses not the coefficients ¢1, -+, ¢«
and e, , -+- , en_; of f(2), but the quotients

If k= Gt/ (lk}
Lor = ex/qrit

and the hy = n(abs(qw)) (k= 1,2,---,n), and the results are
delivered in the same form. Procedure gdgraeffe can be used
independently, but requires subprocedure red above;

I

begin
integer k; array a[0:n,0:7];
gln] := fln]
for k := 1 step 1 until n do
begin

alk—1,4] := alk—1,5] :=1

all1] = alk,2] == 1+ glk] X Jlb;
alk,6] := afk,7] := glk];
alk,0] := alk,3] := 0;

comment The array a represents the heptadiagonal
matrix Q@ of the paper loc. cit., but with the modifications
needed to avoid the large numbers and with a peculiar

‘

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368959.368977&domain=pdf&date_stamp=1962-10-01

arrangement.;

end I;
aln,5] := 0
red(a,f,n);

for k := 1 step 1 until » do
hlk] = 2 X hlk] + fn(abs(alk,1] X alk,2]));
comment A saving might be achieved by economizing the
log-computation in the range .8 £ z £ 1.2;
for k := 1 step 1 until n—1 do
begin
Tkl := flk] X flk] X alk+1,2] X elk+1,11/(alk,1] X alk,2]);
glk] := alk,5] X alk,6]/(alk+1,1] X alk+1,2})
end k;
end qdgraeffe;
L1: z[1] := q[1] + e[l];
for k := 2 step 1 until n do
begin
glk—1] := e[k—1] X qlk]/z[k—1];
zlk] := qlkl + (if k=n then 0 else e[k]) — glk—1];
glk—1] := glk—1]/z[k];
wlk—1) := zlk]/zlk—1];
zlk—1) := n(xk—11);

end k;
z[n] 1= fn(zn);
L2: p:=1;
L.25: begin
lest .= true;

fork := 1 step 1 until n—1 do
test := test N abs(glk] X wlk]) < eps;
if test then go to L3;
qdgraeffe (n,z,g,w);
end;
p=2X p;
go to 125;
comment What follows is a peculiar method to compute
thewy, from given ratios gr = wey.1/wy suchthat Y iy wy = 1,
but the straightforward formulae to do this might well
produce overflow of exponent.;
L3: wll] :=m :=0;
for k := 1 step 1 until n—1 do
begin
wlk+1] := wlk] + In(glkl);
if wlk] > m then m := wlk);
end k;
for & := 1 step 1 until n do wik] := exp(wik]—m);
m = 0;
fork := 1 step 1 until n do m := m 4 wlk];
for k := 1 step 1 until n do begin w(k] := wik]/m;
z[k] := exp(zlk]/p) end;
end weighicoeff

ALGORITHM 126

GAUSS’ METHOD

Jay W. Counts

University of Missouri, Columbia, Mo.

procedure gauss (u,',a,y);

real array a,y; integer u;

comment This procedure is for solving a system of linear equa-
tions by successive elimination of the unknowns. The augmented
matrix is @ and « is the number of unknowns. The solution veetor
is y. If the system hasn’t any solution or many solutions, this is
indicated by the go to error where error is a label outside the
procedure.;

begin
integer 7,j,km,n;
n = 0;

ck0: n:=n+4+1;
for k& := n step 1 until % do if afk,n] # 0 then go to ckl;
go to error;
ckl: if k = n then go to ck2;
for m := n step 1 until u+1 do
begin
temp = aln,m]; aln,m] := alk,m]; alkm] := temp
end;

ck2: for j := u + 1 step —1 until n do aln,j] := a[n,jl/aln,nl;
for i := Lk + 1 step 1 until « do
forj :=n + 1 step 1l until v + 1 do
ali,il := ali,j]l — ali,m] X aln,jl;

if n=#u then go to ck0;
for 7 := u step —1 until 1 do
begin
yli] := ali,u + 1)/ali,i];
fork := 17 — 1 step —1 until 1 do
alku + 1] 1= alk,u + 1] — alk,7] X yli]

end end;

ALGORITHM 127

ORTHO

PHiuie J. WaLsu

National Bureau of Standards, Washington, D. C.

procedure ORTHOW,Y ,Z n,fn,m,p,r aaui,mui,zet,X ,DEV,
COF ,STD,CV,VCV ,gmdi,Q,Q2,E,EP,A,GF ENF);

value n,m,p,r,at,aui,mus ,zet;

real fn gmdt;

avray W,Y,Z X, DEV COF STD,CV,VCV,Q,Q2,E,EP,AGF,ENF;

integer n,m,p,r,at,aui,zei,mus;

switch af := atlat2; switch ze := zel, ze2;

switch au := aul,au2; switch my 1= mul, mu2, mu3;

comment ORTHO is a general purpose procedure which is
capable of solving a wide variety of problems. For a detailed
discussion of the applications listed below and other applica-
tions, see (1) Philip Davis and Philip Rabinowitz, ‘A Multiple
Purpose Orthonormalizing Code and Its Uses,” J. ACM 1
(1954), 183-191, (2) Philip Davis, “Orthonormalizing Codes in
Numerical Analysis,” in J. Todd (Ed.), A Survey of Numerical
Analysis, Ch. 10 (MecGraw-Hill, 1962), (3) Philip Davis and
Philip Rabinowitz, ‘“Advances in Orthonormalizing Computa-
tion,” in F. L, Alt (Ed.), Advances in Computers, Vol. 2, pp. 55—
133 (Academic Press, 1961), (4) Philip J. Walsh and Emilie V.
Haynsworth, General Purpose Orthonormalizing Code, SHARE
Abstr. %850. ArpricaTions: (a) orthonormalizing a set of
vectors with respect to a general inner produet, (b) least squares
approximation to given functions by polynomial approximations
or any linear combination of powers, rational functions, trans-
cendental functions and special functions, such as those defined
numerically by a set of values, (¢) curve fitting of empirical data
in two or more dimensions, (d) finding the best solution in the
l.s.s. to a system of m linear equations in n unknowns (n=m),
(e) matrix inversion and solution of linear systems of equations,
(f) expansion of functions in a series of orthogonal functions,
such as a series of Legendre or Chebyshev polynomials.

The following information must be supplied to the procedure.
(We are considering here the approximation feature of the pro-
cedure.)

n the number of components per vector (excluding augmenta-
tion)

m the number of vectors used in the approximation. For a
polynomial fit of degree ¢, set m=1t41.

p the number of augmented components per vector. A feature
of this procedure is that once the approximating vectors

Communications of the ACM 511

have been orthonormalized, they may be used in approxi-
mating r functions without repeating the orthonormali-
zation procedure on the original approximating vectors.
r the number of functions to be approximated.
at a switch control concerning the approximating vectors.

With az=1, the procedure selects the first n components
of the first row of [Z], supplied by user. The ¢ powers of
these values are computed and stored into working loca-
tion [X], 2=0(1)m—1. This is the usual set up for a poly-
nomial fit. With az=2, the procedure selects the first n
components of the first m rows of [Z] supplied by user and
stores them into working location [X].

aut a switch control concerning augmentation on the approxi-
mating vectors. If p=0, this switch is ignored. With
aui=1, regular augmentation is applied to the vectors in
[X]. p zeros are stored after the nth component of the first
m rows of [X]. The (n+:)th component is replaced by
1.0, 2=1(1)m. With auz=2, special augmentation is ap-
plied to the vectors in [X]. The p components located after
the nth component of the first m rows of [Z] supplied by
the user augment [X].

zet a switeh control concerning augmentation on the functions
to be approximated. If r=0, this switch is ignored. With
zet=1, regular augmentation is applied to the functions
during the calculation. The n components of the first r
rows of [Y] supplied by user will be augmented by p zeros
when moving [Y] to [X]. With zei=2, special augmenta-
tion is applied. The first n components of the first r rows
of [Y] are the functional values supplied by user. The next
p components of the first r rows of [Y] are special values
also supplied by user.

mui a switch control concerning weights. [W] is an n X = real,
positive definite, symmetric matrix of weights. It is gen-
erally diagonal and often the Identity matrix. mui=1
when [W]=1,, the matrix [W] need not be supplied.
mui=2 when [W] is diagonal, but not I, . The procedure is
supplied the n diagonal elements of [W], but stored in the
first row of matrix [W]. mui=3 when the full weighting
matrix is supplied to the procedure.

The following list of matrix arrays is given to aid the user in
determining the number of components and vectors in the input
and results. W(l:n,1:n], Y[lir,lint+pl, Zl:m1l:n+p],
X[1:m+1,1:n+p], DEV[lir,l:an], COF[l:r1:p]l, STD[l:r],
CVl:p+1,1:p), VCVIL:irl:p+1,1:p], QIl:rlim+1], Q2, E,
EP[1:r1:m], A[l:m,1:p], GF[l:im~+r], ENF[l:m].

The results of the procedure are stored in the following loca-
tions. The user must be sufficiently familiar with the theory to
know which results are relevant to his application of the pro-
cedure. All vectors are stored row-wise in the matrices listed
below.

X orthonormal vectors

DEYV deviations

COF coefficients

STD standard deviations

CV covariance matrix, stored in upper triangular form.
The (p+1)st row contains the square root of the
diagonal elements of the matrix.

VCV variance-covariance matrices, stored in upper triangu-
lar form with the (p41)st rows containing the square
root of the diagonal elements. There are r such
matrices, the first subseript running over the r values.

gmdt QGram determinant value

Q Fourier coeflicients

Q2 squared Fourier coefficients

E sum of the squared residuals

EP residuals

A a lower triangular matrix used to calculate the co-
variance matrix. CV = A’A.

512 Communications of the ACM

GF

Gram factors

ENF norms of the approximating vectors;

begin

integer npp, npm, ml, n2, m2, rl, rbar, p2, bet, rhi, 118, gai, sii, i,
7, det, mut, elzl, elz2, k, the, ali, omz, niz;

array PK,XP{l:n+p], QK[l:m+1];

real denom,sum,dk2,dk,fi,ss,ssq;

switch be := bel, be2; switch rh := rhl,;7h2; switch ga :=
gal,ga2;

switch s := si1,812; switch de := del,de2; switch nu :=
nul,nu2;

switch th := thl,th2,th3;

switch al := all,al2;

switch om := oml,om2;
npp := n+p;npm = n+m;ml := m—1;n2 := n41;m2 := m+1;

rl := 0;

rbar :=r; p2:= p+1;denom := if n=m then 1.0

else sqrt(n—m); bet 1= rhi := 718 := 1;
if (p=0) then gat := sit := 2 else gat := si7 := 1;

bozl:
atl:

at2:

box2:
aul:

au:

box3:
box4:
boxb:

box6:
mul:

mu2:

mud:

box7:
oml:

om2:

box8:
del:

box8a:

box8b:
de2:

go to atlaz];

for j := 1 step 1 until n do begin

X270 = Z(1,5); X[1,5] := 1.0 end;

for ¢ := 2 step 1 until ml do begin

for j := 1 step 1 until n do

X[e+1,5] := X[z,j] X X[2,j] end; go to boz2;

for ¢ := 1 step 1 until m do begin

for j := 1 step 1 until n do

X[z,4] := Zli,j] end;

if p=0 then go to bozx3 else go to aulaui];

for 7 := 1 step 1 until m do begin

for j := n2 step 1 until npp do

X[¢,7] :=0.0; X[i,n+7]:=1.0end; go to box3;

for i := 1 step 1 until m do begin

for j := n2 step 1 until npp do

X[i:].] o= Z['L:]] end;

det := nui = elzl 1= 122 :=k := 1;

tht :=1;

alt := omi :=1; if p=0 then go to box6 else

for j := 1 step 1 until p do PK[n-j] := 0.0;

go to mulmuil;

for ¢ := 1 step 1 until n do PK[{] := X[k];

go to box7;

for iz := 1 step 1 until = do

PK[] := X[ks] X W[1,i]; go to boxT;

for 7 := 1 step 1 until » do begin sum := 0.0;

for j := 1 step 1 until n do sum := sum + Xk,j] X
Wli,j1; PK[Z] := sum end;

go to om[omi);

for 7 := 1 step 1 until & do begin sum := 0.0;

for j := 1 step 1 until npp do
sum = sum + PK[j] X X[z,j];
go to boz§;

dk2 := 0.0; for ¢ := 1 step 1 until npp do
dk2 := dk2 + PK[i] X X[k,zi];

dk := sqri(dk2);

GF[18] := dk; 418 := 418 4 1;

for ¢z := 1 step 1 until npp do

Xk,7] := Xlk,2]/dk;

]

QK[7] := sum end;

omi :=1; go to boxb;

go to deldet];

elzl := —elzl; if €l121<0 then go to box8b else
go to box8a;

for 7 := 1 step 1 until k—1 do

QK] := —QK[i]; QKI[k] := 1.0;

for 7 := 1 step 1 until npp do begin

sum = 0.0; for j :=1stepl until £ do

sum = sum + X[j,7] X QK[j];

XPli] := sum end; go to boz9;

ENF[218] := sqrt (QK[k]); go to boxz8a;

elz2 := —elz2; if €122<0 then go to boz8c else

box8¢:

box8d :
box9:
thl:

th2:

th3:
boxl0:
all:
al2:

boxll:
nul:
nu2:

boxl2:
bel:

be2:
boxl3:
gal:
ga2:

boxl4:
rhl:

zel:

ze2:

rh2:

stl:
812

go to boz8a;

for ¢ := 1 step 1 until m do begin

Q[r1,i] := QK[i); Q2[rl,i] := QK] X QKI[i] end;
Q[r1,m2) := QKm2); E[rl,1] := Q[r1,m2]—Q2[r1,1];
for j := 2 step 1 until m do

Efrl,j) := Elrl,j—1] — Q2[rljl;

fi :=1.0;

for 7 := 1 step 1 until m do begin

if (fn—f7)>0.0 then begin if E[r1,{]<0.0 then begin

EP[r1,i] := —sqrt(abs(E[r1,3))/(fn—fi)); go to box8d;
end

else EP[rl,i] := sqrt(E{rl,il/(fn—f7));

go to boz8d; end else Efrlz:] := —1.0;

fi := fi41.0; end go to boz8a;
go to th[thi]; :
for 7 := 1 step 1 until npp do
X[k,7] := XP[i]; go to boxl0;
for ¢ := 1 step 1 until » do
DEV[rl,i] := XPlil;

for 7 := 1 step 1 until p do

COF[r1,3] := —XP[n+1]; thi := 3; go tothl;
go to bozll;

go to allali];

omi := ali ;= 2; go to bozb;

if k<m then begin k := k+1; go to bor4; end
else go to bozxl2;

go to nulnuil;

nut := 2; go to borl4;

ss 1= dk/denom; ssq := ss X ss;

STDI[rl] := ss; go to boxl4;

go to belbei];

for ¢ := 1 step 1 until m do begin

for j := 1 step 1 until p do

Ali, j]1 = X[i, n + j] end;

gmdt := 1.0; for i := 1 step 1 until m do
gmdt 1= gmdt X (GFY1/ENFi]);

gmdt := gmdt X gmdt; dei := bei := thy := 2;
k:=k+1; go to borld;

go to bozxll;

go to galgai];

go to boxll;

for ¢ := 1 step 1 until p do begin

for j := 7 step 1 until p do begin

sum = 0.0;

for nit := 1 step 1 until m do

sum = sum + Alnii, 7] X Alnit, j];

CV[i, §] := sum end end;

for 7 := 1 step 1 until p do

CVIp2, i) := sqrt(CVi, 2]); gat := 1; go to boxll;

go to rh[rhi];

if rbar = 0 then go to final else rbar := rbar —1;
rl ;=71 4+ 1; thi :=rthi := 2; go to ze[zet];
for z := 1 step 1 until n do

X[m2, 1] := Y[rl, ©);

for ¢ := 1 step 1 until p do

X[m2, n+1i] := 0.0; go to box5;

for ¢ := 1 step 1 until npp do
X[m2, 7] := Y[rl, 7]; go to boz5;
go to si[siz];

go to rhl;

for ¢ := 1 step 1 until p do begin

for j := 7 step 1 until p do

VCVirl, 7, §] := ssq X CVIi, j] end;

for 7 := 1 step 1 until p do

VCVIrl, p2, 7] := ss X CVI[p2, 7]; go to 7hl;

final: end ortho

ALGORITHM 128

SUMMATION OF FOURIER SERIES
M. WeLLs

University of Leeds, Leeds 2, England*

* Currently with Burroughs Corp., Pasadena, Calif.

procedure Fourier (X, r, w, n, A, B);
value n; real X, w, A, B; integerr, n;
comment Fourier sums a one-dimensional Fourier series,
using a recurrence relation described by Watt [Computer
J. 1,4(1959) 162]. The parameters are the coefficients X, which
are selected by 7, w, the argument and n the total number of
terms in the series. On exit 4 = D .o X,cos(rw) and
B = 2.3 X.sin(rw). Fourier is particularly efficient
where X, = Ofor all r > somer; and X, % 0 forall r £ r, .;
begin real ¢, ir, irl, cosw2;
trl :=0; cosuw2 := 2 X cos{w);
for r := n—1 step —1 until 0 do
begin if X # 0 then go to term end search for nonzero term;
tr := 0; go to all zeroes;
term: tr := X; forr := r—1 step —1 until 0 do
begin t := ir X cosw2 + X — trl; trl := tr; tr := { end
recurrence;
all zeros: A = tr — trl X cosw2/2; B := trl X sin(w)
end Fourier series

CERTIFICATION OF ALGORITHM 40

CRITICAL PATH SCHEDULING [B. Leavenworth,
Comm. ACM (Mar. 1961)]

Lars HELLBERG

Facit Electronics AB, Solna, Sweden.

The Critical Path Scheduling algorithm was transliterated into
FaciT-ALcoL-1 and tested on the Facrt EDB. The modifications
suggested by Alexander [Comm. ACM (Sept. 1961)] were included.
Results were correct in all tested schedules.

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communications, February, 1960) except that ALGOL 60
notation should be used (see Communications, May 1960).
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Laboratory, National Bureau of Standards,
Washington 25, D. C. Algorithms should be in the Reference
form of ALGOL 60 and written in a style patterned after the
most recent algorithms appearing in this department. For
the convenience of the printer, please underline words that
are delimiters to appear in boldface type.

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communicalions
issue bearing the algorithm.

Communications of the ACM 513

REMARK ON ALGORITHM 73

INCOMPLETE ELLIPTIC INTEGRALS [David I
Jefferson, Comm. ACM (Dec. 1961)]

Davip K. JEFFERSON

U. 8. Naval Weapons Laboratory, Dahlgren, Virginia

In regard to Algorithm 73, two errors were found:
The 34th line of the procedure

F := abs(k) X sqrt (L1 —sinphi T 2)
X A=k 12X sinphi T 2) T (2X n—=1)/2 X n));
should read
F := abs(k) X sqrt (1—sinphz T 2)
X 1=k 12X sinphi 7 2) T ((2X n=1)/2)/(2 X n);
The 37th line
L2] := L1] 4+ 1/(n X 2 X n—1));
should read
L[2] := L1] + 1/(n X 2 X n—1));

In addition, efficiency is improved by interchanging lines 13
and 14:
Step 1: n := n+1;
cosphi := cos(phz);
can be replaced by
cosphi:=cos(pht);
Step1: n:=n 4 1;

CERTIFICATION OF ALGORITHM 87

PERMUTATION GENERATOR [John
Comm. ACM (Apr. 1962)]

G. I'. ScHrACK and M. SHIMRAT

University of Alberta, Calgary, Alb., Canada
PERMUTATION GENERATOR was translated into FORTRAN

for the IBM 1620 and it performed satisfactorily. The algorithm

was timed for several small values of n. For purposes of comparison

we include the times (in seconds) for PERMULEX (Algorithm
102).

R. Howell,

n|34567

PERMUTATION GENERATOR ‘ 3 41 58 — —
PERMULEX |— 3 6 37 218

As can be seen from this table, PERMUTATION GENERATOR is
considerably slower. It is probable that one could speed up
PERMUTATION GENERATOR to a great extent by rearranging
the algorithm in such a manner that the digits of a number to a
certain base are permuted rather than the elements of a sequence.

CERTIFICATION OF ALGORITHM 93

GENERAL ORDER ARITHMETIC [Millard H. Per-
stein, Comm. ACM (June 1962)]

RicHARD GEORGE

Particle Accelerator Div. Argonne National Laboratory,
Argonne, Il1.
Algorithm 93 was programmed for the IBM 1620, using

“ForTRAN-Tecursion’’ (i.e., generous use of the copy rule). The

program ran without any modifications and was tested through

tetration. Further levels were available, but were too time-
consuming to reach.

514 Communications of the ACM

CERTIFICATION OF ALGORITHM 115
PERM [H. F. Trotter, Comm. ACM (Aug. 1962)]
G. F. ScHrRACK

University of Alberta, Calgary, Alb., Canada

PERM was translated into ForTrAN for the TBM 1620 and it
performed satisfactorily. Timing tests were carried out under the
same conditions as for PERMUTATION (Algorithm 71) and
PERMUTE (Algorithm 86).

PERM is indeed the fastest permutation generator so far en-
countered. For n = 8, PERM is 25%, faster than PERMUTE
(989 against 1316 sec.). The values for r, are (for a definition of
s , see Certification of Algorithm 71, Comm. ACM, Apr. 1962):

n 6 7 8
Tn .92 .95 .98

ACM Sort Symposium

November 29, 30, 1962
Nassau Inn, Princeton, N. J.

Featuring
... Latest techniques implemented by computer
manufacturers and users

... Hypothetical solutions for future generation
computers

... New techniques for computers having special
peripheral devices

Open Discussion Periods Will Follow Each Paper

Are you a member of the computing profession?
Are you interested in sorting?
If so, you are urged to attend and participate
Advance Registration Required

No Registration Fee
Only advance payment for lunch

Conference Chairman: MarTIN A. GoOrrz,
Applied Data Research, Inc., Princeton, N. J.
Address registration requests and inquiries to:

Mrs. L. R, Becker, Applied Data Research, Inc.,
759 State Road, Princeton, N. J.

ACM SORT SYMPOSIUM PROGRAM, PAGE 543

