
C o m m e n t on Analyt ic Dif ferent iat ion by C o m p u t e r
Dear Editor:

In the article by James W. Hanson, et al., "Analytic Differen-
tiation by Computer" [Comm. ACM 6 (June 1962), 349-355], the
authors make the following statement with respect to the final or
output phase of the program: "The precedence list for the oper-
ators is employed in this algorithm in order to avoid the insertion
of redundant parentheses into the output string." If one uses, in
output, the precedence list given in the article, parentheses will
not always be inserted correctly. The expression

(X • A - (A . X -4- B)) /XP2

when broken down into the parentheses-free form by the Ershov
algorithm and then reconstructed by the output algorithm
(without differentiating) becomes

(X . A - A . X + B) / X P 2 .

This, and similar errors, may be corrected by using the following
precedence list,

p(.) > p(P) > p(~) > p(/) > p(*) > p (-) > p(+) > p(()

= p ()) > p (~) = p (~) .

In passing, it should be noted that in the flow chart given in
Fig. 3, there should be a (j ~ j - 1) immediately after the test
(j > ~ +1) .

GARY BOSWELL
Bell Helicopter Co.
Fort Worth 1, Tex.

An Algebraic Compi ler for the FORTRAN
A s s e m b l y Program
Dear Editor:

An algebraic compiler has been written which may be added to
the FORTRAN Assembly Program. This compiler will expand all
algebraic statements with the following operations: addition,
subtraction, multiplication and division. I t will compile multi-
level expressions in floating-point arithmetic (this can easily be
revised to fixed-point). I t is called for by a pseudo-operation
(EXPR) requesting a compilation of the expression found in the
variable field. The method of compiling has been fashioned after
that described by D. J. Dijkstra [1]. In brief, the expression is
translated into a Polish string and the string is then compiled.
The compilation is in floating point and the number of argu-
ments is a function of table lengths.

One additional feature of the compiler is the ability to compile
indirect addressing into an expression. At the suggestion of W. H.
Wattenburg, the character string left parenthesis, name, right
parenthesis, i.e., (name), can uniquely define indirect addressing
on the name within the parentheses. This feature has been in-
corporated into the compiler. I t has been thought that it will be
useful since the compiler is contained in an assembly program.

Another feature is the ability to handle multiple assignments
in a number of ways. The following expressions are equivalent:

EXPR A=B=C+]) /E
EXPR A = (B = C + D / E)
EXPR A = C + D / E = B

Also, there is no necessity for an assignment character. If there
is no assignment, the result will be left in the accumulator register.
A by-product of multiple assignments is that a portion of an ex-
pression may be stored. Thus:

EXPR A= (B = C + D) / E

I t is felt that this will be a useful tool in scientific computation.

Example:

SQRT SXA XR4,4
STO N
AXT 4,4
EXPR XZERO=5. 1st approximation to root

ITER EXPR XZERO=XZERO*XZERO
EXPR XZERO = XZERO ((3*N+XZERO2)/

(3*XZERO2+N))
TIX ITER,4,1
CLA XZERO

XR4 AXT **,4
TRA . 1,4

N PZE
XZERO PZE

END

REFERENCE :
1. DIJKSTRA, D. J. Making a Translator for ALGOL 60. Auto-

matic Programming Information g7 (May, 1961), Mathe-
matisch Centrum, Amsterdam.

A. D. STIEGLER
Lockheed Missiles and Space Co.
Palo Alto, Calif. ~

More on Tes t ing BCD Words w i th FORTRAN

Dear Editor:

The article'S'Low Level Language Subroutines for Use Within
F O R T R A N " , ' b y M. P. Barnett appeared in the November 1961
issue of the Communications (pp. 492-495) and was subsequently
followed by letters to the editor from Otto Mond and R. E.
!)ickie in the February 1962 (p. 78) and June 1962 (p. 364) issues
respectively. In each instance a method for comparing two bed
words was discussed. This note points out a rather convenient
method of performing this test.

Since some installations may not have the available software,
i t should be noted that this meth0~ requires the 32K 709/7090
FORTRAN system having the Boolean arithmetic statement
feature.

Using the FORTRAN Boolean op.e~ations, the test may be de-
rived using the following notion of set theory: Let A and B be two
arbitrary BCD words; then A * (- B) ~. 0 in case A < B (i.e.,
an appropriate masking of B will yield A); similarly -A*B_~O
in case B < A. Hence, the expression A * (- B) + (- A) * B will
be zero in case A is identical to B, leading to the i f statement

B if (A*(-B) + (- A) *B) N1, N j , N3

where N2 is the statement transferred to in case A is identical
to B, and N1 is the statement transferred to otherwise.

C. A. OSTER
EDP Operagon
General Electric Co.
Riehland, Wash.

Communicat ions of the ACM 545

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368996.368999&domain=pdf&date_stamp=1962-11-01

