J. H. WEGSTEIN, Editor

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communications, February, 1960) except that ALGOL 60
notation should be used (see Communications, May 1960).
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Laboratory, National Bureau of Standards,
Washington 25, D. C. Algorithms should be in the Reference
form of ALGOL 60 and written in a style patterned after the
most recent algorithms appearing in this department. For
the convenience of the printer, please underline words that
are delimiters to appear in boldface type.

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material, and no responsi-
bility 1s assumed by the contributor, the editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

ALGORITHM 129

MINIFUN

V. W. WHITLEY

Signal Missile Support Agency, White Sands Missile
Range, N. Mex.

procedure MINIFUN (i1, bl, eps, n, nent, fmin, zmin, k1,
GFUN);
value i1, b1, eps, n, nent; integer n, nent, k1; real fmin;
real procedure GFUN; array (1, bl, eps, xmin;
comment MINIFUN is a subroutine to find the minimum of a
function of n variables, using the method of steepest descent.

Input is:

1. t1(), <= 1,2, -+ ,n, the upper limits of the search region

2. bl(z),1 =12, .-+, n, the lower limits of the search region

3. eps(®), i = 1,2, .-, n, the convergence criteria. The fune-
tion must, be a minimum in the region | z(z) — xmin() |
= epsit)

4. n, the number of variables (the dimension of the arrays)

5. ncni, the maximum number of iterations. The routine
searches for a minimum until | z(#) — zmin(@) | < eps()
for all 7, or until Z¢cn = ncent, whichever happens first.

Output is:

1. fmin, the minimum value of the function

2. zmin(i), 1 = 1, ---, n, the point at which the minimum
oceurs

3. k1, an error code

If k1 = 1, 2 minimum has been found within the specified
number of iterations and the minimum is less than all

550 Communications of the ACM

values of the function at the centers of the planes forming
the boundary of the epsilon-cube
If k1 = 2, Az(2) < eps(Z) but a new minimum has been found
If k1 = 3, nent has been exceeded without Az(z) < eps(d).
In this case, a test is made to see if the current minimum
is a minimum in the epsilon-cube.

MINIFUN has been written as a Forrran II subroutine and is
available from the SMSA Computation Center. It should be
noted that the FortraN II deck has been tested only on some
relatively simple functions of two variables, such as GFUN
(z,y) = cos(zy). The writer does not claim that the algorithm
has been thoroughly tested;

begin integer j, ¢, tent, k; real w, dmax, alamb, ft;
array wnew [l:n], zt[l1:n], £1b[l:n], zub [1:n],
delz(l:n], d12z[1:n], zmin{lin], z{lin, 1:4], gll:n, 1:4],
dzminl:n], d2xmn[l:n];

comment start looking for a minimum at midpoint of region;

for j := 1 step 1 until » do
begin wnew(s] := (t1{j] + b1{;1)/2; =tlj] = wnewl];

zublj] = f1(5]; z1blj] = bll7]; delzl[j] := (zubls]
— z1b[5])/5;
d12z[5] := delz[j112; xminlj] = =tlj]
end;

fmin := GFUN (xmin);

for j := 1 step 1 until n do
begin w := xt[5]; for¢ := 1 step] until 4 do

begin z[j, ¢] := z1b[;] + 7 X delz[j];
ot[f] := z[i3); glii] := GFUN (xt);

end;

zt[f] = w;

damin(f] = (gl7,3] ~ glj,2])/delxisl;

d2zmnlj] = (g[i,4] — gl5,3] — gli,2) + gly,1])/d12x[5]

end;
comment first and second difference quotients have been com-

puted;

icnt = 0; dmaz := demin(l]; k = 1;

nustep: for j := 2 step 1 until n do
begin if abs(dmaz) < abs(drmnlj]) then
begin dmar := dzminfj]; k =
end;

end;
alamb := dzmin[k)/d2zmn(k]; w := =zt[k] — alamb;
comment 2 new coordinate has been computed for the variable
having the largest first partial derivative. It will be checked to
see if the new point still lies within the region and search will
continue;
if w < bl[k] then w := bl[k] else if w > {1[k] then w := f1]k];
ztk] = w; ft := GFUN(t);
if ft < fmin then go to check else
restart: if zt{k] < wnewlk] then go to 1bdchk
else if zt[k] = wnewlk] then go to stnubds
else if {1{k] > ztk] then go to nupbds
else zilk] 1= 1.5 X wnewlk];
nupbds: zublk] := t1{k]; =z1blk] := 2 X =ztlk] — {1[k]; go to
newdel ;
stnubds: z1blk] := wztlk] — 0.5 X wnewlk]; =zublk] := «tfk] +
0.5 X wnewlk];

newdel: delx[k] := 0.2 X (zublk] — z1b[k]); dl2zlk] := delz[k]]2;
for ¢ := 1 step 1 until 4 do
begin zlk,) := 21bk] + © X delz[k); w := xt[k];
xtlk] = z[ki]; glk,d) := GFUN(xzt); xtlk] := w

end;

demintk] = (glk,31 — glk,2])/delxlk];

d2zmnik] 1= (glk,4] — gfk,3) — glk,2] + glk,1])/d122(k];

tent 1= ient + 1;

if icnt > nent then go to oulcd else go to nustep;
1bdchk: if xt{k] £ b1{k] then xt[k] := 0.5 X wnewlk]

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368996.369005&domain=pdf&date_stamp=1962-11-01

else z1b[k] := bl{kl; xublk] := 2.0 X zi[k] — bl[k];
go to newdel ;
check: fmin = ft; axminlk] := xtlk];
for j := 1 step 1 until n do if delz[j] > eps{j] then go to restart;
recheck: for j := 1 step 1 until # do
begin w := zminfj]; xminlj] := w + epslj]; ft ;= GFUN
(xman);
if ft < fmin then go to set2; zmin[j] := w — eps[jl;
ft := GFUN (zmin); if ft < fmin then go to set2; xmin[j]
=w
end;
if k1 < 3 thenkl := 1; go to bgend;
set2: kl := 2; go to bgend;
outed: kl: =3; go to recheck;
bgend: end MINIFUN;

ALGORITHM 130

PERMUTE

Lt. B. C. EavEs

U.S.A. Signal Center and School, Fort Monmouth, N. J.

procedure PERMUTE (A, n, z)

array A; integer n, z;

comment FBach entry into PERMUTE generates the next per-
mutation of the first n elements of A. If A is read as a number
(A[1]A[2] --+ A[n]), each generation is larger than the last:

ni=4 z:=1
A[l] 1 118 8 8
Al2] 1 8 811 8 . _ 4
A[3] S 1818 1 Permutations = 3@

A4 8 8 1 8 1 1 end
Identical elements in A reduce the number of permutations. The
array should be ordered before the first call on PERMUTE.
Integer = specifies the first elements whose order should be pre-
served: n := 4,2 := 3

All] 111 4

A2] 2 2 4 1 L4l
A[3] 3 4 2 2 Permutations = 30
Al4] 4 3 3 3 end

Before the first call on PERMUTE for a given array, first
should be made true. If more is true, then PERMUTE was able
to give another permutation;
begin array B[l:n]; integerf,7,k, m, p; realr; own real{;
if first then ¢ := A[z]; first := false;
for ¢ := 1 step 1 until » do B[Z] := 0;
for 7 := n step —1 until 2 do
begin if A[¢] > {A\A[Z] > A[i — 1] then go to find; end;
more := false; go to exil;
find: for k := n step —1 until 7z do
begin if Alk] > (AAlk] > Alf —1] then

begin Blk] := A[k]; m := %k; end; end;
for k := n step —1 until 7 do
begin if Blk] > 0 AB[k] < Blm] then
begin Blm] := Blk]; f := k; end; end;

r:= A[f —1}; Al¢ — 1] := Bm]; Al[f] :=r;
schell: p =1 —1;m :=n — p;
for m := m/2 — 4 while m > 0 do

begin k := n — m;
for f := p + 1 step 1 until k do
begin ¢ := f;

if Af7] > A[i + m] then
begin r := At + m]; A[lf + m] := A[Z];
Alf] :=r;1 1= 1 — m;
ifi = p 4 1 then go to comp;
end end end schell;
exil: end PERMUTE

comp:

ALGORITHM 131

COEFTICIENT DETERMINATION*

V. H. Smrtu aAxp M. L. ALLEN

Georgia Institute of Technology, Atlanta 13, Ga.

* This procedure pertains to research work sponsored in part
by NSF Grant G-7361.

procedure DET (n, G, H);

array G, H; integer n;

comment Given the first n coefficients of the power series
G =g+ gz +ge®+ -- + guz" '+ oo, and H(z) = u +
hsz + hg2? + -+- 4+ h,zr1 4 ... | this procedure determines the
coeflicients d; , 7 = 1, --+ , n, of the power series which is the
expansion of the quotient H(z)/G(z). It is assumed that g = 0.
The arrays G and H initially contain the coefficients of G(2) and
H (z), respectively. The integer n is the number of known coeffi-
cients in the expansion of G{(z) and H(z). At the conclusion, H;
contains the coefficient d; . The procedure may also be useful in
calculating residues for certain complex functions. Suppose
F(z) = H(2)/G(z) is a complex valued function of a complex
variable and that F has a pole of order m at z = b, where H(z) =
D hi(z — B, Ge) = Diagr(z — b1 and ¢ # 0,
h: % 0. The required residue at z = b is d,, where

DG) = [i e — b)k—‘] / [i gz — b)H]
k=1 k=1

= X djfe — by

§=1

For more on this, one is referred to Einar Hille, ‘““Analytic Fune-
tion Theory, Vol. I, ”’ Ginn and Co., 1959, pages 242-244;
begin integer 1, j, n; real alpha, bela;
alpha = 1/G[1];
for j:= 1step 1 until » do
begin beta := alpha X Hljl;
for 7 := j 4+ 1 step 1 until n do
Hli := Hli] — (beta X Gli — 7 4+ 1]) end;
for j:= 1 step 1l until n do
H[jl := Hl5] X alpha;
end DET

ALGORITHM 132

QUANTUM MECHANICAL INTEGRALS OVIER
ALL SLATER-TYPE INTEGRALS

J. C. BrRownE

The University of Texas, Austin, Tex.

real procedure: allslater (p,q,pe,qenp,nglplgmpmgnamnd)
internuclear distance: (r);
real pe,qe,r; integer p,qnpng,lp,lgmpmyq,
na,nb;
comment The Slater-type orbitals frequently used in quantum
mechanical calculations on atoms and molecules are defined as
p = k(np,pe) r#=le=®yr Y729, ¢), where k(np,pe) is a normal-
ization constant, Y;™(6,¢) is a spherical harmonic with the
phase convention [Y"(8,4)]* = (=1)»Y1™(8,¢), np is a positive
integer, Ip is an integer, Ip < mp, mp is an integer, — Ip £ mp
=< Ip; and pe is a real positive constant. Algorithm 110, Y. A.
Kruglyak and D. R. Whitman (Comm. ACM, July 1962) serves
to compute integrals over certain operators of a quite restricted
class of Slater-type orbitals, np = 4, Iy = 1, mp = 0. The algo-
rithm given here will compute all integrals of the form
S e(ree)gudr
which can be expressed in terms of the simple 4,(b) and B,{(a)
functions. The subscript ¢ denotes either of the two nuclei of

Communications of the ACM 551

a diatomie molecule. These integrals include all those one-elec-
tron integrals necessary for a conventional energy calculation
on a diatomic molecule. In the arguments of allslater p and ¢
are numerical designations for the respective orbitals. p and ¢
are even or odd as they respectively are associated with the
“left,”” a, nucleus or “right,”” b, nucleus of a diatomic molecule.
Global arrays, fact 1, of factorials and binom, of binomial co-
efficients are assumed. We first define some procedures utilized
by allslater. The main program begins at the label set;

begin real norm, 2, alpha, beta, s, clp, clg, bpci;
integer nsum, lsum, peven, qeven, podd, godd, limitp, limitq,
g, h, 1, 7, nlp, nlq, Ilmp, lmq, gama, gamb, aidaa, aidab, gam,
atda, num?2; real array avalues [0:21], bvalues{0:21]; real pro-
cedure cl, bpc, modulus;

real procedure cl(I;m,j); value [m,j, integer I,m,j;

begin ¢l = ((—1)TH)X factl2X (1 — 5H1/(@2N) X factl

[[~2Xj—m]X
Jactill — jIX factl[j])
end cl;
real procedure bpc(i, j, k); value 7,jk, integer %,j,k;
begin real ¢; integer m; t := 0;

for m := 0 step 1 until & do
begint (=t + ((=1) T (¢ — m)
X btnom [i, m} X binom [j, k — m]
end
end bpc;
real procedure modulus (¢, 7); valuet, j;
begin modulus := 1 —abs(z + 7) X j
end modulus;
procedure avector (b, nmazx, avalues); value b, nmax;
real b; integer nmaz; real array avalues;
begin integer m;
avalues[0] = exp(—b)/b;
if nmax = 0 then go to exii;
for m = 1 step 1 until nmaz do
begin avalues[m] = avalues{0] + (m/b) X avaluesim — 1]
end;
exit: end aveclor;
procedure buvector(a nmaz, bvalues); value a, nmaz; real a;
integer nmaz; real array bvalues; real procedure modulus;
comment This procedure computes a sequence of values for the
integral, B.(a) = S_i z7¢=9%dz, forn = 0 ton = nmaz.If a =
alim then Bo(a) is computed and upward recursion is used to
generate the higher n values. If a < alim then Buna.(a) is com-
puted by series expansion and downward recursion is used to
generate the smaller n values. alim is determined within the
program by a simplification of a result of Gautschi (/. ACM 8,
21 (1961)). Gautschi has made an analysis of the recursive pro-
cedures for the B, (¢) which could be taken as a model for workers
in molecular quantum mechanics;
begin real frx, fry, numerator, denom, sum, factorl, tsum
factor2, t, aa; integer m,mn;
begin if abs(e) = ((nmax+nmaz/6+3)/2.3) then
up: begin fzz = exp(a);

integer i, j;

Jry = 1/fxx;

bvalues 0] 1= (fxz-fxy)/a;

for m := 1 step 1 until nmaz do
begin frz := — frx;

bvaluesim] := (faxz—fxy + m X
bualuesim—11)/a
end;
2o to exit;
end up;
down: begin ac := aza;
if modulus (nmaz, 2)#0 then

setodd: begin numerator := nmax + 2;
sum = a/numerator;
factorl := —2;

552 Communications of the ACM

factor2 := 3;
go to compute;
end selodd;
seteven: begin numerator 1= nmar + 1;
sum = 1/numerator;

factorl := factor2 := 2;
end seteven;
compute: begin denom := numerator + 2;
t .= sum;
t 1= ((((t/factor2)Xaa)
/ (factor2—1)) X numerator)

/denom;
tsum := t -+ sum;
if (sum—tsum)=0 then
begin bvalues[nmaz] = sum X factorl;
go to recur;
end;
begin factor2 := factor2 + 2;
numerator 1= denom;

sum = lsum;
go to compule;
end compule;

recur: begin frz := exp(a);
fry 1= 1/fzz;
mn ;= nmaz —1;
if modulus(nmaz, 2) # 0 then
fxx = —frx;
for m := mn step —1 until 0 do
begin frz = —frz;
bvaluesim)] := (frrx+fxy + a X
bvaluesm+1])/(m—+1);
end
end recur;
end down;

end;
exit: end bvector;
set: begin if (mp 4 mq) # 0 then
begin allslater := 0.0; go to ezit end;
set: begin norm = sqrt (((2Xpe)T

@2Xnp+1) X @XIp+1) X facti[lp—mp] X (2Xge)T
@2Xng+1) X @Xlg+1) X factlllg-mql)/(factl[2X
np] X factl{lp+mp] X factl[2Xng] X factl[lg+mg] X

4));
nsum = np+ng;
lsum := lp+lg;
r2 1= r/2;

norm := norm X (r27{nsum—+1+4+na+nb));
alpha := r2 X (pe+qge);
beta 1= 12 X (((=D)Tp)Xpe + ((=1)Tq) X ge);
num2 = 2;
avector (alpha, nsum, avalues);
buector (beta, nsum, bvalues);
peven = modulus (p+1,2);
geven = modulus (¢g+1,2);
podd = modulus (p,2);
godd := modulus (¢,2);
limitp := (Ip—mp)-+num?2;
limilg := (lg—mq) +num2;
s 1= 0;
end set;
sum: begin for g := 0 step 1 until limitp do
begin clp := c1({lp,mp,q);
for h := 0 step 1 until limiig do
begin clg := cl1(lg,mq,h);

nlp = np—Ip+2Xg—1;
nlp := ng—Ilg+2Xh—1;
Imp := lp—mp—2Xg;
lmp = lg—mg—2Xh;

gama = nlp X peven 4 nlq X geven 41 4-na;
gamb := nlp X podd + nlg X godd +1 +nb;
atdaa 1= Imp X peven + Img X geven;
aidab := lmp X podd + lmq X qodd;
gam = gama -+ gamb;
atda = aidaa + aidab;
for ¢ := 0 step 1 until gam do
begin bpci 1= bpc(gama, gamb,);
for j := 0 step 1 until aida do
begin
s := s+ ¢clp X clg X bpei X
bpc(ardaa, aidad, 5) X
avalues[nsum-+na+nb—1i—j]
X bvaluesllsum —2 X (g+h) +i—j];
end
end
end
end;
allslater := s X norm;
end sum;
exit: end;
end allslater;

ALGORITHM 133

RANDOM

PrerErR G. BEHRENZ
Mathematikmaskinnimnden, Stockholm, Sweden

real procedure RANDOM (A, B, X0);

value 4, B, X0;

real A, B;

integer X0;

comment RANDOM generates a rectangular distributed
pseudo-random number in the interval A < B. XO0is an integer
starting-value. The first time RANDOM is used in a program
X0 should be a positive odd integer with 11 digits, X0 < 2% =
34 359 738 368. The following times RANDOM is used, X0 should
be X0 = 0. The mathematical method used is X.11 = 5 X,
(mod 2%). This sequence has period 2%). RANDOM was suc-
cessfully run on FACIT EDB using FACIT-ALGOL 1, which
is a realization of ALGOL 60 for FACIT EDB, except for the
declarator own, which is not included in FACIT-ALGOL 1.
To test RANDOM, we computed 1/N D X, and 1/N D X,2
in the interval 0,1 for N = 500, 1000, 5000. The starting-
value was X0 = 28 395 423 107. The results were 0.50625,
0.48632, 0.50304 and 0.34304, 0.31681, 0.33469. Theoretically
one expects 0.50000 and 0.33333;

begin

integer M35, M36, M37;

own integer X;

if X0 # 0 then begin

X = X0; M35 := 34359738 368; M36 := 68 719 476 736;

M37 := 137 438 953 472 end; X :=5 X X;

if X = M37 then X := X — M37;

if X = M36 then X := X — M36;

if X = M35 then X := X — M35;

RANDOM := X/M35 X (B — A) + A end

)

ALGORITHM 134

EXPONENTIATION OF SERIES

Henry E. Frrrrs

Aeronautical Research Laboratories, Wright-Patterson
Air Force Base, Ohio

procedure SERIESPWR(A, B, P, N);

comment This procedure calculates the coefficients B[] for
the series (f(z))? = g(z) =14+ > Bli] Xz1%,(t=1,2, --- ,N)
given the coefficients of the series f(z) = 1 + ZA[i] XxT 1.
P may be any real number;
value 4, P, N;
array A, B;
integer N;
begin integer 7, k;
real p, s;
Bll] := P X All];
for 7 := 2 step 1 until N do
begin s := 0;
for k := 1 step 1 until 7—1 do
S = s+ (P X [i—k] — k) X Blk] X Ali—k];
B[i] := P X All] + (s/%)
end for ¢;
end SERIESPWR

ALGORITHM 135
CROUT WITH EQUILIBRATION AND ITERATION
WitLiaMm Marsuar, McKeEMan*®

Stanford University, Stanford, Calif.
* This work was supported in part by the Office of Naval Re-
search under contract Nonr 225(37).

procedure LINEARSYSTEM (A) order:(n) right-hand sides:(B)
number of right-hand sides:(m) answers:(X) determinant:(det,
ex) condition of. A :(¢cnr);

integer n, m, ex; real def, cnr; real array A, B, X;

comment, LINEAR SYSTEM uses Crout’s method with row
equilibration, row interchanges and iterative improvement
for solving the matrix equation AX = B where 4 is n X n and
X and B are n X m. As special cases one sees that: for m < 0,
only the determinant of A is evaluated, for m = 1, the algo-
rithm solves a system of n equations in n unknowns, for m = n
and B = the identity matrix, the algorithm inverts A.

If the algorithm breaks down for a singular or nearly singular
matrix A, exit to a non-local label “singular’’ is provided. Five
auxiliary procedures: EQUILIBRATE, CROUT, PRODUCT,
RESIDUALS and SOLVE are declared with appropriate com-
ments after the end of this procedure. This code is the result of
the joint efforts of G. Guthrie, W. McKeeman, Cleve Moler,
Margaret Salmon, Alan Shaw and R. Van Wyk. It was written
following ideas presented by J. H. Wilkinson as a visiting lec-
turer in Professor George E. Forsythe’s class in Advanced Nu-
merical Analysis at Stanford, 1962;

begin integer array pivot [l:n]; integer 17, 7, k; real mz;
real array LU[l:n, 1:n], y, res, mult[l:n];
comment, remove appropriate factors from the rows of A... ;
EQUILIBRATE(A, n, mult);
comment ... and save the result for the eventual computation
of residuals during iteration;
for 7 := 1 step 1 until n» do

for j := 1 step 1 until n do LU[4,j] := Al,jl;
comment, decompose the matrix into triangular factors;
CROUT (LU, n, pivot, det); :
comment, assuming that there was no exit to ‘“singular”,
evaluate the determinant in the form det X (10.0 T ex);
for ¢ := 1 step 1 until n do y[i] := LU[i,2] X mult[i];
det := det X PRODUCT (y,1n,ex);
comment, now begin to proecess right-hand sides;
for k := 1 step 1 until m do
begin integer 7, count, limit; real normy, kr;

kr = k;

comment, scale the right-hand side;

for ¢ := 1step 1 until n do res[t] := Bis,k] := Bl¢,k)/multfz];

comment, store the first approximation and its L(1) norm;

normy = 0;

Communications of the ACM 553

SOLVE (LU, n, res, pivot, y);

for ¢ := 1 step 1 until n do
begin
normy = normy -+ abs(y[i]);
XI4,k] := yli]
end;

comment, enfer the iterating loop. The iteration is termi-
nated on the integer “limit’’ which itself is determined on
the basis of the success of the first iteration and a machine-
dependent real number designated here by ‘‘eps’’. For
“‘eps’’, the programmer must insert the largest real num-
ber such that eps + 1.0 = 1.0 ;
for count := 1, 2 step 1 until limif do
begin integer ¢; real {;
comment, compute the residuals of the solution y;
RESIDUALS(A n,Bk,X res);
comment ... and find the next increment to the solution;
SOLVE (LU n,res,pivot,y) ;
comment, set up termination conditions;
if count = 1 then
begin real normdy;
normdy := 0;
for ¢ := 1 step 1 until n do normdy := normdy-+abs(y[z]);
if normdy = 0 then begin cnr := 1.0; go to enditer end;
t := normy/normdy;
comment, The quantity || A ||-]] A=t | (spectral norm)
is called the condition number of the matrix A. It is
a measure of the difficulty in solving the input equation
and appears naturally in error bounds for the solution
(see Wilkinson {[3]). enr is a direct measure of the
error and experimentally approximates the condition
number;
enr i= ((kr — 1.0) X enr + 1.0/(eps X 8))/kr;
if t < 2.0 then go to singular;
limit := In(eps)/In(1.0/t);
end;
comment, store the new approximation;
fori := 1step 1 until ndo X[¢,k] := X[i k] := X[i,k] +yl];
end dteration;
endiler:
end right-hand sides
end LINEAR SYSTEM ;
procedure EQUILIBRATE (A) order:(n) multipliers:{mult);
integer n; real array A, mult;
comment, scaling the rows of the matrix A to roughly the same
maximum magnitude (here, dividing by the largest element)
allows the procedure CROUT to select effective pivotal elements
for the Gaussian decomposition of the matrix. The iterating
procedure will converge to the solution for the equilibrated
matrix rather than the input matrix. If the matrix is badly
conditioned then the solution is sensitive to perturbations in
the input and the scaling division must be done not by the
largest element but rather by the power of the machine number
base (2 and 10 for binary and decimal machines, respectively)
nearest the largest element so as to avoid rounding errors.
Equilibration is discussed in reference [3] p. 284;
begin integer 7; real mz;
for i := 1 step 1 until n do
begin integer j;
mx = 0.0; comment, find the largest element;
for j := 1 step 1 until » do
if abs(A[4,k]) > mz then mx := abs(Al1,k]);
if mz = 0.0 then go to singular;
comment, now store the multiplier and scale the row;
mult[i] := mz; comment := base | ez for exact scaling;
if mz # 1.0 then
for j := 1 step 1 until n do A[z,j] := Afi,5]/mz
end
end EQUILIBRATE;

554 Communications of the ACM

procedure CROUT (A) order:(n) pivots:(pivot) interchanges:(sg).
integer n; integer array pivot; real array A; real sg;
comment, this is Crout’s method with row interchanges as
formulated in reference [1] for transforming the matrix A into
the triangular decomposition LU with all the Llkk] = 1.0.
pivollk] stores the index of the pivotal row at the k-th stage of
the elimination for use in the procedure SOLVE;
begin integer 7, 7, k, imazx, p; real t, quot;
real procedure /P1 (A) extra term:(¢) length:(f);
integer f; real {; real array A; comment non-local 7, j, k;
comment, IP1 forms a row by column inner product of A4,
namely the sum of Ali,p] X Alpk] for p := 1, 2, ..., f, and
then adds the extra term ¢. If f < 1, the value of IP1 is ¢.
This procedure is the inner loop of the algorithm. The pro-
grammer can expect a substantial advantage from substi-
tuting a faster and more accurate inner product here;
begin real sum; integer p;
sum := {;
for p := 1 step 1 until f do sum := sum + Ali,p] X Alpk];
IP1 := sum
end IP1;
sg = 1.0;
comment, k is the stage of the elimination;
for k := 1 step 1 until n do
begin
t:=0;
for 7 := k step 1 until n do :
begin comment, compute L. Note that the first calls on IP1
are empty;
Ali k] = —IP1(A, — Al k1 k—1);
if abs(A[i,k]) > t then
begin { := abs(A[i,k]); imax := 7 end
end;
if £ = 0 then go to singular;
comment, Alimaz k] is the largest element in the remainder
of ecolumn %. Interchange rows if necessary and record the

change;
pivoilk] := imazx;
if 9maz # k then
begin
sg 1= —sg;
for j := 1 step 1 until n do
begin
t := Alk,jl; Alk.7] := Alimaz, jl; Alimax, j] =t
end
end;

comment, compute a column of multipliers;
quot 1= 1.0/Afkk];
for ¢ := k+1 step 1 until n do A[i,k] := A[i,k] X quot;
comment, and compute a row of U;
for ;7 := k+1 step 1 until n do
Alk,j] .= —IP1(A,— Ak,j1,k—1)
end
end CROUT;
real procedure PRODUCT (factors) start:(s) finish:(f)
exponent:(ex);
integer s,f,ex; real array factors;
comment, PRODUCT multiplies the numbers stored from index
s through f inclusive in the array ‘“factors’’, preventing ex-
ponent overflow. The answer is normalized so that 1.0 > abs
(PRODUCT) = 0.1. The exponent appears in ex;
begin integer 7; real p, pl;
ex :=0; p:=10;
for 7 := s step 1 until f do
begin
pl = factors [i];
if abs(pl) < 0.1 then begin pl = 10.0 X pl; ex := ez—1
end;
p:=p X pl;

if p = 0 then begin ex := 0; go to fin end;
1: if abs(p) < 0.1 then
begin p := p X 10.0; exr : = ex—1; go to 1 end;
2: ifabs(p)=1.0 then
begin p := p/10.0; ex := ex + 1;
end;
fin: PRODUCT := p
end PRODUCT;
procedure RESIDUALS (A) order:(n) right-hand sides:(B)
column of B:(k) approximate solution:(X) residuals:(res);
integer n, k; real array A, B, X, res;
comment, RESIDUALS computes b — Ay where b is the kth
column of the right-hand side matrix B and y is the kth ¢column
of X;
real procedure /P2 (A) row: (i) order:(n) approximate
solution:(X)
column:(k) extra therm:(f);
integer ¢, k, n; real { real array 4, X;
comment, I P2 forms the inner produet of row ¢ of the matrix
A and column k of the solution matrix X, then adds the
single term ¢. It is essential that I P2 be an ‘“‘accumulating”
or double precision inner product as discussed in reference
[3] p. 296. The value of 7P2 is the rounded single precision
result of the double precision arithmetic. The body of the
procedure is left undefined;
begin integer 1;
for ¢ := 1 step 1 until n do
rest] := —IP2(A,in,X k,—Blik])
end RESIDUALS;
procedure SOLVE (A) order:(n) right-hand side:(b) pivots:
(pivot) answer:(y);
integer n; integer array pivof; real array 4, b, y;
comment, SOLVE processes a right-hand side b and then back-
solves for the solution y using the LU decomposition provided
by CROUT;
begin integer k, p; real t;
for k := 1 step 1 until » do
begin
{ := b[pivotlk]]l; blpivotlk]] := blkl;
for p := lstep luntilk—1do ¢ := ¢ — Alk,p] X b[p];
blk) =t
end ...having modified b by L inverse;
comment, now the back solution for y;
for k := n step —1 until 1 do
begin
t := blkl;
for p := k41 step l until n do ¢ := ¢t — Alk,p] X ylpl;
ylk] =t
end backsolution
end SOLVE

REFERENCES

1. Georce E. ForsyrHg, Crout with Pivoting. Algorithm 16.
Comm. ACM 8, 2 (Sept. 1960), 507.

2. Derek Jouany Roexk, Simultaneous System of Equations and
Matrix Inversion Routine. Algorithm 92. Comm. ACM &,
5 (May 1962), 286.

3. J. H. WiLkinsoN, Error Analysis of Direct Methods of Matrix
Inversion, J. ACM 8, 3 (July 1961), 281-330.

goto2end;

ALGORITHM 136
ENLARGEMENT OF A GROUP
M. WeLLs*
University of Leeds, England
* Currently with Burroughs Corporation, Pasadena, California

procedure Enlarge group (G, n, g, Abelian);
array G, ¢; integer n; Boolean Abelian;

comment This procedure combines the element g with the sub-
group @, of n elements, to form a new group. The Boolean
Abelian has the value true if the group to which ¢ and ¢ belong
is Abelian. Two procedures, multtply and equal are assumed
to be declared: multiply (GlZ]) by : (Gl5]) to give : (G[k]) will set
the element Gx equal to the product of the elements G: and Gj.
equal (G[7], G[j]) is a Boolean procedure whose value is true
if, and only if, the elements G; and G; are equal. On leaving the
procedure the enlarged group is in @, and = is equal to the
number of elements in the new sub-group G. The procedure
will function correctly if g is included in G on entry. It is prob-
able that g and the elements of G will be arrays, and the pro-
cedure body will, in practice, need to be altered considerably.
The procedure has been used successfully in connection with
problems of space-group theory;
begin integer 1, j, k;
for 7 := 1 step 1 until » do
if equal (G[7], g) then go to not new generator;
n:=n-+1; Gn]:=g;
for ¢ := n step 1 until n do
begin for j := 1 step 1 until n do
begin multiply (G[2], Glj], Gin+11);
for k := 1 step 1 until » do
if equal (Glk], Gln+1]) then go to not new element 1;
n:=mn-4+ 1;
not new element 1: if Abelian then go to lake next element;
multiply (Gl7], G, Gln+1D);
for k := 1 step 1 until n do
if equal (Glk], G[n+1]) then go to nol new element 2;
n:i=mn-+1;
not new element 2: take next element:
end of j-loop;
end of i-loop;
not new generator: end of group enlargement

ALGORITHM 137
NESTING OF FOR STATEMENT I
Davip M. Daam & M. WeLLs*
Burroughs Corp., Pasadena, Calif.
* On leave of absence from the University of Leeds, England.

procedure Fors 1 (n, P);

value n; integer n; procedure P;

comment Fors 1 generates a nest of n for statements with the
procedure P at their center. Two non-local arrays I and U,
which give the value of the controlled variable and its upper
bound for each level are assumed to be declared;

begin integer j;
if n = 0 then P
else for j := 1 step 1 until Uln] do
begin I[n] :=j; Fors1l (n—1,P) end end Fors 1

ALGORITHM 138

NESTING OF FOR STATEMENT II
Davip M. Daam & M. WELLs*
Burroughs Corp., Pasadena, Calif.

* On leave of absence from the University of Leeds, England.

procedure Fors 2 (P);
procedure P;
comment Fors 2 performs the same function as Fors 1, but is
more economic of storage space. It is expected, however,
that Fors 1 would be more economic of time. The formal
parameter n is now replaced by the non-local integer n;

Communications of the ACM 555

begin if n = 0 then P
else for I[n] := 1 step 1 until Uln] do
begin n := n—1; Fors 2 (P) end;
n:=n-+1end Fors 2

ALGORITHM 139

SOLUTIONS OF THE DIOPHANTINE EQUATION
J. E. L. Prck

University of Alberta, Calgary, Alberta, Canada

procedure Diophantus (a,b,c); integer a,b,c;
comment This procedure seeks the integer solutions of the
equation ax 4+ by = ¢, where the integers a,b,c are given. It
assumes a non-local integer M, which should be as large as
storage will allow, two nonlocal labels INDETERMINATE
and NO SOLUTION and two non-local Boolean variables
‘general solution’ and ‘time permits’ which are self explanatory.
It also assumes the procedures abs, sign and print;
begin integer n,r,5,d,7; integer array g[1:M];
ni=14:=0; d:=3¢s:=abs(a); r := abs(b);
comment d will become the greatest common divisor of ¢ and b,
If b = 0thend = |a|. The vector ¢ will retain the successive
quotients in the Euclidean algorithm riy = 740 + 74,
=1,2---,n,where0 £ rip <ri,m=|al,rn=1]0b]
and 7,41 = 0;
for 7 := 7 + 1 while 7 # 0 do
beginn :=4; d:=r; q[i]:=s+d;
r:=35—d X glZ]; s:=dend This records the quotients and
the number n of divisions for use below;
ifd = 0 then go to if ¢ = 0 then INDETERMINATE
else NO SOLUTION; comment The case d = 0 occurs when
a? + b% = 0. If d now does not divide ¢ then the equation can-
not be solved so;
if (¢ + d) X d # ¢ then go to NO SOLUTION;
ifd # 1 then
begin ¢ := a/d, b := b/d; ¢ := ¢/d end, which removes
the common factor and reduces the equation to the case
where a and b are relatively prime;
begin comment We shall now find w; and »; in order to
express
1 = au, + bv, , using the relations r, = rw; + riogus ,

t=n,n—1, -, Lv,=1, w, =0, andriy = —rigs + 71,
1 =n—1,n—2, ---,1; integer uyv;
if n = 0 then
begin v := 0; wu := 1 end, which takes care of the case
b=0
else

begin v :=1; % := 0;
for i := n—1 step —1 until 1 do
begin integer i,
ti=uv; vi=u—ovXqlil;u:=1
end 1
end the case n 5% 0. It remains now to multiply the equality
1 = au; 4+ bv, through by ¢;
begin integer z0, 30;
20 1= ¢ X u X sign{a); y0:=c X v X sign(b); print (z0,40);
comment If x5 is a particular solution then xy x b,
yo F 1a, 1=1,2, ... gives the general solution. Therefore;
if general solution then
begin u := b; v := a;
A:print (20 + u, y0 — v); print(z0—wu, y0 + v);
wi=u4+b; v:=0v+4a;
if time permits then go to 4
end general solution and
end solution.
end u,
end Diophantus.

556 Communications of the ACM

ALGORITHM 140

MATRIX INVERSION

P. Z. INGERMAN

University of Pennsylvania, Philadelphia, Penn.

procedure invert (a) of order:(n) with tolerance:(eps) and
error exit:(oops);

value n, eps; array a; integer n; real eps; label oops;

comment This procedure inverts a matrix by using elementary
row operations. Although the method is not particularly good
for ill-conditioned matrices, the simplicity of the algorithm
and the fact that the inversion occurs in place make it useful
on ocecasion;

begin integer 7;

for ¢ := 1 step 1 until n do
begin integer j, k; real g;

q = alii];

if abs(g) <abs(eps) then go to oops;

alt,i] :=1

if ¢=1 then for k := 1 step 1 until »n do a[i k] := ali k]/q;

for j := 1 step 1 until n do

if i#j then
begin ¢ := alji]; alji] :=10
for k := 1 step 1 until n do

alj k] 1= aljk]l—gXeal[i,k] end end end

ALGORITHM 141

PATH MATRIX

P. Z. INGERMAN

University of Pennsylvania, Philadelphia, Penn.

procedure find path (a, n);

value n; Boolean array a; integer n;

comment This procedure is merely an Algol implementation
of the method of Warshall (JACM 9(1962), 11-12). Some ad-
vantage is taken of the characteristics of the problem to in-
crease the efficiency;

begin integer ¢, j, k;

1 step 1 until n do

for ¢ := 1 step 1 until » do

if ali,j] A\ i#7 then

for k := 1 step 1 until » do

alt k] := ali,k]Valjk] end findpath

for j :=

CERTIFICATION OF THE CALCULATION OF
EASTER...[Donald Knuth, Comm. A.C.M., Apr. 1962}

M. R. WiLLiAMS

University of Alberta, Calgary, Alberta, Canada

The two programs, written to demonstrate Arcor and Cosor,
were translated into ForTraN for the IBM 1620. Both programs
correctly determined the month and day of the “Western Easter”’
for the years 1901 to 1999. No furher checking was done because
a more comprehensive reference list of the dates of the “Western
Easter’” was not available.

If the statement:

epact := mod (11 X golden number + 20 4 Clavian
correction — Gregorian correction, 30);
is changed to:
epact := mod (11 X golden number 4+ 19 + Clavian
correction — Gregorian correction, 30) + 1;
it eliminates the statement: . .
if epact £ 0 then epact := epact + 30;

CERTIFICATION OF ALGORITHM 84
SIMPSON’S INTEGRATION [P. E. Hennion, Comm.
ACM, Apr. 62]
Perer G. BEHRENZ
Matematikmaskinnimnden, Stockholm, Sweden
SIM was successfully run on FACIT EDB using FacIT-ALGOL
1, which is a realization of Ancow 60 for FACIT EDB. No changes

in the program were necessary. To test SIM some polynomials
were integrated.

CERTIFICATION OF ALGORITHM 94
COMBINATION [J. Kurtzberg, Comm. ACM, June 1962]
Ronarp W. May

University of Alberta, Calgary, Alberta, Canada

Algorithm 94 was translated into ForTraN for the IBM 1620
and run successfully with no corrections. The variable A, how-
ever, has not been declared.

REMARK ON ALGORITHM 99

EVALUATION OF JACOBI SYMBOL [S. J. Gar-
land and A. W. Knapp, Comm. ACM 6, June 1962]

Roxarp W. May

University of Alberta, Calgary, Alberta, Canada

One syntactical error was found in this procedure. It occurs
in the second if statement following the label even. The state-
ment

if ¢ then if parity ((m12—1)+8) then
P = p;
might be changed as follows.
if ¢ then go to CHECK;
if n» = 1 then go to done;
if parity (m T2 — 1) + 8) then

p = 1 p;
go to next 1;

The two statements beginning with CHECK could be inserted
before the label done and after the statement go to loop;.

next 1:

CHECK:

REMARK ON ALGORITHM 106

COMPLEX NUMBER TO A REAL POWER [Mar-
garet L. Johnson and Ward Sangren, Comm. ACM
5, Jul. 1962]

Grant W. Erwin, Jr.

The Boeing Co., Renton, Wash.

The comment “4f W is a reciprocal integer it does not follow
that the desired power (a root) will be calculated’’ might better
read “if W is the reciprocal of an integer N, the procedure will
calculate an nth root, but possibly not the particular nth root
desired. E.g. w = 3,2 = —1,y = Ouields 4 = %, B = 3+/3 rather
than the simpler 4 = —1, B = 0.”

The comment should be made that it is assumed that the arctan
function yields a result between —#/2 and =/2.

The following four corrections should be made:

(@) if <0 A y < 0 then begin THETA: = 3.1415927;
should read:
--- THETA: = —3.1415927;
2) go to RETURN end:
should read:
go to RETURN end;
@3 ifz=0Ay<0---
should read:
ifx=0Ay>0---

4) if?c_=0/\y>0
should read : .
fz=0AYy<0---

CERTIFICATION OF ALGORITHM 135

CROUT WITH EQUILIBRATION AND ITERATION
[William Marshall McKeeman,* Comm. ACM, Nov.
1962]

WirLiam MARSHALL McKEEMAN,

Stanford University, Stanford, Calif.

* This work was supported in part by the Office of Naval Re-
search under contract Nonr 225(37).

A BaLgow translation of the algorithm was tested for accuracy,
proper termination and running time on the Burroughs 220.
The exact inverse of the Hilbert segment of order 6 can be stored
in the 8-decimal-digit floating word of the B220 and was used in
the acecuracy and termination tests. The Hilbert segment Hs
is very ill-conditioned (for the spectral norm, || Hs |- Hs || =
1.3 X 107). Hence the number of iterations required should not
be taken as typical.

»The [n,n] element (mathematically ¢y = .090909 ---) is repre-
sentative of the behavior of the rest:

equilibration by
largest element in row

‘“exact” equilibration
(by powers of 10)

initial solution 092587535 .094091506
first iteration .090877240 - .091498265
second iteration 090909695 .091570311
third iteration 090909080 .091568310
fourth iteration 090909091 .091568365
fifth iteration terminated .091568364

’ terminated

Conclusions: The iterating procedure terminated correetly,
or performed one extra iteration in each case. If the equilibration
procedure alters the data, the iteration will converge to the solu-
tion for the altered matrix. If the matrix is ill-conditioned, as in
the case above, the equilibration may cost a great deal more than
it gains. As a practical matter, a machine language substitute for
EQUILIBRATE which. will not cause rounding of the data is
probably the best course of action.

The running time is approximately proportional to n® as ex-
pected. If for a given machine, u is the floating multiply time in
seconds, one can expeect that run time will be given by 7t := 1.3 X
u X (n+ 7)1 3 seconds for a call on LINEARSYSTEM with one
right-hand side.

The division of run time between the various phases of the
algorithm is as follows:

100 —Tverything else

g L
— I
= I
a -
50 | EQUILIBRAT
o -
—
= I
& L
% i 1 I 1 L
a0 10 20 30 20 50
n -
ORDER OF MATRIX
REFERENCE:

1. Savage anp Lukacs, Tables of inverses of finite segment of
the Hilbert matrix. In Olga Taussky (Ed.), Contributions to
the Solution of Systems of Linear Equations and the Deter-
mination of Eigenvalues, pp. 105-108, Nat. Bur. Standards
Appl. Math. Series no. 39, U. S. Government Printing Office,
Wash., D.C., 1954. :

Communications of the ACM 557

