A new approach to sequence comparison :
Normalized sequence alignment

Abdullah N. Arslan* and Omer Egecioglu'
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
{arslan, omer}Qcs.ucsb.edu

Pavel A. Pevzner
Department of Computer Science and Engineering
University of California, San Diego, San Diego, CA 92093
ppevznerQces.ucsd.edu

Abstract

The Smith-Waterman algorithm for local sequence alignment is one of the most important
techniques in computational molecular biology. This ingenious dynamic programming approach
was designed to reveal the highly conserved fragments by discarding poorly conserved initial
and terminal segments. However, the existing notion of local similarity has a serious flaw: it
does not discard poorly conserved intermediate segments. The Smith-Waterman algorithm finds
the local alignment with maximal score but it is unable to find local alignment with maximum
degree of similarity (e.g., maximal percent of matches). Moreover, there is still no efficient
algorithm that answers the following natural question: do two sequences share a (sufficiently
long) fragment with more than 70% of similarity? As a result, the local alignment sometimes
produces a mosaic of well-conserved fragments artificially connected by poorly-conserved or even
unrelated fragments. This may lead to problems in comparison of long genomic sequences and
comparative gene prediction as recently pointed out by Zhang et al. (1999). In this paper we
propose a new sequence comparison algorithm (normalized local alignment) that reports the
regions with maximum degree of similarity. The algorithm is based on fractional programming
and its running time is O(n?logn). In practice, normalized local alignment is only 3-5 times
slower than the standard Smith-Waterman algorithm.

Keywords: Sequence alignment, normalized local sequence alignment, algorithm, dynamic
programming, fractional programming, ratio maximization.

1 Introduction

Gene prediction in human genome often amounts to using related proteins from other species as
clues for finding exon-intron structures (Gelfand et al., 1996; Pachter et al., 1999; Birney et al.,

*Supported in part by a UCSB-COR . grant.
fSupported in part by NSF Grant No. CCR-9821038.

1996). Recently, a related paradigm, motivated by availability of complete genomes, has emerged
(Batzoglou et al., 2000; Bafna and Huson, 2000; Novichkov et al., 2000). In this new approach,
human genes are predicted based on other (e.g., mouse) un-annotated genomic sequences. The idea
of this method is that similarity between nucleotide sequences of related human and mouse exons
is 85% on average, while similarity between introns is 35% on average. This observation motivates
the following simple approach: use local alignment algorithm (Smith and Waterman, 1981) to find
the most similar segments in human and mouse genomic sequences and use these fragments as
potential exons at the further stages.

Unfortunately, this approach faces serious difficulties. Smith-Waterman algorithm was devel-
oped 20 years ago for a different problem and it is not well suitable for sequence comparison at
genomic scale. Surprisingly enough, we still don’t have an efficient algorithm that finds the local
alignment with the best degree of sequence similarity. The following example illustrates this point.

It is well-known that the statistical significance of the local alignment depends on both its score
and length (Altschul and Erickson, 1986; Altschul and Erickson, 1988). However, the score of a local
alignment is not normalized over the length of the matching region. As a result, a local alignment
with score 1,000 and length 10,000 (long alignment) will be chosen over a local alignment with score
998 and length 1,000 (short alignment), although the latter one is probably more important bio-
logically. Moreover, if the corresponding alignment paths overlap, the more biologically important
“short” alignment will not be detected even by suboptimal sequence alignment algorithm (shadow
effect). Another unfortunate property of the Smith-Waterman algorithm is that it was designed to
exclude non-similar initial and terminal fragments in sequence alignment but it was not designed to
exclude non-similar internal fragments. This flaw with Smith-Waterman local similarity approach
(Figure 1) leads to inclusion of arbitrarily poor internal fragments (mosaic effect). As a result, ap-
plications of the Smith-Waterman algorithm to comparison of related genomes (particularly with
short introns as C. elegans and C. briggsae) may lead to problems (Zhang et al., 1999).

Sequence 1

"~ SCORE>X|. SCORE=-X || SCORE>X[

Sequence 2

Figure 1: The inclusion of an arbitrarily poor region in an alignment (Zhang et al., 1999). If a
region of negative score —X is sandwiched between two regions scoring more than X, then the
Smith-Waterman algorithm will join the three regions into a single alignment that may not be
biologically adequate.

The attempts to fix the problem of mosaic effect undertaken by Goad and Kanehisa (1982)
(who introduced alignment with minimal mismatch density) and Sellers (1984) did not lead to suc-
cessful algorithms and were later abandoned. The mosaic effect was first analyzed by Webb Miller
(personal communication) and led to some studies trying to fix this problem at the post-processing
stage (Huang et al., 1994; Zhang et al., 1999). Zhang et al. (1999) proposed to decompose a
local alignment into sub-alignments that avoid the mosaic effect. However, the post-processing
approach may miss the alignments with the best degree of similarity if the Smith-Waterman algo-
rithm missed them. As a result, highly similar fragments may be ignored if they are not parts of
larger alignments dominating other local similarities. Another approach to fixing the problems with
the Smith-Waterman algorithm is based on the notion of X-drop, a region within an alignment
that scores below X. The alignments that contain no X-drops are called X-alignments. Although
X-alignments are expensive to compute in practice, Altschul et al. (1997) and Zhang et al. (1998)
used some heuristics for searching databases with this approach. Other attempts to fix the problem

of mosaic effect involve modifications of the local alignment algorithm that allow insertions of very
long gaps.

Another deficiency of the local alignment was recently revealed by Alexandrov and Solovyev
(1998). They asked if the Smith-Waterman algorithm correctly finds the most biologically adequate
relative in a benchmark sample of different protein families. The answer to this question was
negative, and Alexandrov and Solovyev (1998) “blamed” it on the fact that the Smith-Waterman
algorithm does not take into account the length of the alignment. They proposed to normalize
the alignment score by its length and demonstrated that this new approach leads to better protein
classification. However, computing normalized scores in alignments may be very expensive when
there is a constraint on length. An algorithm for a similar problem (normalized edit distance) uses
dynamic programming to compute the minimum edit distances for all lengths (Marzal and Vidal,
1993), but requires cubic time and quadratic space. Various parallel algorithms for this problem
were developed by Egecioglu and Ibel (1996). We want to emphasize the difference between the
normalized local alignment and the previously studied normalized edit distance problem. The
algorithms by Oommen and Zhang (1996), Vidal et al. (1995), Arslan and Egecioglu (1999), Arslan
and Egecioglu (2000) do not aim to satisfy a constraint on the length, therefore they cannot directly
be adapted to the the computation of normalized scores when lengths are restricted.

In this paper, we propose a new practical algorithm that produces local alignment with maxi-
mum degree of similarity by extending the ideas presented by Arslan and Egecioglu (1999), Arslan
and Egecioglu (2000). To reflect the length of the local alignment in scoring, the score s(I,.J)
of local alignment involving substrings I and J may be adjusted by dividing s(7,.J) by the total
length of the aligned regions: s(I,J)/(|I| +|J|). The normalized local alignment problem is to find
substrings I and J that maximize s(I, J)/(|/|+]|.J|) among all substrings I and J with |I|+|J| > T,
where T' is a threshold for the minimal overall length of I and J. For the same problem with no
restriction on overall length, we can develop fast algorithms using fractional programming, however
the answer to the problem would be short substrings that are not biologically meaningful. We use a
slightly different objective to normalized alignment. We aim to maximize s(I, J)/(|I|+|J|+ L) for
a given parameter L . Qur purpose is to provide a way of control over the degree of normalization
by varying L, and at the same time still being able to use fractional programming technique for
fast computation.

The outline of this paper is as follows. We first give a formal definition of our approach to the
normalized local alignment problem. We include brief information on Dinkelbach’s and Megiddo’s
methods as we use them in our algorithms. Description of our algorithms are followed by discussion
of some implementation issues and test results, and concluding remarks at the end.

2 Normalized Local Alignment

First we formulate the alignment problems we study in this paper as optimization problems involv-
ing quotients of linear functions. We are then able to use applicable optimization methods such as
fractional programming to develop our algorithms for normalized local alignment.

Let a = a1as---a, and b = b1bsy - - - b, be two sequences of symbols over an alphabet ¥ with
n >m . The alignment graph G, (edit graph in the context of string editing) is used to represent
all possible alignments (Waterman, 1995) between a and b . It is a directed acyclic graph having
(n+1)(m + 1) lattice points (u,v) for 0 <u < n, and 0 < v < m as vertices (Figure 2). The arcs
of G, are divided into four types :

(1) Horizontal arcs: {((u,v — 1), (u,v)) |0 <u<n,0<v<m}.

(2) Vertical arcs: {((u—1,v),(u,v)) |0<u<n,0<ov<m}.
(3) Matching diagonal arcs: {((u — 1,0 — 1), (u,v)) | ay = by, 0 <u <n, 0 <v<m}

(4) Mismatching diagonal arcs: {((u — 1,0 — 1), (u,v)) | ay # by, 0 <u <n, 0 <v<m}

(0,0bb, - bja A G G A C A T bm
2l

(nm)

Figure 2: The alignment graph G, where a; ---ay = ATTGT and b; - -- by = AGGACAT . Matching
diagonal arcs are drawn as solid lines while mismatching diagonal arcs are shown by dashed lines.
Dotted lines used for horizontal and vertical arcs correspond to indels. An example alignment path
is shown. Only the weights of the arcs in this path are included.

Consider a directed path p between two vertices (i —1,7 —1) and (k,1) on G where i < k and
j <l . We call each such path an alignment path since if we trace the arcs of p, and perform the
corresponding edit operations in segment a; - - - ag, we obtain the segment b; - --b; as follows :

(1) For a horizontal arc ((u,v — 1), (u,v)), insert b, immediately before a,, .
(2) For a vertical arc ((u — 1,v), (u,v)), delete a, .
(3) For a mismatching diagonal arc ((u — 1,v — 1), (u,v)), substitute b, for a, .

In the context of sequence alignment, insertions (horizontal arcs) and deletions (vertical arcs)
are both called as indels, and the names match, and mismatch, are used to refer to matching
diagonal, and mismatching diagonal arcs.

The objective of sequence alignment is to quantify the similarity between two strings. There are
various scoring schemes for this purpose. In one simple such method, the arcs of G, have weights
determined by positive reals § (mismatch penalty) and p (indel or gap penalty) as shown in Figure
2. We assume that a match has a score of 1, a mismatch penalty is J, and an indel has a penalty
of u. Existence of an alignment path with a large total weight between the vertices (i — 1,5 — 1)
and (k,!) indicates a high similarity between the segments a; - -- a5, and b; - - - b;.

For clarity of exposition, we assume this simple scoring scheme in setting up the definitions.
We address the issue of extending the results to more complex scoring schemes in the next section.

We say that (z,y, z) is an alignment vector for a;---ay and b;---b; , if there is an alignment
path between the vertices (i — 1,5 — 1) and (k,l) in G, with 2 matches, y mismatches, and z
indels. In Figure 2, (3,1,4) is an alignment vector corresponding to the path shown in the figure.
We denote by AV; ;1 (a,b) the set of all such alignment vectors, i.e.

AV ikila,b) ={(z,y,2) | (z,y,2) is an alignment vector for a; - --ay and b;---b;} .

Similarly we call (z,y, z) an alignment vector if it is an alignment vector for some pair a; - - - ay
and b;---b; . We define AV (a,b) as the set of all alignment vectors, i.e.

AV (a,b) = U AV jki(a,b) (1)
i<k,
Jj<li

An alignment vector (z,y, z) has a score defined by §, and u:
SCORE(x,y,z) = x — 0y — uz (2)

The maximum score between segments a; - --a; and b; - - - by, is the score of an alignment vector
whose score is the maximum among all the alignment vectors between these two sequences:

Sspula;---ag,bj---by) = max{SCORE(x,y, z) | (x,y,2) € AV i(a,b)} (3)

In this paper, we denote by P* the optimum value of problem P . Local Alignment (LA)
problem seeks for two segments with the highest similarity score LA* as defined by

LAG ,(a,b) = max {Ss,(a;i---ag,bj---b)} = max {SCORE(z,y,z) | (z,y,2) € AV ki(a,b)}
’ i <k, i<k,
j<l Jj<li

The same objective can also be expressed using the definition in (1) of the set of alignment
vectors AV (a,b) as

LA, (a,b) = max{SCORE(z,y, z) | (v,y,2) € AV (a,b)} (4)

In other words, the LA problem aims to find an alignment vector with highest score, or equivalently
a directed path with largest weight in G, .

Before introducing normalization of scores, we first define a length function with respect to
some positive constant L as

LENGTH(a;- - ap,bj---b) = (k—i+1)+(l—j+1)+ L.

A normalized score (with respect to L) NSy, of two segments a;---ay, bj---b; is the ratio of
their maximum score to the value of LENGTHj, for these segments:
__ Ssplai---a,bj---by)
LENGTHL((JZ Ok, bj s bl)

NSspu,1.(ai- - ag, by by) (5)
Normalized Local Alignment (NLA) problem seeks for two segments a; - --a; and b;---b; for
which the normalized score is the highest among all possible pairs of segments as expressed below:

NLA;,[J,L((]" b) = Hia]): {NS(s,u,L(a‘i trr O, bj T bl)}
Z —)
J<l

Observe that if (z,y, z) is an alignment vector for a;...a; and b;...b; then
k—i+1)+(l—j+1)=22+2y+=2

Using this relation, we see that the function LENGTH], can be given on the set of alignment
vectors (x,y,z) € AV (a,b) by the expression

LENGTHL(z,y,2) =2x +2y+ 2+ L (6)

We can define the objective of the NLA problem in the domain of alignment vectors by using
definitions in (1), (3), (5), and (6) as

SCORE(x,y, z)
LENGTH;,(z,y, z)

NLAj, 1 (0,b) = max { [(.9:2) € AV(a.b)} (7)

Figure 3 shows some possible problem cases for LA for which NLA discriminates an alignment
with higher percent matches from the one determined by the LA problem. Part (i) includes an
example for the mosaic effect, and parts (i), and (ii7) have examples with non-overlapping and
overlapping alignments respectively. In each case, the shorter alignment(s) with a score of 80 has
a higher normalized score for L < 600 than the longer alignment, whose score is 120.

3 Algorithms

The alignment problems we define by stating their objectives in the previous section are clearly
optimization problems of linear functions over the same domain. In other words, using equations
(2) and (6), and definitions (4) and (7) we can rewrite LA and NLA as the following maximization
problems :

LA, (a,b) © mazimize T — 0y — Uz s.t.(x,y,z) € AV (a,b)
NLA; . 1(a,b) : mazimize ﬁ!% s.t.(x,y,2) € AV (a,b)

For a given A\, we define a problem which we call the parametric local alignment problem

LAs,(M)(a,b) : mazimize v — 0y —pz — A2z +2y +2+ L) s.t. (z,y,2) € AV (a,b)

Since the formal parameters in the problem descriptions are the same, in the rest of the paper
we will use LA, NLA and LA()) instead of LAs, 1(a,b), NLAs, 1(a,b), and LAs, 1())(a,b),
respectively.

As we propose next, a parametric local alignment problem can be described in terms of local
alignment problem.

Proposition 1 For A < %, the optimum value LA*(\) of the parametric LA problem can be for-
mulated in terms of the optimum value LA* of an LA problem.

Proof

8
)
100
100
100
i . (n,m)
(i)
bm (0,0) b, b, bm
E
&
™ (n,m) ™ (n,m)

(ii) (iii)
Figure 3: Mosaic and shadow effects. (i) mosaic effect, (i7) shadow effect (non-overlapping align-
ments), (i74) shadow effect (overlapping alignments). The numbers written in italic are the scores

of alignments identified by the corresponding rectangles. The other numbers are the side lengths of

QOgg_L while that of the longer

the rectangles. The normalized score of the shorter alignment(s) is

120
600+L -

alignment is

The objective of the parametric problem is

LA*(N) = max{(1 =2\)z — (§ +2\)y — (0 + A\)z — AL}
F4H20 pud A
_ AL
1227 12)\z} A
(]. — 2)\)LA§/’IJ/((I,, b) —)\L
SH20 A
1—ox M T 1 ox (8)

(1 —2X) max {:v -

where §' =

Thus, computing LA*()) involves solving the local alignment problem LAy ,/(a,b) , and per-
forming some simple arithmetic afterwards. O

Note that since §, u and L are positive, for any alignment vector (z',y', 2'), its normalized score

2=y = pd
2+ 2+ 2+ L

<

N|—=

Dinkelbach’s algorithm (Dinkelbach, 1967) can be used to solve NLA . Dinkelbach has developed
a general algorithm which uses the parametric method of an optimization technique known as
fractional programming. The algorithm is applicable to optimization problems which involve a
ratio of two functions over the same domain where the function in the denominator is assumed to
be positive. The thesis of the parametric method applied to the case of alignment maximization
problems implies that the optimal solution to NLA can be achieved via a series of optimal solutions
of LA(\) for different A . The central result is that

A= NLA* iff LA*(\)=0.

That is, an alignment vector a has the optimum normalized score A iff ¢ is an optimal alignment
vector for the parametric problem LA()) whose optimum value is zero. A proof of this essential
property of the parametric method is given by Sniedovich (1992). Craven (1988) and Sniedovich
(1992) explain various other interesting properties of Dinkelbach’s algorithm and fractional pro-
gramming.

Dinkelbach algorithm for NLA problem is shown in Figure 4. The algorithm starts with an
initial value for A and repeatedly solves LA()). At each instance of the parametric problem, an
optimal alignment vector (z,y,z) of LA()) yields a ratio (normalized score) for NLA. This new
ratio is either equal to A, in which case it is optimum, or larger than X\ . If it is equal to A then
the algorithm terminates. Note that in this case LA*(A) = 0 since the optimal alignment vector of
the last iteration has the normalized score A . Otherwise, the ratio is taken to be the new value of
A and LA()) is solved again. When continued in this fashion, convergence to NLA* is guaranteed.
Another way to explain the behavior of the algorithm is as follows. It iteratively modifies the scores
in such a way that the optimal non-normalized local alignment under the set of converged scores
is also the optimal normalized alignment under the original scores.

The parametric problem in this algorithm can be solved using the Smith-Waterman algorithm.
An optimal alignment vector needs to be computed along with optimal score for the parametric
problem of the Dinkelbach algorithm. Position of an optimal alignment may also be desired. These
can be done by extending the Smith-Waterman algorithm to include, at each entry of the score
matrix, information about the alignment vector corresponding to an optimal alignment path which
ends at that node, and the starting node-position of the path. This additional information can be

Algorithm Dinkelbach

Pick an arbitrary alignment vector (z,y,z) € AV (a,b) ,

z—0y—pz
2x+2y+z+L

A
Repeat
A=A

Using Prop.1l, solve LA(\) and obtain an optimal alignment vector (z,y,z)

z—0y—pz
2x+2y+z+L

A
Until * =

Return(*)

Figure 4: Dinkelbach algorithm for NLA.

carried over and updated along with the optimal score updates without an increase in the asymp-
totic space and time complexity. The resulting space complexity of solving NLA by this algorithm
is O(m). The resulting time complexity is the product of the number of iterations and, the time
complexity of the Smith-Waterman algorithm. Although experimental results suggest that the
number of iterations is small on average, no satisfactory theoretical average-case/worst-case bound
for the growth of the number of iterations has been established.

We show next that a provably better time complexity result can be achieved by using Megiddo’s
technique.

Megiddo (1979) introduced a general technique on how to use a given algorithm for optimizing a
linear function in order to develop an algorithm for an optimization problem which involves a ratio
of two linear functions over the same domain. If we apply his technique to NLA computation, then
the resulting algorithm is an LA algorithm which assumes a score of 1 — A for a match, penalties of
d— A, and g — A for a mismatch and an indel, respectively. \ is treated as a variable, not a constant.
That is, the algorithm is the same LA algorithm except that the coefficients are not simple constants
but linear functions of the parameter A. Instead of repeatedly solving LA(A) with increasing values
of A as in the Dinkelbach algorithm, this alternative solution simulates the given LA algorithm over
the coefficients. Additions of these linear functions are linear and can be computed immediately,
but comparisons among them need to be done with some care. The algorithm keeps track of the
interval in which the optimum value NLA* lies. This is essential because comparisons in the given
LA algorithm now correspond to those among linear functions, and outcomes may vary depending
on interval under consideration for A.

The algorithm starts with the initial interval [—oo, +o00] for NLA*. If the functions to be com-
pared intersect, then their intersection point X', “a critical value” of X, determines two subintervals
of the initial interval. In calculating which of the two subintervals contains NLA*, the LA algorithm

is called for help, and problem LA()') is solved. The new interval and the result of the comparison
are determined from the sign of the optimum value LA*(\') as will be explained later. The algo-
rithm returns a linear function of A and a final interval by which the local maximum of the function
can be computed. With this technique, if LA is solvable using O(p(n)) comparisons and O(q(n))
additions then NLA can be solved in time O(p(n)(p(n)+¢(n))) . If we choose the Smith-Waterman
algorithm to simulate then the time complexity of the resulting algorithm is O(n?m?) .

Megiddo (1979) also showed that for some problems the critical values of A can be precomputed.
In such cases these values give us the possible candidates for the end-points of the smallest interval
which eventually contains the optimum value (ratio). (In some applications, even all candidate
optimum values can be precomputed efficiently (Arslan and Egecioglu, 1999; Arslan and Egecioglu,
2000).

Whenever this can be done, binary search can be used to find the optimum value. For the
alignment problems in this paper: If LA*(A) = 0, then A = NLA*, and an optimal alignment vector
of LA(X) is also an optimal solution of NLA . On the other hand, if LA*(A) > 0, then a larger A,
and if LA*(\) < 0, then a smaller A should be tested (i.e. problem LA(X) should be solved with
a different value of A). This procedure continues until the “correct” value NLA* is found. Let X
be the largest value in the set for which LA*()') is less than or equal to zero. Then an optimal
alignment vector of LA()') yields the optimum value NLA* . This way, number of invocations
of LA algorithm is much smaller than that of the solution which uses the simulation idea. This
technique was used in problems such as minimum ratio cycles, and minimum ratio spanning trees
(Megiddo, 1979), and normalized edit distance (Arslan and Egecioglu, 1999; Arslan and Egecioglu,
2000).

It does not seem feasible to precompute critical or candidate values for the optimum value of
NLA . However, we will show that an efficient search for the optimum value is still possible by
using the fact that any two distinct candidate values for NLA* are not arbitrarily close to each
other if the scores are rational. A similar observation was used for the computation of normalized
edit distance by Arslan and Egecioglu (2000).

Let Q(a,b) be the set of possible values for NLA* . That is,

T — 0y — uz
20+ 2y + 2+ L

Qat) ~{ | (@y.2) € AV(a.b)
Proposition 2 Let
o=min{ |¢1 —q2| | q1,92 € Q(a.b),q1 # g2}

denote the smallest gap in Q(a,b) and assume § = 7—‘; and p = % are rational. Then

1
> .
7= gs(m +n+ L)?

Proof Suppose ¢1,q2 € Q(a,b) be two normalized scores of the alignment vectors (z1,y1,21) and
(%9, Y2, 22), respectively, where ¢; > g2 . Then

o T — 0y1 — pz _ Ty — 0y — p2z2
T 201 4+2y1+2z1+ L 22942ys + 29+ L

10

Observe that for two positive rationals 2t > 2 = B 22 > ﬁ . Also, for any alignment

vector (z,y,z) € AV(a,b) , since 2z + 2y + z < m + n we have

L [gsz1 —psyi —qrzi qswa — psys — qrzo
o >z — -

qs 12¢1+2y1 +21+L 2394 2ys+ 20+ L

1
= gs(m+n + L)?)

O

We propose the following algorithm RationalNLA for the NLA problem with rational penalties
(Figure 5). The algorithm first computes the smallest possible gap o between any two distinct values
for NLA (Proposition 2). It maintains an interval, [e, f], such that the optimum value of NLA lies in
[ea, fo] where e, and f are appropriate integer values. Initially e is set to zero, and f is set to %0’1
since NLA* is in [0, %) . RationalNLA iteratively solves a parametric local alignment problem with
parameter ko where k is the median of integers in [e, f]. At each iteration the interval is updated
according to the sign of the optimum value of the parametric problem as explained in Megiddo’s
technique. The effective search space is the integers in [e, f] and each iteration reduces this space by
half. The iterations end whenever the optimum value for the parametric local alignment problem
is zero upon which the algorithm terminates by returning the parameter ko as the optimum value
of NLA, or whenever there remains no integers between e and f. In the latter case, the algorithm
solves a parametric local alignment problem with parameter fo . An optimal solution of this
parametric problem yields the optimum normalized local alignment score (the optimum value of
NLA).

The invariant for the while loop is that e < f, and NLA* is in [eo, fo] . We can prove that it
holds by induction on the number of iterations. At the beginning (iteration zero) the invariant is
true since e and f are initialized to zero and %0*1, respectively, and NLA* is in [0, %) . The proof of
the inductive step follows from the discussions of Megiddo’s search technique. The algorithm returns
the parameter value if in one of the iterations the optimum value of the local parametric alignment
problem is zero in which case the algorithm is correct. Otherwise, the while-loop terminates with
the following conditions being true: e < fande+ 12> f (i.e. e = fore+ 1= f), and NLA* is
in [eo, fo] . Since the minimum distance between any two possible distinct values for NLA* is at
least o,

(i) either NLA* = fo ,
(ii) or NLA" is in [eo, fo) in which case there is only one possible value for NLA™ in [eo, fo) .

In both cases, an optimal alignment vector (z,y,z) for the parametric local alignment problem
with parameter fo yields the optimum value NLA* because of the fact that each new solution
to a parametric problem yields a ratio no worse than the parameter value as pointed out in the
description of the Dinkelbach algorithm.

Theorem 1 If algorithm A computes LA™ and obtains an optimal alignment vector with time com-
plexity T'(n, m), then NLA* can be computed in time O(T(n,m)logn) and using (asymptotically)
the same space required by algorithm A provided that 6 and p are rational.

Proof The while loop in RationalNLA iterates O(log (3¢s(m + n + L)?)) times because the space
on which binary search is performed is included in the set of integers in the range [0, %qs(m—l—n—i—L)Q] :

11

Algorithm RationalNLA

- where 62%, and uz% (Prop. 2)

1
0 < gs(m+n+1L)

e,] ¢ [0, Yqs(m + n + L)?]
While (e+ 1< f) do

ke [(e+f)/2]

Using Prop.1l, solve LA(ko) and obtain an optimal alignment vector (z,y,z)

z—0y—pz

Gl 2x+2y+z+L

if v =0 then return(ko)
else if v <0 then f <+ k
else e+ k
End {while}
Using Prop.1l, solve LA(fo) and obtain an optimal alignment vector (z,y,z)

T—0y—pz
Return(72x+2y+z+L)

Figure 5: NLA algorithm RationalNLA for rational scores.

12

Solving each parametric problem takes T'(n,m) time using algorithm A since it involves only a
local alignment computation and some simple arithmetic. The remaining steps take constant
time. Therefore the resulting time complexity is O(T(n,m)log (3gs(m +n+ L)?)) . The space
complexity is the same as that of algorithm A . O

The Smith-Waterman algorithm can be used to find the local alignment vectors and hence to
solve the parametric local alignment problems invoked by RationalNLA.

Corollary 1 Normalized local alignment of sequences of length n and m can be computed in
O(nmlogn) time and O(m) space.

The ideas in the Dinkelbach algorithm or algorithm RationalNLA are not restricted to a partic-
ular scoring scheme. Under any given scoring scheme, provided that the parametric LA problems
in these algorithms can be formulated in terms of an LA problem, these algorithms can be modified
so that they present a solution to NLA problem. Furthermore, if scores/penalties are rational, and
solving a parametric problem and obtaining an optimal solution (alignment vector) take asymp-
totically the same time as that of the underlying LA algorithm, then the complexity results for
RationalNLA of Theorem 1 hold. We address two particularly important cases of scoring schemes
. affine gap penalties, and arbitrary score matrices.

Sometimes insertion or deletion of a block of symbols called a gap is treated differently than a
stream of single-symbol indels. Affine gap penalty for a gap of length & is

o+ pk

where « is a gap open penalty and p is an indel penalty. In this case, we may use a 4-tuple
(z,9,2,9) to represent an alignment vector with which the new component ¢ is the number of
gaps. For example, (3,1,4,2) is the alignment vector for the alignment path shown in Figure 2.
The alignment vector has two gaps one of which is a single delete, and the other is a block of
three inserts. The definition of the length function LENGT Hj, does not change under this scoring
scheme. The score of an alignment vector can be rewritten as

SCORE(x,y,z,9) =x — dy — pz — ag .

In some applications, score of a given operation varies depending on the individual symbols
involved in the operation (e.g., protein sequence comparison). In this case, we may decide to define
the alignment vector such that it includes as a component frequency of each operation. Let 1—, —i
denote respectively the deletion and insertion of the ith symbol, and 7j denote the substitution of
the jth symbol for the ith symbol of the alphabet ¥ . For a given operation e, let s, represent the
score, and f, represent the frequency of this operation. If u = |X| then for a given alignment vector
a where

a =< fl*»f?*»"'1fu77f711f72a"'7f*’uaf11af127-"7f1ua-"afulafu?a---afuu >,

the score and length functions can be defined as

SCORE(a) = Zsl]fw—l-Z% f17+29 if—i
2Zf”+zfz,+zf + L

One can verify that in both of these cases, a parametric LA problem can easily be formulated in
terms of an LA problem under that particular scoring scheme, and our results hold.

LENGTH;,(a)

13

4 Implementation and Test Results

We have chosen to implement the Dinkelbach algorithm for NLA computation (affine gap penalties)
since this algorithm has a good performance in practice. We have modified the Smith-Waterman
algorithm (for affine gaps) to obtain and carry along the alignment information through the nodes.
In our implementation we have used LENGTH;j, value of the alignment vectors as a tie breaker.
We select an alignment with the largest LENGTHy, value in case there are more than one optimal
alignments ending in the same node. That is, we favor the alignment with the largest LENGTH],
value among the alignments with the same normalized score since for two alignments with the same
normalized score, the one with larger LENG THy, value has the higher (non-normalized) score which
may be preferred over others (The program can be obtained by contacting Arslan, A.N.). In our
tests, the algorithm never required more than 9 invocations of the Smith-Waterman algorithm, and
in the majority of cases it took 3 — 5 invocations to solve a single NLA problem.

Once optimal segments are found for one NLA problem, one may want to continue with more
NLA computations after masking these segments in the two sequences. For this purpose, we have
developed algorithm RepeatedDinkelbach. With each alignment between a;...a; and b;...b,
we store a pair whose first component is the alignment vector (z,y,z,g) and second component
is the alignment position (7,7, k,l) . We have used a queue @) to store alignments generated by
the iterations of the Dinkelbach NLA algorithm so that a new NLA computation picks as the
initial alignment the last alignment in () which does not overlap with the alignment reported in
the last iteration. This way we improve the average number of iterations per NLA computation.
RepeatedDinkelbach continues generating alignments until no alignment whose normalized score
is larger than a given threshold score 7' can be found in unmasked regions of the sequences.
This termination condition is easy to implement since the normalized scores are decreasing as
they are reported. Another alternative would be to let the algorithm run until there remains
no more alignments with positive score. We have also implemented a version of the algorithm
which first masks a set of regions as a pre-processing step. This allows us to explicitly stop the
NLA computations at any time we want, and resume the computation of alignments from where it
(almost) left using the second algorithm.

We have tested our algorithms with various values of L . We observe that if L is large we
obtain alignments with high scores but low normalized scores, while if L is small then the resulting
alignments have high normalized scores but they may be short and less interesting biologically.
In other words, as the value of L increases our algorithm finds longer optimal alignments for
a particular instance of the problem. It is difficult to determine a value for L which performs
well in (almost) every case because a proper value is data-dependent. If the highest normalized
score (with respect to the current value of L) belongs to an alignment that is too short to be
biologically interesting then we need to increase the value of L to favor the longer (biologically
interesting) alignments. For example for the alignments in Figure 3, L has to be at least 600 so
that the longer alignment wins over the shorter one. If alignments returned as optimal do not
have sufficiently high normalized scores then a smaller values of L should be tried. One needs
to experiment various values for L for a particular instance of sequence alignment. Another way
to get rid of unwanted short alignments can be to mask the corresponding regions and rerun
the algorithm. If we decide to do so we need to be sure that these regions do not take part
in desired alignments. As a common practice in sequence alignment, we first masked the repeats
by RepeatMasker (http://ftp.genome.washington.edu/RM/RepeatMasker.html) before running our
algorithm. These biologically uninteresting regions may have high normalized scores. They may

14

become part of unwanted short alignments. Therefore hiding repeats may help eliminate short
alignments to be output as optimal by our algorithm. To visualize the difference between different
approaches to sequence alignment, we represented every area of similarity as a rectangle rather
than as a diagonal in conventional drawings of dot-matrices. Rectangles in the figures show the
segments involved in the alignments. In Figures 6 and 7 the alignment regions returned by Smith-
Waterman algorithm are shown using dotted lines whereas those determined by post-processing
algorithm by Zhang et al. (1999) are distinguished by dashed lines. Rectangles with thick lines
are the ones obtained by our algorithm. We have included percent matches (number of matches
divided by the average length of the segments) for the alignments we have found. Our algorithm
captures the regions found by these algorithms but provides more “granularity” in representing
the most similar fragments of the aligned regions. To achieve even higher level of granularity one
can either reduce the threshold T' for reported alignments or vary L at different iterations of the
algorithm. As expected, the regions not included in found normalized local alignments show little
similarity: the degree of similarity “outside” the boxes in Figures 6 and 7 is usually below 35%.

80K —

mouse

70K 3,
63

79

60K — .85

72
50K — g1 o

30K — 76
67
20K — o
78 =

10K — 710 68
78 []

78 0

\ \ \ \ \ \ \ \ \ \ \
(0.0 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K 110K 120K

human

Figure 6: Normalized local alignments of orthologous human (GenBank Acc. No. AF030876) and
mouse (GenBank Acc. No. AF121351) genomic sequences (L = 2000, § = 1, a = 6, and p = 0.2).

15

60K

50K Tt 83°;

40K

30K e e '

7503 conventional
,,,,,, post processed

20K | !
gg o __ normalized

10K — 68

—
|

| | | | | | | | | | | |
00 10k 20K 30K 40K 50K 60K 70K 80K 90K 100K 110K 120K

elegans

Figure 7: Comparison of normalized local alignments of bli-4 locus in C. elegans and C.briggsae
with conventional local alignments and post-processed local alignments as described by Zhang et
al. (1999) (L = 2000, 6 =1, a =6, and p = 0.2).

16

5 Conclusions

The arrival of long genomic sequences raises new challenges in sequence comparison. In particular,
the traditional tools for computing and representing alignments may not be suitable for genomic-
scale sequence comparison. These challenges were recently addressed by Schwartz et al. (2000)
who introduced the Percent Identity Plots or PIPs. PIPs are compact and convenient substitutes
for dot-matrices that, in addition to revealing similar segments, reflect the percent of similarity
between different segments of compared sequences. Our normalized local approach is conceptually
similar to this approach in an attempt to find the regions with the highest percent of similarity.

The undesirable properties of linear scoring in sequence alignment were first revealed by Altschul
and Erickson (1986) who proposed different non-linear scoring functions. They also noticed that
alignments with non-linear scoring functions are difficult to compute in practice. The deficiency of
linear scoring functions are well-known in other application domains of dynamic programming. In
particular, non-linear scoring functions lead to better practical algorithms for Speech Recognition
and Recognition of Hand-Written Texts (Vidal et al., 1995). In computational molecular biology,
Pearson (1995) and Shpaer et al. (1996) tried to remedy the deficiencies of the linear scoring
functions by re-normalization of the Smith-Waterman scores at the post-processing stage. This re-
normalization led to significant improvement in the selectivity of the database searches. Although
these approaches are similar in spirit to our work, we emphasize the important difference: re-
normalizations rearrange the ranked list of the Smith-Waterman scores but do not affect the Smith-
Waterman algorithm itself. It is possible that an alignment found by normalized local alignment
algorithm is overlapping with no alignments given by Smith-Waterman algorithm.

Pearson, 1995 (Pearson, 1995), Shpaer et al., 1996 (Shpaer et al., 1996) and Brenner et
al., 1998 (Brenner et al., 1998) made the comparative analysis of FASTA, BLAST and the Smith-
Waterman algorithm for functional protein classification. Abdueva et al. 2001 (Abdueva et al.,
2001) used their test framework to study the effect of alignment length on sensitivity of database
search. The preliminary results of this work demonstrate that normalization improves the func-
tional protein classification.

Some sequence comparison practitioners have been using a few runs of the Smith-Waterman
algorithm with varied gap penalties to arrive to a biologically adequate alignment. However, the
choice of gap penalties in such searches remained largely heuristic. Our algorithm for normal-
ized sequence alignment mimics this approach but provides a rigorous justification for choosing
parameters in different runs of the Smith-Waterman algorithm.

Although the normalized local alignment approach proved to be successful in our preliminary
tests, a number of questions remain unsolved. Most importantly, the statistics of normalized
local alignment is poorly understood. The statistical questions associated with the classical local
alignment are so complex (Arratia et al., 1990; Waterman and Gordon, 1990; Waterman and
Vingron, 1994) that we did not even dare to try estimating statistical significance of normalized
local alignment. Normalization helps eliminate the mosaic and shadow effects. The success depends
on the value of L. It seems that no single choice of L eliminates all these unwanted effects, and
reveals all the most important alignments at the same time. However, we can argue that there
exists a value of L with which an important alignment may be detected by normalized alignment
algorithm if it has sufficiently high normalized score. An important problem is that given an
instance of sequence alignment, the rules governing the optimal choice of the parameter L are not
yet well understood.

17

6 Acknowledgements

We are grateful to Diana Abdueva, Nickolai Alexandrov, Steven Altschul, Mikhail Gelfand, Ben
Koop, Martin Vingron, and Michael Waterman for helpful discussions, and to two anonymous
referees for their constructive comments.

References

Abdueva, D., Solovyev, V. V., Trukhan, M., Pevzner, P. A. and Alexandrov, N. N. (2001). Nor-
malized local alignment improves the functional characterization of proteins, (in preparation).

Alexandrov, N. N. and Solovyev, V. V. (1998). Statistical significance of ungapped alignments,
Pacific Symposium on Biocomputing (PSB-98), (eds. R. Altman, A. Dunker, L. Hunter, T.
Klein) pp. 463-472.

Altschul, S. F. and Erickson, B. W. (1986). Locally optimal subalignments using nonlinear similarity
functions, Bulletin of Mathematical Biology, 48, 633 660.

Altschul, S. F. and Erickson, B. W. (1988). Significance levels for biological sequence comparison
using nonlinear similarity functions, Bulletin of Mathematical Biology, 50, 77-92.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., W, M. and Lipman, D. J.
(1997). Gapped Blast and Psi-Blast: a new generation of protein database search programs,
Nucleic Acids Research, 25, 3389 3402.

Arratia, R., Gordon, L. and Waterman, M. S. (1990). The Erdos-Renyi Law in distribution, for
coin tossing and sequence matching, The Annals of Statistics, 18, 539-570.

Arslan, A. N. and Egecioglu, O. (1999). An efficient uniform-cost normalized edit distance al-
gorithm, 6th Symposium on String Processing and Information Retrieval (SPIRE’99), IEEE
Comp. Soc. pp. 8-15.

Arslan, A. N. and Egecioglu, O. (2000). Efficient algorithms for normalized edit distance, Journal
of Discrete Algorithms, Special Issue on Matching Patterns, Hermes Science Publications, (in

press) .

Bafna, V. and Huson, D. (2000). The conserved exon method for gene finding, Proceedings of
the Eight International Conference on Intelligent Systems for Molecular Biology, La Jolla,
California .

Batzoglou, S., Pachter, L., Mesirov, J., Berger, B. and Lander, E. (2000). Comparative analysis of
mouse and human dna and applications to exon prediction, Proceedings of the Fourth Annual
International Conference on Computational Molecular Biology (RECOMB-99)), Tokyo, Japan.

Birney, E., Thompson, J. D. and Gibson, T. J. (1996). PairWise and SearchWise: finding the
optimal alignment in a simultaneous comparison of a protein profile against all DNA translation
frames, Nucleic Acids Res., 24, 1730-1739.

Brenner, S. E., Chotia, C. and Hubbard, T. J. (1998). Assessing sequence comparison methods
with reliable structurally identified distant evolutionary relationships, Proc. Natl. Acad. Sci.

USA, 95, 6073-6078.

18

Craven, B. D. (1988). Fractional Programming, Helderman Verlag, Berlin.
Dinkelbach, W. (1967). On nonlinear fractional programming, Management Science, 13, 492 498.

Egecioglu, O. and Ibel, M. (1996). Parallel algorithms for fast computation of normalized edit
distances, Proceedings of the Fighth IEEE Symposium on Parallel and Distributed Processing
(SPDP’96) pp. 496 503.

Gelfand, M. S., Mironov, A. A. and Pevzner, P. A. (1996). Gene recognition via spliced sequence
alignment, Proceedings of the National Academy of Sciences, 93, 9061 9066.

Goad, W. B. and Kanehisa, M. I. (1982). Pattern recognition in nucleic acid sequences. i. a general
method for finding local homologies and symmetries, Nucleic Acid Research, 10, 247-263.

Huang, X., Pevzner, P. A. and Miller, W. (1994). Parametric recomputing in alignment graph,
Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching, Asilomar,
California pp. 87 101.

Marzal, A. and Vidal, E. (1993). Computation of normalized edit distances and applications, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(9), 926-932.

Megiddo, N. (1979). Combinatorial optimization with rational objective functions, Mathematics of
Operations Research, 4, 414—424.

Novichkov, P. S., Gelfand, M. S. and Mironov, A. A. (2000). Prediction of the exon-intron structure
by comparison sequences, Molecular Biology, 34, 200 206.

Oommen, B. J. and Zhang, K. (1996). The normalized string editing problem revisited, IEEFE
Transactions on Pattern Analysis and Machine Intelligence, 18(6), 669 672.

Pachter, L., Batzoglou, S., Spitkovsky, V. I., Lander, E. S., Berger, B. and Kleitman, D. J. (1999). A
dictionary based approach for gene annotation, Proceedings of the Third Annual International
Conference on Computational Molecular Biology (RECOMB-99)), Lyon, France pp. 285 294.

Pearson, W. R. (1995). Comparison of methods for searching protein sequence databases, Protein
Science, 4, 1145 1160.

Schwartz, S., Zhang, Z., Fraser, K. A., Smit, A., Riemer, C., Bouck, J., Gibson, R., Hardisson,
R. and Miller, W. (2000). Pipmaker - a web server for aligning two genomic dna sequences,
Genome Research, 10, 577 586.

Sellers, P. H. (1984). Pattern recognition in genetic sequences by mismatch density, Bulletin of
Mathematical Biology, 46, 501 504.

Shpaer, E. G., Robinson, M., Yee, D., Candlin, J. D., Mines, R. and Hunkapiller, T. (1996).
Sensitivity and selectivity in protein similarity searches: a comparison of smith-waterman in
hardware to blast and fasta, Genomics, 38, 179 191.

Smith, T. F. and Waterman, M. S. (1981). The identification of common molecular subsequences,
J. Mol. Biol., 147, 195 197.

Sniedovich, M. (1992). Dynamic Programming, Marcel Dekker, New York.

19

Vidal, E., Marzal, A. and Aibar, P. (1995). Fast computation of normalized edit distances, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 17, 899-902.

Waterman, M. S. (1995). Introduction to Computational Biology, Chapman and Hall, London.

Waterman, M. S. and Gordon, L. (1990). Multiple hypothesis testing for sequence comparison,
Computers in DNA. (Eds. G. Bell and T. Marr), Addison- Wesley pp. 127 135.

Waterman, M. S. and Vingron, M. (1994). Rapid and accurate estimates of statistical significance
for sequence database searches, Proc. Natl. Acad. Sci. USA, 91, 4625 4628.

Zhang, Z., Berman, P. and Miller, W. (1998). Alignments without low-scoring regions, J. Comput.
Biol., 5, 197-200.

Zhang, Z., Berman, P., Wiehe, T. and Miller, W. (1999). Post-processing long pairwise alignments,
Bioinformatics, 15, 1012-1019.

20

