
RELAX - The Relational Algebra Pocket Calculator Project

Victor Mates and Rebecca Grasser
Department of Computer and Information Science

College of Business Administration
Cleveland State University

Cleveland, Ohio 44114 USA
<matos@cis.csuohio.edu>, <rgrasser@acm.org>

J

J

Abstract
Database courses benefit from the abundance of commercial SQL systems available today. Unfortunately, the same can-
not be said about the relational algebra query language. This article considers a lab experience to integrate the learning
of these two important topics. In the process of implementing the project, the student acquires practical knowledge in
areas such as database programming, parsing and compiling, dynamic SQL code generation, object linking and embed-
ding technologies (OLE), and problem solving ski][Is using the framework of relational algebra. This activity is applied
to a traditional second semester database theory course and appears to be very beneficial to the student.

1. Introduction
In this paper we describe a laboratory experience appropri-
ate for an advanced database systems course. This project,
called RELAX (Relational Algebra Explorer), involves the
implementation of an interpreter of Codd's [3, 4] relational
algebra expressions. The relational algebra operators are
customarily used to introduce the concept of data retrieval in
a relational database. However, the lack of practical tools
may mislead students to believe that this material is only of
theoretical interest having little or no value in the actual
development of the database professional. Our belief is that
the mastery of relational algebra is the foundation needed for
the student to effectively craft any query in any of the com-
mercially available database languages.

There are many compelling reasons to emphasize the
use of relational algebra as a query language. It is compact,
platform-independent, and relatively simple. Querying with
relational algebra, forces the student into a disciplined rea-
soning process which involves a partitioned, piece-meal,
sequential scheduling of the tasks. The ability to break down
a large problem into smaller, solvable and articulated sub-
problems is analogous in many ways to the practice of struc-
tured programming techniques emphasized in computer sci-
ence courses.

In practice, the database instructor uses SQL [1, 2] as
the primary vehicle for database interaction. SQL is an
important skill to be mastered by the student. However, SQL
has less sequentiality than relational algebra, and the reason-
ing process tends to be more loosely coupled. Additionally,
the SQL interpreter/optimizer performs more background
actions on behalf of the programmer, resulting in less control
of the query.

In this lab experience we present a project to tie togeth-

er the best of each approach. The student learns to reason
queries in an algebraic style, while polishing skills in SQL
programming. It is our belief that this project makes an
excellent capstone assignment exposing students to applica-
tion of concepts including algorithms and data structures,
database and information retrieval, programming languages,
and software methodology and engineering.

2. RELAX - The Relational Algebra Pocket
Calculator
The pocket calculator consists of three components: (1) a
database explorer module, (2) a syntax directed translator,
and (3) a library of procedures implementing algebra opera-
tors and relational database schema modifiers.

The explorer component facilitates the examination of
the database dictionary. For simplicity we use the Microsoft
Access database model. The metadata describing the data-
base could be used to see the composition of the different
tables, fields, queries, relationships, forms, and reports held
in the Access database. The translator converts relational
algebra expressions requesting data from the Access data-
base into new relations. The mechanism is straightforward;
the results of each query are placed into an answer table,
which could be seen using the database explorer. RELAX
supports a total of twelve relational constructs including:
aggregation, selection, projection, join, natural join, left
outer join, intersection, division, Cartesian product, union,
difference, rename, and assignment.

Example: The Company Database
Our examples are based on a simplified Company database
[5] whose schema is given as follows.

SIGCSE Bulletin ~ : . ~ L ~ 40 December 2000 Vol 32. No. 4

http://crossmark.crossref.org/dialog/?doi=10.1145%2F369295.369320&domain=pdf&date_stamp=2000-12-01

EMPLOYEE (fname, minit, Iname, ssn, bdate,
address, sex, salary, superssn, dno) KEY: ssn

DEPARTMENT (dname, dnumber, mgrssn, mgrstartdate) KEY: dnumber
PROJECT (pname, pnumber, plocation, dnum) KEY: pnumber
WORKS_ON (essn, pno, hours) KEY: (essn, pno)
DEPENDENT (essn, dependent-name, sex,

bdate, relationship) KEY: (essn, dependent-name)

The Employee table contains personal data about people
working for the company. This includes the key value SSN
(Social Security Number). The Department table gives the
number and name of each department, as well as the manag-
er's SSN number and his/her starting date. The Project table
identifies each activity being developed by the company.
Works On describes the employee's weekly workload. The
relation Dependent lists the direct family member of each
employee.

3. RELAX Version of the Algebra Operators
RELAX expressions can be of any degree of complexity.
They can be nested one inside of the other using parenthesis.
Table 1 summarizes the operators that may appear in a
RELAX relational algebra expression. The PRECEDENCE col-
umn in Table 1 indicates the relative importance of each
operator. For instance, Aggregation has a higher precedence
(4) than Union (1), therefore the '#' operator should be com-
puted before the '+' operator. More details about processing
the precedence grammar are given in the next sections. In
general, the calling sequence to invoke the relational algebra
parser is Table1= Algebra_Expression, where Table I is the
name of the output relation constructed accordingly to the
specifications given in AlgebraExpression.

A typical algebraic expression is made according to the
following syntax X(Relation I) OP Y(Relation2), where X
and Y represent optional unary operators and OP is an
optional binary operator. A description of the valid X, Y, OP
operators is provided in Table 1 below.

, OPERATOR] PREClgD~CIg RgL.AX DESCRIPTION
fu~=l .obt l~ ;) . ~;,SVMBOL!=,

fi~cti~s =r~: SUM, AVO, MAX, MIN, COUNT

Sel~tioll' 4 : () Employee : (Sex w'P and Doe - $)
Plojectiml 4 [] Employee [SSN, Lnm¢, SalaiV]
Join 3 [) Empioyee (Ssn = ..~c, al | Depelulem

Naturid JoM 3 * Employee * Skills

Left-Outer Join 3 >> . "~alp!oyee >>{$11~ * ~11} D ~ e n t

lmene~on 2 & Eegb~eers & MenaSm
Olvision 2 I Work LOn[Essn,plno] / Emjects[Pmtmber]
Cal1~ian 2 ** Projects *- D¢l~utmcnts
Oni~. | + MaleEmp + FemllleEmp ..

Minm I i Enghaeers. Mann/F:n
I

AulSl'ancnlt 0 I Re:rolt - S~lleF.~l~'ess[o~

Table 1. Relational algebra operators in RELAX

4. The RELAX Library
A collection of Visual Basic functions is used to support the
processing of algebra expressions. The routines are grouped
into two categories: data manipulation and schema opera-
tors. The schema operators consist of the functions
addColumnO, deleteColumnO, renameColumnO, and
showSchemaO. These functions give the user the ability to

alter the structure of a table by adding, removing, or renam-
ing one column at a time. Other supporting routines include
the noDuplicates 0 function which removes duplicate tuples
from relations. The data manipulation routines support each
of the basic algebra operators. For instance, the algebraic
union operation "Answer = T1 + T2" is implemented in a
procedure called RelaxUnion(Answer, T1, T2). This routine
checks whether or not the tables T1 and T2 have compatible
schemas. If they do, the tables are combined into a new table
called Answer and duplicate records are removed. The next
section suggests how to implement each operator using
Access-SQL syntax.

5. Simulating Relational Algebra with MS-Access
SQL
The following table indicates how to convert each of the
basic algebra operators into the SQL dialect supported by
MS-Access. The students must individually implement and
test each of the operators as a Visual Basic function. An
example of such coding is provided below. It is convenient
to group all of the algebraic operators into a single global VB
module. The same modulafization applies to the implement-
ing of the schema operators.

Algcera ~ r
r select * ~_~temp fron~'rl"

.~mbol RELAX Syntax StS. .A©~ SQL Vw'slmt

I! Union "r~u t = r l +1"2
i • I i n s ~ into t~p selea ' from a:

[select distinct * ~ result from temp;
i Minas result- r l - 1"2 ! select * into result f ~ ' h

l l

[- t where not Exists
i (select* from f2

where r l . f ie ld , - r2.field,

I aad r'l'.fiuld, = ~2 . th ld ,)
. NMe: Scheme{r I~Schen~r2)..fleld,~..fid~

Intersection result - rl & f 2 select * into result from rl
w / r e exists

r (select * from r2
where r I.cnraraonfleldp Y2.©ommonfieldt ...

and rl.commonfield, = r2.eommonfield,)
Selection result - r l : (cmadition) select * into result
O from rl

where (Condition);
l~rojectlnn result = rl [A,B,. . . ,Nf" - select distinct A,B,..,'S into result
l'l from rl;
~ten~me res'ult = r l ?(hid. new) selc~ o ldasnew into result
p fi-om rl;
Aggregate result : r l # (~ , r L ~ , ~ f',~d) select group-by.list, function-list into result
Formation from rl
r group by gnn,p-by4~t;

where function-list is functinn O~ela~
fimction: Max, Min, Count. Avg. Sum.

Cartesian result - r l ^ 1"2' " select * into result
x from r l , r2
Join result : rl {rl.a = r2.b) ¢2 select * into result

from r l , r2
whemre r l . a - r2.b

Natural resul t :r l * r2 select r l .* , t2.* into result
Juln from rl ,r2
• where (r l . f l - r 2 . f t) ...

and (r l . f . - r 2 . f)
NOI"E: li,..~ le~e~l~t~lecommm II¢ldsofrl 1~112

LeftOutor select e.*, d.* intoresult
Jn in r e s u l t - r l >> t2 from Employee cLEFT join
.> Dependezat d ON

(e.Ssn = d.Essn)
Note: Assume rl ls EmlRo~omld r2 Is l ~ d e a t

Division result = rl / r2' Assume schemas: rI(A,B), and (2(B)
+ select distinct x,A into result

from TI asx
where NOT EXISTS (

select *
from T 2 ~ y
where NOT EXISTS (

select *
from T l a s z
where (z.A= x.A) AND (z . l ~ y.B)))

Table 2. SQL version of the RELAX Operators in the
MS-Access Environment.

Vol 32. N o . 4 D e c e m b e r 2 0 0 0 41 ~ . ~ , f f ~ . ~ S I G C S E B u l l e t i n

Example. A Relax Function
The routine below illustrates the implementation of the
aggregation operator. For instance, the expression

dbStatus = RELAX_Aggregation
("myResult", "Employee", "sum", "salary", "sex")

partitions the Employee table according to sex values. The
sum of salaries is computed on each group. A new table
called myResult is generated. This table has two rows hold-
hag the gender and the total salary for that gender. The func-
tion RELAX_Aggregation returns the number of rows in the
resulting table. In the case of errors the variable dbStatus
receives the value -1.

Public Tunotlon

RELAX Aggregation(destinationTable, sourceTable, _

theFunction, onCol, groupByColumn) As Integer

On Error GoTo Adios

Dim countRssult As Integer

Dim db As Database

Dim rs As Recordset

Dim mySQL AS String

countResult = -i

Set db = CurrentDB

mySQL = "select ~ & groupByColumn & ", " &

mySQL = mySQL & theFunction & 4(, & onCol & ~) " &

mySQL = mySQL & ~ into " & destinationTable & _

mySQL = mySQL & " from ~ & sourceTable &

mySQL = mySQL & ~ group by " & groupByColumn

db.Execute (mySQL)

Set rs = db.OpenRecordset(destinationTable)

countResult = rs.RecordCount

Adios:

RELAX_Aggregation = countResult

End

6. The Graphical Interface
RELAX has two main screens. The first shows the database
explorer and the second displays the calculator itself. The
explorer screen uses a typical file-finder interface to locate
and open the database. Once it is selected, a series of list-
boxes holding table-name, query-name, relationships, and
reports are filled-up. Clicking on a table-name shows all the
fields (type/size) in the table as well as a grid-view of the
table. A similar procedure is followed for queries, relation-
ships, and reports. For brevity we omit the view of the
explorer's screen.

The second view is the calculator. An image of the
screen is provided in the Figure 1. The calculator resembles
a common pocket calculator. The top textbox is used to enter
the algebraic expression. In the making of the algebra
expression the user will need to know the exact spelling of
tables, and fields. Those names could be seen in the tabbed
control on the lower left portion of the screen. The algebra
operators are grouped on the upper left box. The screen is
context sensitive, for instance, if the mouse is placed on top
of the # (aggregation operator) a quick-help screen appears
showing the syntax for the operator.

Once the expression is formed, the user pushes the
Parse button. For pedagogical reasons an image of the post-
fix version of the query is shown in a textbox. If the query is

syntactically correct its results can be seen by pushing the
Show Table button. Unwanted tables can be deleted using the
Drop Table button. The image below shows the calculator
processing the expression test l = (employee: (sex= 'M) [ssn]
+ (employee:(sex= 'F)). Using the selection and projection
operators, this query selects the social security numbers (ssn)
of those individuals whose gender is male from the
Employee table. A similar query is performed to retrieve the
social security numbers (ssn) of all female employees. Using
the union operator, the two sub-queries are combined to form
the final result. The result screen is also displayed.

] Caleulater

J .

F l ~ I. The 6 r ~kpblC~d (ntc'tf~o:

7. The RELAX Parser
The job of the parser is to isolate the tokens or components
of the input expression, convert the expression from infix to
postfix notation, and finally evaluate the query. The code
generated by the parser consists of a sequence of calls to
functions in the RELAX library. Once the query is evaluated
its resulting tuples are stored into a table. The overall strate-
gy is as illustrated with the following example.

Example: Parsing an Expression
a. Assume the user supplies the following union query

MyResult = (rl + r2) [A,B]
The query is broken into tokens. Each token is given to the
parser which in turn checks its type (operand, operator) and
precedence.
b. The tokens are rearranged into their postfix order.

c. The code generator finds the + symbol in the postfix
string. A call to the RelaxUnion(...) routine is made. The
routine requests the previous two arguments from the postfix
string (rl, and r2), and generates the name of a temporary
table relaxTempOOI in which results for the union will be
held. The fragment of code

call relaxUnion (_relaxTempO01, rl, r2)

SIGCSE Bulletin ~ 3 - ~ 42 December 2000 Vol 32. No. 4

is produced. The postfix expression is
changed to

myResult relaxTempO01 A,B] =
d. The scanning continues, the symbol "]"
representing projection is found and more
code is generated. At this point a call to the
RELAXProjection(...) function is pro-
duced. This routine takes the previous two
arguments from the postfix list, and
replaces them with the new table t,oo~.¢~o,,
_relaxTempO02. The new postfix string is

MyResult relaxTemp2 =
e. Parsing continues in a similar mode for
the rest of the string. The final code is

IBIBGZ~I'
call relaxUnion

(_relaxTes~p001, rl, r2) 'Code for UNION

call relaxProj ection

(_relaxTemp002, _relaxTemp001, 'A,B') 'Code for PROJECTION

call relaxAsslgnment

(MyResult, relaxTemp002) 'Code for ASSIGMENT

END

Finally the query is executed, the table MyResult is added to
the schema to hold the resulting tuples, and the temporary
tables are removed. An interesting experience in this project
was the use of system-defined objects and the construction
of custom made controls. We asked our subjects to imple-
ment the stack services used above by means of their own
ActiveX DLL (Dynamic Link Library) control. Details about
this subject are out of the scope of this paper.

Dim theDB AS Database
Dim theDoc AS Document
Dim theCont AS COnta lne r
Dim t h e P c o p e r t y As P r o p e r t y
Set CheOB m OpenDaCabase("c;\Temp\Nwlnd.mdb")
Set theCont = theDB.Contalners!T~les
Debug. Br~nt "Documents in " & theCont.Name & -

" container"
For Each theDoc Xn theCont.Documents

Debug. Prlnt " " & theDoc.Name
Debug. Prlnt "Propertles of " &

theDoc.Name & " document"-
For Each theProperty I n theDoc.~ropert~es

Oebug.~rln¢ " " & the~roperty.Name &
" - " & t h e P r o p e c t y

Next theProperty
Next theDoc

Databases I

Containers I

t Q~r~ * ' ~ I

I .~==" I

Figure 2. The MS-Access Database Dictionary

Access.Application. Once the application is running the
user's interface changes to the familiar MS-Access menu,
from which the report (form) could be browsed or printed.
The following fragment of code illustrates the activation of
the Access application.

Set accessApp = Create0bject("Access.Application")

accessApp.OpenCurrentDatabase (txtTheDatabaseName.Text)
accessApp.DoCmd.OpenReport Report, acViewPreview

accessApp.Application.Visible = True

Example: Listing Tables from Schema
The fragment of Figure 2 shows the scanning of the MS-
Access Containers collection to gather data about docu-
ments of type "Tables". Each table and their properties is dis-
played. Similar code could be used to examine queries,
reports, relationships, and forms.

8. Exposing the Database Architecture
RELAX relies on the Microso~ Access 8.0 object model to
gather and display information about a particular item [6]. In
the MS-Access organization this data is held in several
objects whose hierarchical disposition is displayed in the fig-
ure below. That hierarchy structure is known as the DAO
(Data Access Objec0 organization. In the DAO hierarchy the
Containers, TableDe3~, and QueryDe~ collections act as the
primary sources of information. For instance, the user could
use the TableDe~ collection to request facts regarding a par-
ticular table, such as the associated fields, their data types,
sizes, maximum and minimum value, count of different val-
ues, dates of creation, last update, composition of the pri-
mary key, updateable flag, validation rules, and record-
count. The user could also see the actual data records from
the selected table.

Similarly, if the user chooses to see what stored queries
are available in the database, the explorer examines entries
in the QueryDel~ collection. Information such as the text of
the selected SQL statement, its type, parameters, dates of
creation and last update, updateable flag, and formal output
list is shown. The user may opt for execution of the query
and displaying of the results, as well as alteration of the base
tables (in the case of action queries).

Other MS-Access objects such as reports and forms can
be remotely examined by executing an instance of the

9. Conclusion
We believe this capstone project provides students the
opportunity to integrate several important concepts that are
normally learned in various computer science courses such
as data structures, compiler design, database systems, and
advanced programming. In addition to the chance of review-
ing those important topics, the students face a challenging
programming project that could very well be developed dur-
ing a typical semester course. We identified several specific
gains for the students as follows.
1. Maturity in database programming using Visual Basic

language. This goal is achieved by programming at the
level of the DAO object control (or an equivalent
approach such as ADO). Some of the objects and meth-
ods that are studied are Database, RecordSet,
OpenDatabase, OpenRecordSet, Execute.

2. Exposition to the metadata describing the internal
organization of the database, which promotes under-
standing of the MS-Access architecture and its interfac-
ing with Visual Basic. This portion emphasizes the
interaction with the DAO Hierarchy, which includes
collections of objects such as WorkSpaces, TableDq/~
QueryDe~, and Containers.

3. Ability to formulate and evaluate complex database
expressions in relational algebra query language,

4. Ability to formulate sophisticated retrieval and action

Vol 32. No. 4 December 2000 43 ~'~'¢~:~ SIGCSE Bulletin

SQL queries.
5. Construction of advanced user-defined data structures

using the Type... End Type construction,
6. Building of Visual-Basic user-defined objects. Writing

of class-modules. Construction of Windows' Dynamic

Link Libraries (DLL).
We recognize that areas for improvement in the project

include the error detection phase and the handling of data-
base dictionaries of other ODBC-compliant databases such
as Oracle and SQL-Server.

References
[l] American National Standards Institute. Database Language SQL. Document ANSI X3.135-1992.
2] Chamberlin, D., et al. "SEQUEL 2: A Unified Approacla to Data Definition, Manipulation and Control". IBM Journal of Research and

Development, 20:6, November 1976.
[3] Codd, E.F., "A Relational Model of Data for Large Sh~xed Data Banks". CACM 13, No. 6, June 1970.
[4] Codd, E.E, "Relational Completeness of Data Base Subl[anguages", In Database Systems, Courant Computer Science Symposia Series 6.

Englewoods Cliffs, NJ, Prentice Hall, 1972
[5] Elmasri, R., Navathe, SR. Fundamentals of Database Systems, Third Edition. Addison-Wesley Publishing Co. 1999.
[6] Microsoft Press. Microsoft IOsual Basic 6.0 Programmers Guide. 1998.

SIGCSE Bulletin ~ . , ~ 44 December 2000 Vol 32. No. 4

