
Parallel Shared-Memory Simulator
Performance for Large ATM Networks

BRIAN UNGER and ZHONGE XIAO
University of Calgary
JOHN CLEARY and JYA-JANG TSAI
University of Waikato
and
CAREY WILLIAMSON
University of Saskatchewan

A performance comparison between an optimistic and a conservative parallel simulation
kernel is presented. Performance of the parallel kernels is also compared to a central-event-
list sequential kernel. A spectrum of ATM network and traffic scenarios representative of
those used by ATM networking researchers are used for the comparison. Experiments are
conducted with a cell-level ATM network simulator and an 18-processor SGI PowerChallenge
shared-memory multiprocessor.

The results show the performance advantages of parallel simulation over sequential simula-
tion for ATM networks. Speedups of 4-5 relative to a fast sequential kernel are achieved on 16
processors for several large irregular ATM benchmark scenarios and the optimistic kernel
achieves 2 to 5 times speedup on all 7 benchmarks. However, the relative performance of the
two parallel simulation kernels is dependent on the size of the ATM network, the number of
traffic sources, and the traffic source types used in the simulation. For some benchmarks the
best single point performance is provided by the conservative kernel even on a single
processor. Unfortunately, the conservative kernel performance is susceptible to small changes
in the modeling code and is outperformed by the optimistic kernel on 5 of the 7 benchmarks.
The optimistic parallel simulation kernel thus provides more robust performance, but its
speedup is limited by the overheads of its implementation, which make it approximately half
the speed of the sequential kernel on one processor.

These performance results represent the first comparative analysis of parallel simulation for a
spectrum of realistic, irregular, low-granularity, communication network models.

Financial support for this research was provided by an NSERC Collaborative Research and
Development grant (CRD 183839), and by our many industrial sponsors: Netera Alliance,
Newbridge Networks, New Zealand Telecom, Nortel, Siemens, Silicon Graphics, Stentor, and
Telus. This support, and the ongoing interactions with our industrial sponsors, are greatly
appreciated.
Authors’ addresses: B. Unger and Z. Xiao, Department of Computer Science, University of
Calgary, Calgary, T2N 1N4, Canada; J. Cleary and J.-J. Tsai, University of Waikato, Waikato,
New Zealand; C. Williamson, University of Saskatchewan, Saskatchewan, Canada.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 1049-3301/00/1000–0358 $5.00

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000, Pages 358–391.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F369534.369537&domain=pdf&date_stamp=2000-10-01

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)—Single-instruction-stream, multiple-data-stream processors
(SIMD); C.2.1 [Computer-Communication Networks]: Network Architecture and Design—
Asynchronous Transfer Mode (ATM); I.6.8 [Simulation and Modeling]: Types of Simula-
tion—Parallel

General Terms: Experimentation, Performance

Additional Key Words and Phrases: ATM network modeling, conservative synchronization,
optimistic synchronization, parallel discrete event simulation, time warp

1. INTRODUCTION
There is a long history of attempts to speed up simulations through parallel
execution. Two main families of synchronization algorithms have been
proposed. The first “conservative” algorithm is described in Chandy and
Misra [1979]. The optimistic TimeWarp algorithm [Jefferson 1985] was
developed in the early 1980s. Since then there have been many published
variations and implementations [Avril and Tropper 1995; Bagrodia and
Liao 1994; Blanchard et al. 1994; Cai et al. 1997; Fujimoto 1989; Martine
1995; Nicol and Heidelberger 1995; Steinman 1992; Su and Seitz 1989].
This work has clearly demonstrated that both algorithms are able to
achieve significant speedups for small artificial problems. The question of
whether they can be routinely used as a mechanism for speeding up real
applications remains open. We are aware of only one application, an air
traffic control simulation, where an optimistic parallel simulation system is
in regular production use [Wieland 1995].

A number of researchers have reported significant speedups for a range
of applications. However, most, if not all, of these applications are either
small models, models that have very regular structure, or models created
specifically for use in parallel simulation performance studies. Examples
include TimeWarp-based simulators used for mobile personal communica-
tions systems (PCS) networks [Carothers et al. 1995]; conservative parallel
simulators for wireless networks [Meyer and Bagrodia 1998; Zeng et al.
1998]; and ATM networks [Nicol 1996; Nicol and Heidelberger 1995]; and
VLSI circuit simulation [Chen and Bagrodia 1998]. Further, there are
many examples where conservative and optimistic approaches failed to
achieve any significant speedup.

There has been previous work on conservative parallel simulation of
large ATM networks [Pham et al. 1998], but primarily at the call-level (e.g.,
routing), as opposed to the fine-grain cell-level models.

To the best of our knowledge, this article is the first to compare a
conservative to an optimistic simulator for a set of detailed models of large
broadband ATM (asynchronous transfer mode) networks [Minzer 1989],
developed and used to support experimental research in ATM network
protocols. These detailed benchmark models characterize cell-level behav-
ior, including all of the major ATM standard communication protocols for
two ATM networks: the 11 switch Western Canadian regional network

Parallel Shared-Memory Simulator Performance • 359

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

(Wnet), and the 54 switch Canadian National Test Network (NTN). 3 Wnet
and 4 NTN traffic load scenarios are used to define 7 large, irregular,
benchmark models. The 7 benchmarks were used by researchers to study
call-admission control and congestion-control algorithms [Wang et al. 1999;
Zoranovic and Williamson 1999] and estimates of the effective bandwidth of
aggregate Ethernet, video, and Web ATM traffic [Gurski and Williamson
1996; Patel and Williamson 1997].

Simulation is a vital tool in the design and analysis of high-speed ATM
networks. Due to the high costs of installing and operating an ATM
network, and the rapid pace of changes in ATM technology and standards,
networking researchers and telecommunications engineers rely on simula-
tion to evaluate, for example, ATM switch design, the effectiveness of ATM
traffic-control policies, and the scalability of traffic-management ap-
proaches to large heterogeneous ATM networks.

Simulations in the ATM context typically have two key requirements: the
need for detailed cell-level simulation, so that fine-grain performance
differences between traffic control policies or ATM switch architectures can
be understood; and the need for a large number of simulation events (e.g.,
billions to trillions of ATM cells) in order to assess quality of service at an
appropriate level (e.g., cell loss ratios in the range from 1026 to 1029).
These two requirements combine to challenge current uniprocessor comput-
ing platforms, typically producing multiday rather than same-day turn-
around time for most commercial ATM network simulators on medium to
large ATM network scenarios. Parallel simulation is one approach for
addressing this problem. A parallel simulator, if properly designed, can
exploit the inherent parallelism in a large ATM network scenario, offering
significant speedup.

ATM simulations pose a significant set of challenges for parallel simula-
tors. On the one hand, they are large problems with significant amounts of
parallelism, which makes the task easier. On the other hand, the workload
is irregular, varying over both time and the objects in the simulation. This
makes the problem of load-balancing the simulation across multiple proces-
sors difficult. The granularity (the time to execute one event in the
simulation) is very low as well. On the SGI platform, the granularity
averages about 10 microseconds [Arlitt et al. 1995]. The average per-event
overheads of any simulator (including complex parallel ones) cannot be
much larger than this if good performance is to be achieved, i.e., if, given n
processors, the speedup achieved is a significant fraction of n.

In this article, we evaluate and compare the performance of two different
shared-memory parallel simulation kernels for ATM network simulation,
one optimistic and one conservative. The optimistic parallel simulation
kernel, WarpKit [Xiao and Unger 1995b], is a shared-memory TimeWarp
System [Fujimoto 1989; 1990] with its associated mechanisms for state-
saving, rollback, and fossil collection. The conservative parallel simulator
[Cleary and Tsai 1996] uses lookahead techniques to ensure that events are
executed locally (at a single logical process) in strict time order. Thus, it

360 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

avoids the overheads and complexities of rollback, albeit at the cost of
reduced parallelism.

Both simulation kernels are evaluated using the cell-level ATM traffic
and network (ATM-TN) simulator [Unger et al. 1995], for two ATM net-
work topologies (Wnet and the NTN) with a range of network traffic loads.
The experiments were conducted on a commercially available shared-
memory multiprocessor, namely an 18-processor SGI Power Challenge.

The results of our study demonstrate the performance benefits achiev-
able with parallel simulation for ATM network simulation. For example,
speedups of 2-3 over sequential simulation are possible for all network
scenarios studied, and speedups of 4-6 are possible on some scenarios. The
performance results for the two parallel simulators are found to be sensi-
tive to the size and structure (i.e., number and type of traffic sources) of the
ATM networks simulated. In general, the optimistic parallel simulator
provides more robust performance across the range of ATM network
scenarios studied, while the conservative simulator gives the best perfor-
mance on selected scenarios.

The remainder of this article is organized as follows. Section 2 provides
some background on the sequential and parallel simulation kernels evalu-
ated in this study. Section 3 describes the ATM-TN simulator used in the
study, and Section 4 the ATM benchmark scenarios. Section 5 presents the
results of our study, including the sequential and parallel performance
results for each of the ATM benchmark scenarios considered. Finally,
Section 6 summarizes our conclusions.

2. SIMULATION KERNELS

SimKit is the application programmer’s interface (API) that we use for
writing simulation applications [Gomes et al. 1995]. SimKit is an object-
oriented library for discrete-event simulation implemented in C11. A model
is described in terms of objects called logical processes (LPs). Each LP can
communicate with other LPs via messages only (that is, they can share no
writable state). Communication is via time-stamped messages that execute
an event at the receive time of the message. The code for a model uses an
event-based rather than a process-based view; that is, it is impossible to
receive events at inner points in the model code, but only at the point
where the execution of an event is initiated.

SimKit defines three base classes: sk_simulation, from which all the
controlling information for a simulation is instantiated (e.g., initialization
process, warm-up period, simulation end time); sk_lp, from which the
logical processes that carry out simulation activities are derived; and
sk_event, from which all simulation events (i.e., messages) are derived.
Each logical process (LP) executes its received events in time-stamp order,
updating local state information, and possibly generating more events.

As noted earlier, due to the small amount of user computation in the
ATM-TN application, it is important to keep kernel overheads low. SimKit
itself includes a number of optimizations designed to keep these overheads

Parallel Shared-Memory Simulator Performance • 361

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

low. The main ones are fixed-size buffers for events, and extensive use
(where possible) of pointer-passing, rather than data-copying, when for-
warding messages between LPs.

SimKit applications, such as the ATM-TN, can be executed on a variety
of simulation kernels (see Figure 1). To date, we have run ATM-TN on four
kernels: CelKit, a central-event-list-based sequential simulator; WarpKit,
an optimistic parallel simulation kernel; WaiKit, a conservative parallel
simulation kernel; and TasKit, a new optimized conservative kernel. This
article compares the performance of WarpKit with WaiKit and the sequen-
tial kernel. The next three sections provide further background on each of
these three kernels. A subsequent article will present comparative perfor-
mance results for the TasKit kernel, which is still under development.

2.1 Central-Event-List-Based Sequential Simulator (CelKit)

CelKit is a sequential event-list-based simulator. As each event is gener-
ated it is placed into a time-ordered event list. CelKit has an optimized
event list that uses a splay tree [McCormack and Sargent 1981], which is
able to efficiently handle both a large number of events and irregular and
varying time distributions within the event list. Insertion into, and sequen-
tial extraction from, the event list are the dominant overheads in CelKit.
There are event-list algorithms, e.g., the Calendar Queue [Brown 1988],
which can be more efficient than a splay tree even for large event lists. Our
experience, however, is that the Calendar Queue is not robust, as it can

Switch Model

Traffic Model

Workstation, Server, PC

TasKitWaiKit

data analysis
& management

User Interface

SimKit

ATM-MF

WarpKit

Input Data

Output Data

Switch Model

Traffic Model

CelKit

Fig. 1. The structural relationships between the simulation application (the ATM-TN and its
components: the ATM-MF, i.e., the modeling framework, and the traffic and switch models),
the simulation API (SimKit), the simulation kernels (CelKit, WarpKit, WaiKit and TasKit),
and the simulation platforms (e.g., SUN SPARC, SGI PowerChallenge).

362 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

give poor performance for some distributions of time-stamps. As a conse-
quence, we do not use it in the current system.

2.2 Parallel Execution

Any parallel execution of a simulation has a number of problems with
which to contend. The main one is that parallel algorithms tend to be more
complex, which implies higher overheads. The sections below, on individual
parallel kernels, outline techniques for minimizing these extra overheads.

Another crucial problem is partitioning or load-balancing, referring to
how the LPs are mapped to the physical processing elements (PEs) of the
shared-memory multiprocessor. Clearly, the goals are to balance the com-
putation load among the PEs, and to minimize the communication require-
ments between PEs (i.e., messages between LPs that are in different
partitions). However, automatic partitioning and dynamic load-balancing
are still open research topics. We currently rely on a static (i.e., manual)
partitioning of the parallel simulation across PEs, based on application-
level knowledge (see Section 4.3). In the performance results reported in
this article, both WaiKit and WarpKit use the same static partitions.

2.3 WarpKit

WarpKit is a parallel simulation kernel developed at the University of
Calgary [Xiao and Unger 1995b], derived from the 1993 version of GTW, a
TimeWarp system developed for shared-memory multiprocessors at Geor-
gia Tech [Das and Fujimoto 1993; Das et al. 1994]. The initial version of
WarpKit has been extensively revised and extended to achieve robust
performance for low-granularity applications [Xiao and Unger 1995b].
Several of these optimizations are outlined in this section.

TimeWarp provides an environment for optimistic parallel execution
[Jefferson 1985; Jefferson et al. 1987]. That is, each LP is allowed to
progress forward in time at its own pace, based on the messages it receives,
without requiring explicit synchronization with other LPs. However, if an
LP receives a message with a time-stamp t from the past (compared to the
LP’s local time), then the LP must perform a rollback, undoing the possibly
incorrect steps that it has taken since time t, canceling the possibly
incorrect messages that it has sent to other LPs since time t, and resuming
forward progress from time t. Clearly, being able to do rollback implies the
need for state-saving on the forward execution path. This state must be
maintained until the global virtual time (GVT) of the simulation, deter-
mined by the minimum time of all LPs and events, advances far enough for
events to be committed, at which time old state information can be
discarded and its memory space reclaimed, a process called fossil collection.

State-saving is thus one of the attendant overheads in optimistic parallel
simulation; minimizing its overhead is essential for good performance. An
incremental state-saving (ISS) mechanism, which saves state variables
only when they are modified, is built into SimKit on top of WarpKit [Gomes

Parallel Shared-Memory Simulator Performance • 363

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

1996]. This keeps the state-savings cost low, since the percentage of state
changes for most of the events in ATM-TN is low.

Another source of kernel overhead is the global control mechanisms,
including GVT computation, fossil collection, and buffer management.
WarpKit employs a two-tiered distributed buffer management scheme and
a fast asynchronous GVT algorithm [Xiao et al. 1995]. Each processor uses
its local buffer pool for events. A central pool is used to adjust the local pool
dynamically, in such a way that the number of buffers (both in the local
pool and those occupied by events) is kept roughly constant. The GVT
algorithm allows any PE to initiate GVT calculation and fossil collection
without direct collaboration with other PEs. As a result of this asynchro-
nous approach, the PE executing on the critical path will be able to
progress with less interference, and the fast-running PEs will be engaged
in more frequent GVT calculations. This also tends to restrict optimism.
Furthermore, the GVT calculated by the fast PEs can be utilized by slow
PEs, effectively reducing the overhead on the critical path. The global
control overhead of WarpKit is now the lowest of all overheads. This is in
contrast to the original version of WarpKit, in which global control is the
performance bottleneck [Xiao and Unger 1995b].

Furthermore, minimizing the number and size of rollbacks on the critical
computation path is also crucial. An effective way of reducing excessive
rollback is using a small number of buffers for each PE, as mentioned
above. There are also other mechanisms to constrain rollbacks, which are
more specific to the ATM-TN simulator.

Event flow control is one such mechanism [Xiao and Unger 1995a]. It
places a constraint on how far ahead in time one LP can be compared to
GVT. Event flow control is particularly important for two classes of LPs: (1)
those that produce but never consume simulation events (e.g., the video
traffic sources described in Section 3.1), since they may “flood” the system
with many future events, exhausting the local buffer pool and causing
many GVT computations; and (2) those LPs that consume but never
produce events, since they may “dry out” the system, increasing the chance
of rollback. This problem can be solved most efficiently at the ATM-TN
level, not in the underlying kernel. The solution is to strike a balance
between the number of events generated by the source and the number of
events consumed by the sink. In principle, this is like sliding window flow
control in network communication protocols, but at the level of simulation
events. The benefits of this mechanism are most evident on small network
scenarios with highly asymmetric traffic flows. The need for the mechanism
on large network models with well-balanced loads is less obvious.

Rollbacks are also a problem for LPs that have self-initiated events
widely spaced in time (e.g., reporting end-of-simulation statistics, reporting
periodic statistics, communication protocol time-outs, and retransmis-
sions). These events tend to be selected repeatedly and executed prema-
turely, causing a large number of unnecessary rollbacks. The native Time-
Warp mechanism is incapable of dealing with such situations. In our
implementation, we solve this problem by using wait queues: a separate

364 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

“waiting area” at each processor for “far off” future events that precludes
these events from early processing by LPs. These waiting messages are
moved to the PE’s event queue for processing only when the simulation
time draws close enough.

There are many other implementation optimizations in WarpKit to keep
kernel overhead low. In summary, WarpKit provides a fast and reliable
parallel simulation executive, with several optimizations specifically de-
signed to support fast parallel simulation of ATM networks.

2.4 WaiKit

The WaiKit parallel simulation kernel was developed at the University of
Waikato in New Zealand [Cleary and Tsai 1996]. Since WaiKit is a
conservative kernel, it differs significantly from WarpKit. In particular,
LPs always execute events in nondecreasing time-stamp order; no rollbacks
are possible.

Clearly, conservative parallel simulation requires stronger coordination
and synchronization among the LPs. This coordination usually results in
reduced parallelism. In the most extreme case, all LPs must proceed in lock
step at the pace of the slowest LP, producing a performance that can be
slower than sequential execution. However, such extreme synchronization
requirements are rarely needed in practice; more generous forward
progress is possible, particularly if application-level knowledge is available.
Furthermore, WaiKit does not have the complexity and overheads required
in WarpKit for state-saving and rollback.

WaiKit exploits the use of safe-times to determine bounds on the forward
execution permitted by each LP in the simulation [Cleary and Tsai 1996].
The safe-time for an LP is a lower bound on the earliest possible time in the
future at which a new message could arrive. In order to compute such
safe-times effectively, WaiKit needs to know about (logical) communication
channels between LPs. All messages must be sent via channels, and, for
each possible communication path between LPs, a channel must be con-
structed before the simulation begins. For ATM-TN, this is effective be-
cause the set of used channels is sparse, compared with all possible
communication paths between LPs. To remove the burden of explicitly
constructing channels from the modeler, a presimulation pass is done by
WaiKit in order to construct the set of channels allowed. This construction
depends on knowledge of the ATM-TN application, and has to be rewritten
if ATM-TN is modified or if a new application is written. This approach has
a small runtime overhead because the source code references a destination
LP only, not an actual channel. Thus, to find the channel, given the current
LP and the destination LP, a dynamic lookup is necessary. If the existence
of channels could be seen by the application programmer, then this over-
head would be removed and construction of the presimulation channel
would not be necessary. To preserve compatibility with existing code and
the other kernels, this was not done.

The safe-time for an LP is computed by taking the minimum of the
safe-times for all channels that arrive at the LP. The safe-time for a

Parallel Shared-Memory Simulator Performance • 365

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

channel is the safe-time of its source LP plus a lookahead time. This is the
minimum time-stamp increment that any message sent down the channel
can have. In ATM-TN, it is computed statically before the simulation
begins, from the propagation delay specified for a signal to traverse a
(simulated) physical link.

For WaiKit, the basic execution cycle is to first select an LP and then
execute all messages for that LP with receive times less than the LP’s
current safe-time. This causes the safe times for all the LP’s outgoing
channels to be updated. This is different from both CelKit and WarpKit,
where activity is scheduled on the basis of individual events, rather than
LPs. Provided the average number of events to be executed each time an LP
is selected can be kept high, then this mechanism has potentially very low
overhead. The average number of events depends upon the connectivity of
the ATM network and traffic flows. More specifically, it is determined by
the shortest potential loop in the channel graph. The expected number of
messages around such a loop limits the number of messages to be executed.
Thus, if the lookaheads are small or there are few messages, then LPs may
be scheduled more than once for each event processed, causing poor
performance. This aspect of conservative algorithms can make them sensi-
tive to small changes in network structure, either as the result of the
modeling strategy or due to physical topology in a particular ATM network.
All that is needed for overall poor performance is one loop with a total
lookahead close to zero, and execution time will be dominated by executing
the LPs in that loop. In some networks, there were no loops at all, so the
average was potentially infinite. WaiKit performed very well in these cases
(see Section 5).

WaiKit uses another simple scheduling strategy to keep overheads low
for LPs. There is a single static list of all the LPs partitioned onto a
particular PE. This list is repeatedly scanned and each LP in turn is
scheduled. This gives very low overheads (little more than dereferencing a
pointer for each LP) and performs well, as long as each LP has something
to do on each cycle. However, if there are some LPs with poor lookaheads,
then they will make repeated small advances in time and the entire list will
be rescanned each time.

Other strategies for keeping overheads low include carefully tuned code
for merging the incoming channels for each LP; a lock-free method for
transferring messages on channels between PEs; and the use of fixed
arrays for the buffers in a channel to avoid the overheads due to allocating
and deallocating buffer space.

In summary, WaiKit provides a simple conservative parallel simulator
designed to have low overhead, and tuned to the characteristics of ATM
cell-level simulations.

3. ATM-TN SIMULATOR

The asynchronous transfer mode traffic and network (ATM-TN) simulator
is a cell-level ATM network simulator developed collaboratively as part of

366 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

the TeleSim project [Unger et al. 1995; Williamson et al. 1998]. With
ATM-TN a user can define an arbitrary network topology, various ATM
switch types and links for instantiation within that topology, and a set of
traffic flows on that topology. The ATM-TN is intended to support network
design, configuration, and performance analysis.

There are three main components in ATM-TN: traffic models, switch and
network models, and a modeling framework. The traffic models define the
behaviors of the traffic sources, which generate patterns of simulated ATM
cells according to the specified traffic types and parameters, and traffic
sinks, which consume incoming ATM cells. The switch and network models
specify the behaviors (e.g., processing delays, traffic-control policies, cell-
scheduling disciplines, buffer sizes, transmission speeds, and propagation
delays) of the switches, ports, and links in the simulated ATM network,
which take ATM cells as inputs and produce ATM cells as outputs. The
modeling framework defines the interfaces to the switch and traffic models,
as well as to the input, output, and statistics-reporting routines that are
common to many of the switch and traffic models.

The following sections provide further details on the design and opera-
tion of the traffic and switch models.

3.1 Traffic Models

There are six different source traffic models in the ATM-TN simulator: a
deterministic traffic model, a Bernoulli traffic model, an Ethernet LAN
data traffic model [Chen et al. 1995], an MPEG/JPEG compressed video
traffic model [Arlitt et al. 1995], a World Wide Web client traffic model
[Arlitt and Williamson 1995], and a TCP/ATM traffic model [Gurski and
Williamson 1996].

The first two traffic models, deterministic and Bernoulli, are simple
traffic models used primarily for validating simulations. The deterministic
traffic model generates a stream of ATM cells with constant (i.e., determin-
istic) spacing between cells. This model is useful for generating constant bit
rate (CBR) traffic flows. The Bernoulli model is the discrete-time analog of
a Poisson traffic source. That is, the Bernoulli traffic model generates a
stream of ATM cells in which the interarrival times between cells are
geometrically distributed and independent. This model is useful for gener-
ating a variable bit rate (VBR) background traffic load in an ATM network.
In both of these traffic source models, the simulation user specifies the
mean bit rate for the traffic source, as well as the number of cells to be
generated. These parameters are specified separately for the two directions
of traffic flow, which operate independently.

The Ethernet traffic model generates variable-size data bursts typical of
local area network (LAN) traffic. In particular, the burst sizes are highly
correlated in time, to reflect both the short-range and long-range depen-
dence observed in real Ethernet LAN traffic [Leland et al. 1994]. Simula-
tion users specify a utilization parameter U that controls the mean bit rate
of the traffic source, as well as a Hurst parameter H that controls the

Parallel Shared-Memory Simulator Performance • 367

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

degree of correlation in the traffic bursts. The Ethernet traffic model is
open loop; that is, it produces an infinite duration unidirectional traffic
flow. The source produces a sequence of closely spaced ATM cells for each
data burst, and the sink simply consumes incoming cells.

The video traffic model produces a VBR traffic stream representative of
the JPEG and MPEG video compression standards [LeGall 1991; Wallace
1991]. Video traffic has a periodic structure, determined by its frame rate
(e.g., 30 frames per second). Furthermore, the size (in bytes) of each frame
is highly correlated with recent frames of the same type [Garrett and
Willinger 1994], as determined by the encoding algorithm used (e.g., an
intraframe coding algorithm, such as JPEG, or an interframe coding
algorithm, such as MPEG). These aspects are all captured in the video
traffic model [Melamed 1992]. Simulation users specify the frame rate and
the encoding pattern to be used for the video stream, as well as a scaling
parameter to control the mean bit rate of the flow. Again, the video traffic
model is open-loop: it produces an infinite duration unidirectional flow of
ATM cells from source to sink.

The World Wide Web traffic model represents the behavior of Web users.
Each such user generates sporadic small requests to Web servers, which
then return a simulated Web document, with the size of the document
drawn randomly from an arbitrary distribution function (in the bench-
marks the Erlang distribution is used) [Arlitt and Williamson 1997; Crov-
ella and Bestavros 1996; Paxson and Floyd 1994]. A random hyperexponen-
tial think time occurs before the next request, which might go to the same
server or to a different one. Simulation users specify the mean and
standard deviations of the distributions used for request sizes, response
sizes, and think times. Note that the Web traffic model is closed-loop. That
is, the time of the next outgoing request depends on the time at which the
previous response is received (as well as the randomized think time, of
course). The data flow is bidirectional, though highly asymmetric. Thus
this traffic model has a very different behavior than the Ethernet and video
traffic models do, particularly in terms of parallel execution.

The final traffic model in ATM-TN is a detailed model of the transmission
control protocol (TCP) over ATM. TCP is the cornerstone protocol of the
Internet, providing reliable data transfer for many network applications,
including file transfer, electronic mail, and the World Wide Web [Tanen-
baum 1996]. Our TCP model captures all behaviors of TCP, including
sequence numbers, acknowledgments, sliding window flow control, slow
start and congestion avoidance, time-outs, and retransmission [Stevens
1993]. Simulation users specify TCP configuration parameters, such as
send and receive socket buffer sizes, maximum segment size, maximum
flow-control window size, protocol timeout values, and the number of data
bytes to transmit in each direction. The model can be used for either
unidirectional or bidirectional data transfers. In either case, the traffic
source transmits the simulated user data according to the TCP protocol,
with the traffic sink generating acknowledgments for received data (piggy-
backing the acknowledgments on outgoing data packets, if any). The TCP

368 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

model is thus a closed-loop bidirectional traffic model. There is also
detailed modeling of AAL-5, an ATM adaptation layer protocol used for
translating between higher-layer protocol data units, such as TCP/IP
packets, and the ATM cells used for transmission across an ATM network.

Each of the foregoing traffic models is implemented in SimKit using two
LPs: one for the source and one for the sink. Multiple instances of a traffic
model are permitted in an ATM network simulation. Though each traffic
model represents very different application-level behaviors, each source
model produces as output simulated ATM cells for transmission across the
links and switches in the simulated ATM network.

One other characteristic to note is that the four main traffic models (i.e.,
Ethernet, MPEG, Web, and TCP) conceptually generate higher-layer data
units (e.g., bursts, frames, files, and packets) that become “bunches” of
ATM cells (tens or hundreds) at the lowest layer simulated. This fact has
some implications for how well different parallel simulation performance
optimizations may work.

3.2 Switch Models

The switch models in ATM-TN are responsible for receiving ATM cells on
input ports, performing necessary traffic control functions (e.g., cell sched-
uling, usage parameter control, selective cell discard [ATM Forum 1996])
and forwarding cells to their prespecified destination path via output ports.
The switches use a simulated ATM signaling protocol for establishing and
releasing state information for end-to-end user-level connections, which are
called virtual channels (VCs).

There are four different switch types currently defined in ATM-TN: a
generic output buffered switch, a shared-memory switch, a crossbar switch,
and a multistage switch using a multistage interconnection network. Only
the generic output buffered switch model is used in the experiments in this
article.

Each switch model is vendor-independent, with configuration options
available to “customize” the switch. The main configuration parameters are
the number of ports on the switch, the port speeds (in bits per second), the
size (in ATM cells) of the buffers at each output port, and the cell-
scheduling mechanism. The latter is used to arbitrate access to the output
port among the five ATM service class queues per output port, namely
constant bit rate (CBR), real-time variable bit rate (VBR-RT), nonreal-time
variable bit rate (VBR-NRT), available bit rate (ABR), and unspecified bit
rate (UBR) [ATM Forum 1996]. Each service class queue operates in a
First-In-First-Out (FIFO) fashion, and is shared by all user-level ATM
connections in that service class; per-VC queuing is also supported in the
latest version of ATM-TN. Exhaustive priority or round-robin scheduling is
used among the service classes, with priorities in the order given above.

The switch models are implemented in SimKit, and use one LP for each
input port, one LP for each output port, and two LPs (one for the signaling
protocol and the other for the segmentation and reassembly (SAR) function)

Parallel Shared-Memory Simulator Performance • 369

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

to represent the control processor, which handles all call signaling and
traffic management functions. The model structure for a 4-port output
buffered switch is illustrated in Figure 2. Also shown in the figure are all
the possible message flows between various LPs in this switch model.

4. BENCHMARK SCENARIOS

This article presents and compares the performance of the WarpKit and
WaiKit parallel simulation kernels against a sequential kernel CelKit,
using a number of ATM network scenarios. The simulation results, in
terms of simulated ATM network and traffic performance, are not the focus
of this article. Rather, we are interested in which parallel simulation
mechanisms can speed up the execution of simulations and to what extent.
To accomplish this, we use a spectrum of irregular low-granularity ATM
network benchmark scenarios.

We use two ATM network topologies as the basis for seven benchmark
scenarios. The first of these, called Wnet, models the physical topology of a
regional ATM testbed network in western Canada. The second, called the
NTN, models the physical topology of a Canada-wide experimental Na-
tional Test Network. For each network topology, we use a range of traffic

LP1

input port

output port

output portinput port

input port

output port

output port input port
LP1

LP0

LP0

LP3LP3

LP2

LP2

LP
net_layer

LP
SARlayer

Fig. 2. Logical processes in a 4-port output-buffered switch model..

370 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

mixes to produce network traffic loads that range from light to medium to
heavy.

While the traffic models have been validated against empirical traffic
data so that each traffic model instance can be considered realistic, the
actual deployment of traffic sources and sinks in the benchmarks are not
necessarily realistic. In fact, the scenarios intentionally include congestion
“hot spots” to explore how the parallel kernels perform under these
conditions. For example, all the TCP sources are exhaustive, in the sense
that each source tries to send (at the full link rate) as many packets as
allowed based on TCP flow control rules. Also, zero host-level protocol
processing time is assumed in TCP sources and sinks. While this is not
realistic, it does stress the simulation kernel (as well as the network being
modeled). The Ethernet sources generate background IP (over ATM) traffic.
TCP sources/sinks, which implement the full TCP algorithms, introduce
traffic loops that model the interactions between hosts and network.

4.1 Wnet Scenarios

The Wnet benchmark topology, shown in Figure 3 along with traffic loads
for scenarios Wnet-1 and Wnet-2, characterizes a regional ATM testbed in
western Canada. This network connects five universities in three prov-
inces. The network consists of 11 ATM switches, spanning a geographic
distance of approximately 800 kilometers. The backbone links in the
network have a transmission capacity of 45 Megabits per second (Mbps);
other links are 155 Mbps.

The traffic load in the Wnet simulation model is chosen to represent
typical traffic in the real Wnet testbed: JPEG video for distance education
between universities, TCP for file transfers between researchers and super-
computer centers, Web users, and Ethernet traffic as a generator of
background traffic load between sites.

Three different levels of traffic load are defined on the Wnet model.
Scenario Wnet-1 represents light load, with 12 traffic sources (10 Ethernet,
2 MPEG). Scenario Wnet-2 represents medium load, with 25 traffic sources
(2 deterministic, 2 Bernoulli, 10 Ethernet, 8 MPEG, 3 TCP). Scenario
Wnet-3 is the same as Wnet-2, but with the addition of 4 Web traffic
sources.

The Wnet benchmark scenarios are summarized in Table I. Each of the
three Wnet scenarios runs for 10 seconds of simulated time, producing
approximately 20 million simulation events.

4.2 NTN Scenarios

The NTN network topology, shown in Figure 4, represents the Canada-wide
ATM National Test Network (as of March 1996). The simulated network
topology has 54 ATM switches, and spans a geographic distance of approx-
imately 3000 kilometers. The backbone of the network is 45 Mbps, and
provides connectivity between six regional ATM testbeds (one of which is
Wnet).

Parallel Shared-Memory Simulator Performance • 371

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

W
ne

t-
2

W
ne

t-
1

U
C

U
A

->
U

C
 E

th

U
A

->
U

C
 J

P
E

G

U
C

->
U

A
 J

P
E

G
U

C
->

U
A

 E
th

U
A

H
P

C
->

U
C

 E
th

1

H
P

C
->

U
C

 E
th

2

U
C

->
H

P
C

 E
th

1
U

C
->

H
P

C
 E

th
2

U
C

->
U

A
 J

P
E

G
U

C
->

H
P

C
 E

th
1

U
C

->
U

A
JP

E
G

U
C

->
U

M
E

th U
C

-.
H

P
C

 E
th

2

U
A

->
U

C
 E

th

U
M

->
U

C
 E

th

H
P

C
->

U
C

 E
th

2
H

P
C

->
U

C
 E

th
1

U
A

->
U

C
 J

P
E

G

C
G

Y
R

E
G

W
P

G

U
R

->
U

S
 E

th

H
P

C

E
D

M

U
S

S
K

T

U
R

->
U

S
->

E
th

U
S

->
U

R
 E

th

U
S

->
U

R
 E

th

U
M

U
R

U
M

->
U

C
 E

th
U

C
->

U
M

 E
th

D
et

er
m

/P
oi

s
Tr

af
fic

LA
N

 T
ra

ffi
c

M
P

E
G

 T
ra

ffi
c

T
C

P
 T

ra
ffi

c

Tr
af

fic
 S

in
k

D
S

3
45

M
bs

TA
X

I 1
00

 M
bs

AT
M

 S
w

itc
h

E
nd

-n
od

e

O
C

3
15

5
M

bs

U
S

->
H

P
C

 E
th

U
S

->
H

P
C

 P
oi

s

U
S

->
U

M
 T

C
P

U
S

->
U

A
 J

P
E

G

U
S

->
U

R
 J

P
E

G
U

S
->

U
R

 E
th

U
S

->
U

C
 E

th
U

S
->

U
R

 M
P

E
G

H
P

C
->

U
S

 P
oi

s

U
C

->
U

S
JP

E
G

U
C

->
U

S
 E

th
U

A
->

U
S

 E
th

U
A

->
U

S
 J

P
E

G

U
A

->
U

M
 M

P
E

G

U
A

E
D

M

C
G

Y
H

P
C

U
C

R
E

G
W

P
G U

M
U

RS
K

T

U
S

U
M

->
U

A
 M

P
E

G

U
C

->
U

A
 E

th
U

S
->

U
A

 J
P

E
G

U
A

->
H

P
C

 T
C

P

U
A

->
U

S
 E

th

U
A

->
U

C
 E

th

U
A

->
U

S
 J

P
E

G

H
P

C
->

U
M

 D
et

er
m

H
P

C
->

U
S

 P
oi

s

U
A

->
H

P
C

 T
C

P

U
M

->
H

P
C

 T
C

P

U
M

->
H

P
C

 D
et

er
m

U
S

->
H

P
C

 P
oi

s
U

R
->

H
P

C
 E

th

U
R

->
U

M
 E

th

U
C

->
U

R
 J

P
E

G

U
S

->
U

R
 E

th
U

S
->

U
R

 J
P

E
G

U
S

->
U

R
 M

P
E

G
U

A
->

U
M

 M
P

E
G

H
P

C
->

U
M

 D
et

er
m

U
C

->
U

M
 E

th

U
R

->
U

M
 E

th

U
M

->
H

P
C

U
M

->
U

A

U
M

->
H

P
C

 T
C

P
U

A
->

U
C

 E
th

U
C

->
U

R
 J

P
E

G

U
C

->
U

S
 J

P
E

G

U
C

->
U

M
 E

th

U
C

->
U

A
 E

th

U
C

->
U

S
 E

th

U
S

->
U

C
 E

th

U
R

->
H

P
C

 E
th

U
S

->
H

P
C

 E
th

Fig. 3. Simulation models for the Wnet ATM network benchmark.

372 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

The NTN is a good example of a network with a high delay-bandwidth
product. That is, the combination of high transmission speeds (45-155
Mbps) and large end-to-end propagation delays (10-20 milliseconds) means
that hundreds or thousands of ATM cells can be in transit at any time in
the network links. These types of network scenarios are of particular

LA
N

 T
ra

ffi
c

M
P

E
G

 T
ra

ffi
c

Tr
af

fic
 S

in
k

T
C

P
 T

ra
ffi

c

D
S

3
45

M
bs

TA
X

I 1
00

 M
bs

O
C

3
15

5
M

bs

AT
M

 S
w

itc
h

E
nd

-n
od

e

R
ne

t

U
B

C
1

U
B

C
2

U
B

C
3

M
P

R

S
F

U

B
C

T
E

L

V
A

N
S

P
H

V
G

H

B
C

C
H

U
N

I
LA

R
G

ne
t

U
W

O

U
N

V
H

B
E

LL

FA
N

V
IC

H

S
JH

R
R

I

S
AT

N
R

C

O
T

T
U

C
A

R
L

C
R

C

N
O

R
2

E
W

N

K
A

N

R
ID

B
A

N
K A
LG

C
A

LG

M
IT

N
O

R
1

C
R

C
1

C
R

C
2

O
C

R
In

et

G
LB

R
IS

Q

S
T

F

A
C

N

U
D

L

AY
L U

D
S

M
T

L

C
T

I2
C

T
I1

B
M

T

O
S

T

C
N

D

M
C

G

C
O

N

U
D

Q

U
D

M

W
ne

t

U
of

A

H
P

C
C

U
of

C

C
G

Y

U
of

M

R
E

G

U
of

S S
K

T

U
of

R

W
P

G

E
D

M

M
A

R
K

O
T

T

E
dT

el

Fig. 4. Simulation model for the NTN ATM network benchmark.

Parallel Shared-Memory Simulator Performance • 373

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

interest to ATM networking researchers in evaluating, for example, the
effectiveness of feedback-based congestion control policies, the effectiveness
of network traffic management on a national scale, and end-to-end quality
of service guarantees in large internetworks. These networks are also
challenging to simulate, due to their memory-space and computational
requirements (caused, for example, by a large number of traffic sources, a
large number of switches, large delay-bandwidth products, and very large
event queue sizes). These are some of the motivating factors for including
the NTN in our parallel simulation benchmarks.

The traffic loads we use on the NTN model are a hypothetical traffic mix
for the national network: MPEG/JPEG video streams, TCP transfers, and
highly bursty LAN data traffic. Approximately 75% of the traffic sources
have their traffic sinks on the same regional network to model “communi-
ties of interest.” The remaining traffic flows traverse the national back-
bone.

Again, three different traffic loads (light, medium, and heavy) are used
for this benchmark. All three scenarios have the same 355 traffic sources
(62 Ethernet, 269 MPEG, and 24 TCP). However, different traffic loads are
produced by changing the parameters of the sources, rather than by adding
traffic sources, as was done with the Wnet benchmarks. This approach
makes the partitioning task easier on the large NTN benchmark, and
makes simulation comparisons across the three scenarios easier to under-
stand. The first scenario, NTN-1, produces an average link utilization of
30%. The second scenario, NTN-2, corresponds to an average load of 50%.
The third scenario, NTN-3, corresponds to an average load of 80%. Even in
the lightly loaded NTN-1 and Wnet-1 there are “hot spots” where links are
saturated.

Another NTN scenario, NTN-0, contains 53 Ethernet, 30 MPEG, and 16
TCP sources. This scenario was chosen to illustrate performance problems
in the WaiKit kernel when TCP sources are dominant.

The NTN benchmark scenarios are summarized in Table I. Each NTN
scenario is run for 5 seconds of simulated time, producing 48-216 million
simulation events.

Table I. Wnet and NTN Benchmark Scenario Summary

benchmark
scenario

number of traffic sources
ATM

switch
num.
LPs

events
~3 106!

time
(sec)det bern ether mpeg web tcp

Wnet-1 0 0 10 2 0 0 11 181 22 10
Wnet-2 2 2 10 8 0 3 11 173 18 10
Wnet-3 2 2 10 8 4 3 11 173 18 10
NTN-0 0 0 53 30 0 16 54 869 48 5
NTN-1 0 0 62 269 0 24 54 1381 73 5
NTN-2 0 0 62 269 0 24 54 1381 132 5
NTN-3 0 0 62 269 0 24 54 1381 216 5

374 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

4.3 Partitioning

Partitioning the Wnet and NTN benchmark scenarios was done manually,
based on a prerun of the simulation and the load data collected in the
prerun. The main target is to make the sum of the LP loads on each
partition roughly equal. The load of an LP is the time it spends processing
events for the entire duration of a simulation run. While there are many
ways to divide the LP loads into equal portions, other considerations are
important for performing parallel execution.

Partitioning remains a trial-and-error procedure, because numerous fac-
tors in a large irregular network model often interact in complex ways. The
effect of these factors on execution is mainly determined by event buffer
usage and rollback rates. Here, we discuss the major criteria used in
partitioning the benchmark scenarios (LP mapping, buffer cache locality,
grouping source and sink LPs, minimizing message exchanges).

The LP is the basic element in parallel execution. The simulation kernel
forces correct event ordering for each LP. Proper design of LPs in a model
will affect the available parallelism. Generally, if there are two event
streams that are unrelated, or at least not closely related, then separate
LPs should be used for them. This approach may eliminate unnecessary
rollbacks for WarpKit, and improve lookaheads in the case of WaiKit. In
this respect, the ATM-TN simulator used for parallel execution differs
slightly from its original sequential version.

When a cell travels in the simulated network it is carried by an event
buffer at each point where it stops for processing, and a new buffer is used
to carry it to the next point. If the cell remains on the same processor on
the way from source to sink, the buffers that carry it will stay on the same
processor. Thus, the assignment of LPs to processors should try to mini-
mize the number of processors that a cell has to visit in order to reduce
undesirable cache effects (i.e., cache misses).

Most of the LPs in ATM-TN have a message “fanout” of one; that is, for
each message received, one message will be sent to the next LP. The traffic
source and sink LPs are exceptions. Source LPs typically have a fanout
greater than one (e.g., several cells in each traffic burst produced by the
Ethernet source model), and sink LPs typically have a fanout less than one
(e.g., Ethernet sinks consuming incoming cells). Assigning source and sink
LPs of the same traffic flow to the same processor will balance the buffers
consumed at the source and returned at the sink, reducing buffer migration
between processors. This is especially good for open-loop traffic sources
(e.g., Ethernet, MPEG), where sinks never send any messages. However,
for closed-loop TCP traffic flows, where the sinks send acknowledgments
back to the source, the source and sink LPs are best grouped together with
the LPs of the switches to which they are connected. Otherwise, cells
arriving at the sink require a different processor than the acknowledg-
ments (or other sink-initiated cells) returning to the source. The result is a
higher chance of rollbacks. Furthermore, rollbacks at the start of message

Parallel Shared-Memory Simulator Performance • 375

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

flow are particularly bad, as they tend to cascade, causing further rollbacks
downstream [Tay et al. 1998].

Another criterion is the reduction of message exchanges between proces-
sors. For large scenarios with heavy traffic loads, such as NTN-3, “block
partitioning” is better. Block partitioning divides the network into geo-
graphic regions based on vicinity, under the assumption that most commu-
nication is “local.” (The same idea is used in military and wireless network
simulations [Meyer and Bagrodia 1998; Zeng et al. 1998].) As a result, most
messages in the model remain on the same processor. For models with few
switches and light traffic loads, partitioning by traffic flows may yield
better performance, since messages originating from a source will traverse
fewer processors, thus reducing communication between processors as well.

The same partitions of all the benchmarks are used for both WarpKit and
WaiKit experiments. A good partition for WaiKit is also a good partition for
WarpKit. The reverse also turned out to be true, i.e., a good partition for
WarpKit resulted in good performance for WaiKit. This strongly suggests
that the dominant factor in partitioning lies with the characteristics of the
application. The benefits of efficient buffer use are the same for both
kernels, and reduced rollbacks often translate into better lookaheads for
WaiKit, as mentioned previously.

5. PERFORMANCE RESULTS

This section presents the results of kernel performance for the seven
benchmark scenarios. All experiments were run on a dedicated SGI Power
Challenge shared-memory multiprocessor with 18 R8000 CPUs running
IRIX64 6.1. Section 5.1 discusses the statistical significance of the kernel
performance results presented in subsequent sections. Section 5.2 gives the
sequential simulation performance results for the Wnet and NTN bench-
marks. Section 5.3 presents the results for the WarpKit optimistic parallel
simulation kernel. Section 5.4 shows the results for the WaiKit conserva-
tive parallel simulation kernel. Finally, Section 5.5 compares the perfor-
mance of the different simulators for each benchmark scenario.

5.1 Validating Performance Results

The ATM-TN simulator has been used for studies of ATM traffic; TCP over
ATM performance, call-admission control and congestion control algo-
rithms [Chen et al. 1995; Gurski and Williamson 1996; Patel and William-
son 1997; Wang et al. 1999; Zoranovic and Williamson 1999]. The valida-
tion of network model simulation results has been explored over several
years at a number of levels, including individual LP event tracing, use of
simple scenarios for which comparable analytic results can be calculated,
and comparisons of simulation results with measurements collected within
carefully controlled network experiments. Here, in addition to model vali-
dation, it is important that model simulation results are essentially identical
when executed on different kernels and on different numbers of processors.

376 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

The ATM-TN has extensive statistics’ collection for all network compo-
nents being simulated. A valid parallel simulation should produce the same
(or very close) statistical results for all network components as the sequen-
tial simulator, regardless of the kernel or the number of processors used.
For the seven benchmark scenarios, all model simulation results are
identical when run sequentially on a single processor, or when executed in
parallel on different numbers of processors. The only difference is the order

five sets of random seeds:

Simulated time duration in seconds

12

5 10 5020 100

11

10

8 80

10.5

11.5

95

90

100

P
er

ce
nt

ag
e

of
 c

om
m

itt
ed

 e
ve

nt
s

A
ve

ra
ge

 p
er

 e
ve

nt
 ti

m
e

in
 m

ic
ro

-s
ec

on
ds

with WarpKit on 4 processors

Fig. 5. Stability of performance results for NTN-0.

five sets of random seeds:

Simulated time duration in seconds

5 10 5020 100
80

95

90

100

14

13.5

13

12.5

10

12

A
ve

ra
ge

 p
er

 e
ve

nt
 ti

m
e

in
 m

ic
ro

-s
ec

on
ds

P
er

ce
nt

ag
e

of
 c

om
m

itt
ed

 e
ve

nt
s

with WarpKit on 4 Processors

Fig. 6. Stability of performance results for NTN-1.

Parallel Shared-Memory Simulator Performance • 377

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

of records (lines) in the output reports. Due to the asynchronous nature of
parallel execution, different components may report their statistics data at
different (real) times in each run. For Wnet-1 with WarpKit, the total
number of committed events (events correctly processed) is always exactly
the same for runs on different numbers of processors, which demonstrates
the stability of the WarpKit kernel. For other test scenarios, the total
number of events varies slightly (e.g., a difference of at most several
thousand events out of 20 to 200 million events). The reason for these
different event counts is that Wnet-1 is a deterministic model in which no
two events for the same LP have identical timestamps, while the other
scenarios are nondeterministic. The latter occurs because the TCP model
can generate many events with exactly the same timestamp (due to the fact
that zero host-processing time is assumed). It is well known that nondeter-
ministic models typically result in different event-processing orders for
those events with identical timestamps. This nondeterminism may or may
not affect the simulation results, depending on the application. In the
experiments reported here, no variation in simulation statistical results
occurred (within the precision of the statistics reported by the simulations).

The main focus of this article is on the execution speed of alternative
simulation kernels for a range of benchmark scenarios. Our primary
concern in this section is the validity and stability of our measurement of
simulation execution speed. For measuring kernel performance, we are
interested in the total execution time for a particular scenario. The simula-
tion runs used to collect performance data are relatively short (e.g., 5-10
seconds of simulated time) compared to those used in real ATM network
simulation studies (e.g., 10-1000 seconds). The primary reason for this is
the need to fit multiple runs into the weekly time periods during which we
have exclusive use of the entire SGI Power Challenge. However, these run
lengths are adequate for comparing the performance of the three simula-
tion kernels.

To justify our claim, we present the results of two performance stability
tests. Figure 5 shows the results for NTN-0 with WarpKit on four proces-
sors. Five sets of random number seeds are used. For each set of seeds, five
test runs with increasing simulated time (5, 10, 20, 50, and 100 seconds)
are carried out. The upper part of the graph gives the average time in
microseconds spent on each event, which is used to measure the speed of
simulation progress. The lower the per-event time, the faster the simula-
tion. The lower part of the figure shows the percentage of committed
events. For example, a value of 80% means that out of every 10 processed
events, 8 events are correct, 2 events are erroneous and had been rolled
back, that is, a 20% rollback rate. The graph indicates the inverse relation-
ship between per-event time and percentage of committed events. With
increasing simulation time duration, the percentage of committed events
increases and per-event time decreases. The decrease of per-event time is
more pronounced than the increase in the percentage of committed events,
due to the extra cost of rollbacks. The variation in per-event time for

378 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

different random seeds is less than 4%. We also observe that the degree of
variability in the per-event time from one run to the next is not noticeably
lower after 100 seconds of simulated time than it is after 5 seconds of
simulated time; hence our choice of 5-second runs for the NTN scenarios.

Figure 6 gives the test results for NTN-1, which shows the same trend as
that for NTN-0. The variation in per-event time from one run to another for
this scenario is higher, but still less than 7%. The influence of rollback rate
on per-event time is more dominant in this case. Another type of test is to
repeatedly run the same simulation without any changes. As an example,
the per-event times for 6 runs of NTN-1 (each for 5 seconds of simulated
time) on 4 processors vary between 13.50 and 13.54, which is a variation of
0.3%.

5.2 CelKit Performance Results

The performance results for the event-list-based Sequential Simulator
(CelKit) are presented in Table II, which shows the per-event time in
microseconds on the SGI Power Challenge for the 7 ATM-TN benchmark
scenarios. (The per-event time is defined as the total execution time divided
by the total number of (committed) events, for both sequential and parallel
execution.) The table gives the total wall-clock execution time for 5 or 10
seconds of simulated time as well. The wall-clock time for sequential
execution of the benchmarks ranges from about 4 minutes for the Wnet
benchmarks to 77 minutes for the NTN-3 model. The per-event time is
approximately 11.5 microseconds for all three Wnet benchmarks, while the
per-event time grows slightly with the traffic load on the NTN benchmarks,
up to 21.3 microseconds per simulation event in NTN-3. The growth is
largely a result of the increase in the number of events on the event list and
larger memory required to run the simulation.

Table II also includes a column indicating the potential, or intrinsic
parallelism, for each network scenario. The time it takes to run a simula-
tion model sequentially is called the sequential execution time of the model.
A model’s intrinsic parallelism is defined as the ratio of its sequential
execution time over the least time needed to execute that model, assuming
there are always enough processors to enable the execution of any LP ready

Table II. Per-Event Time in Microseconds for CelKit Sequential Simulation Kernel (SGI
Power Challenge R8000)

benchmark scenario
per-event execution

time in microseconds
total execution time

in seconds potential parallelism

Wnet-1 11.50 253 11
Wnet-2 11.43 206 15
Wnet-3 11.32 204 19
NTN-0 14.80 710 42
NTN-1 18.75 1369 66
NTN-2 20.32 2682 60
NTN-3 21.30 4601 64

Parallel Shared-Memory Simulator Performance • 379

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

to execute. The least time is determined by the user execution time along
the model’s critical path. Events along the critical path have to be pro-
cessed in sequence. The critical path is the path that takes the longest time
to process. No parallel execution can take less time than this time. The
value of intrinsic parallelism is calculated using a feature of CelKit. It
measures the total execution time along the critical path in the simulation.
The critical path is discussed more completely in Xiao and Unger [1995b].
The value given in the table is the total sequential time divided by the
critical path time. The resulting ratio is a rough measure of the best
relative speedup possible for the parallel simulators on that particular
problem. The Wnet scenarios have potential speedups of 11 to 19, NTN-0 is
somewhat larger at 42, and the 3 NTN scenarios are grouped at approxi-
mately 60 to 66.

The per-event execution time for NTN-0 is substantially lower than other
NTN scenarios, due to its much lighter traffic load. The length of the event
list increases with the traffic load as more events are generated and
scheduled for processing. As a result, the cost of queue operations, which is
the major part of system overhead in a central event list-based sequential
kernel, increases significantly.

5.3 WarpKit Performance Results

Performance results for the WarpKit optimistic parallel simulation kernel
are shown in Figure 7. The figure shows the relative speedup for the
WarpKit simulator on the ATM-TN benchmarks as the number of proces-
sors on the SGI Power Challenge is varied from 1 to 16. Relative speedup is
the ratio of the time required (for WarpKit) on one processor divided by the
time required (for WarpKit) using N processors (N $ 1). This kind of
result is mainly useful for analyzing how well a particular algorithm scales
as the number of processors increases. Note that these results do not
answer the question of how well the algorithm performs compared to either
sequential or other parallel algorithms. (The latter comparisons are de-
ferred to Section 5.5.)

The results in Figure 7 show that WarpKit achieves good relative
speedup as the number of processors increases. The results are also
consistent, in that at each number of processors, the speedup curves for the
different benchmark scenarios are nearly always in the same relative
order, which implies that the relative performance is primarily determined
by the size, structure, traffic load, and partitioning of each problem. The
only exception to this is at 8 processors, where Wnet-3 has slightly better
performance than Wnet-2.

There is some evidence that similar ATM-TN simulation problems with
more traffic give better speedup. The sequence NTN-1, NTN-2, and NTN-3,
for example, shows steadily increasing speedup (these scenarios differ only
in their loads). The tendency is less clear for the other scenarios, however.
The Wnet scenarios are likely to be limited by their potential parallelism of
less than 15 (for example, Wnet-1 achieves half of its potential on 16

380 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

processors). Due to limited parallelism, idling time and the rollback rate
increase on 16 processors, resulting in higher system overhead. The
speedup curve for Wnet reaches its peak near 12 processors. The best
relative speedup observed is for NTN-0, which has traffic loads that are
largely local to each of the five regions of the network, and light TCP traffic
across different regions (a scenario especially good for “block partitioning.”)

5.4 WaiKit Performance Results

The performance results for the WaiKit conservative parallel simulation
kernel are shown in Figure 8. The results show that WaiKit has generally
lower (and more erratic) relative speedup than WarpKit (although, as we
will see later, it did achieve excellent speedup on one scenario). The
different networks give inconsistent results as the number of processors is
increased. It is unclear why this occurs, although it is possible that WaiKit
is more sensitive to small imbalances in load caused by imperfect partition-
ing. Also, no speedup was achieved at all for the Wnet-3 network (this case
is discussed further in Section 5.5). Contrary to the case with WarpKit,
NTN-0 performs far worse than the other three NTN scenarios. This is
caused by the TCP traffic that traverses the entire network. The presence
of the (closed-loop) TCP traffic limits the lookaheads in the conservative
WaiKit kernel, resulting in small simulation time advances that slow down
the simulation. This TCP traffic has little impact on the performance of the
WarpKit kernel.

5.5 Comparative Results

Figures 9 to 15 compare the performances of the three simulators (CelKit,
WarpKit, and WaiKit) on each individual benchmark scenario. We have

0 4 8 12 16
Number of Processors

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

Wnet-3

NTN-0

NTN-1

NTN-2

NTN-3

Wnet-2

Wnet-1
ntn-3

ntn-1

ntn-2

Wnet-1

Wnet-3

Wnet-2

ntn-0

R
el

at
iv

e
S

pe
ed

up

Fig. 7. Relative speedup of WarpKit.

Parallel Shared-Memory Simulator Performance • 381

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

separated the results in this way because each of the scenarios has
different amounts of computation, potential parallelism, and partitioning.
However, for a given number of processors the results should be directly
comparable. Each graph plots the total number of events per second
achieved against the number of processors for each of the three kernels. For
the sequential simulator (CelKit), a single horizontal line has been added
at its uniprocessor performance point.

5.5.1 Wnet-1. For the Wnet-1 scenario, WaiKit achieves very good per-
formance (see Figure 9). On one processor it is already faster than CelKit,
and it improves from there. WaiKit reaches close to its best performance at
8 processors, where it is over 4 times faster than CelKit. While WarpKit
achieves good smooth relative speedup, it only performs better than CelKit
on 4 and more processors. Wnet-1 is a special scenario because it has only
Ethernet and MPEG traffic sources. All traffic flows are thus unidirec-
tional, and there are no loops in the traffic flows. As a result, the average
number of events executed each time an LP is scheduled in WaiKit is
potentially very high (in practice it is limited by available buffer space).
This explains its very good performance, including why it can outperform a
sequential simulator. What it is effectively doing is avoiding the overheads
of event list insertion and removal by its simple scheduling algorithm.

5.5.2 Wnet-2. The Wnet-2 scenario has fewer LPs and events than
Wnet-1, but a wider range of traffic source types. In particular, it includes
TCP sources, which introduce feedback loops into the traffic flows. The
speedup of both WaiKit and WarpKit behave erratically as the number of
processors is increased (see Figure 10). For WaiKit, the performance at 8
processors seems anomalously low, but it achieves the best performance

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00
164 8 120

Number of Processors

ntn-1

ntn-2

ntn-3

ntn-0

Wnet-3

Wnet-2

Wnet-1

Wnet-3

NTN-0

NTN-1

NTN-2

NTN-3

Wnet-2

Wnet-1

R
el

at
iv

e
S

pe
ed

up

Fig. 8. Relative speedup of WaiKit.

382 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

overall on 16 processors. The WarpKit performance drops on 16 processors,
due to TCP feedback loops and a consequent high rollback rate. On one
processor, CelKit is slightly faster than WaiKit, but WaiKit overtakes
CelKit on 2 and more processors. WarpKit does not break even with CelKit
until 4 processors are used.

5.5.3 Wnet-3. The Wnet-3 scenario differs from Wnet-2 by the addition
of 4 Web traffic sources. Unfortunately, due to the way the Web source is
modeled, the performance of WaiKit on this scenario is abysmal (see Figure
11). The Web model includes a tight almost-zero-delay loop between source
and destination objects for simulated file transfers. This was done as an
easy way to communicate statistical information about the file size of the
simulated transfers. Unfortunately, this created a situation where each
time WaiKit scanned the list of LPs, it was able to make only a tiny time
advance. The result emphasizes the sensitivity of conservative kernels to
such application-level traffic-modeling decisions. The WarpKit kernel dem-
onstrates fairly robust performance, even with this scenario.

5.5.4 NTN-0. The NTN network is larger than any of the Wnet cases,
and it includes significant traffic loops in the form of TCP sources. WaiKit
performs poorly in this scenario (see Figure 12), although it does achieve
good relative speedup, and breaks even with CelKit by 16 processors. In
contrast, WarpKit achieves its best overall performance in this scenario,
with a steadily improving speedup that breaks even with CelKit before 4
processors and achieves a 5-fold speedup over CelKit by 16 processors.
WaiKit performs poorly due to the TCP loops discussed earlier.

WaiKit
WarpKit
Sequential

50

0

100

150

200

250

300

350

400

Number of Processors

0 4 8 12 16

T
ho

us
an

ds
 o

f E
ve

nt
s/

se
c

Fig. 9. Performance results for Wnet-1 benchmark scenario.

Parallel Shared-Memory Simulator Performance • 383

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

5.5.5 NTN-1, NTN-2, and NTN-3. The NTN-1, NTN-2, and NTN-3
networks are identical, except for the volume of traffic loads. Figures 13,
14, and 15 show that the performance of the sequential kernel drops
slightly with increased load, due to the increase in the size of the event list.
The performance of WaiKit and WarpKit is consistent across the three
scenarios. In each case, WarpKit breaks even with CelKit between 2 and 4
processors and proceeds to achieve its best performance at 16 processors.

Number of Processors

0 4 8 12 16

400

350

300

250

200

150

100

50

0

T
ho

us
an

ds
 o

f E
ve

nt
s/

se
c Sequential

WarpKit
WaiKit

Fig. 10. Performance results for Wnet-2 benchmark scenario.

WaiKit
WarpKit
Sequential

Number of Processors

4 8 12 160
0

50

100

150

200

250

300

350

400

T
ho

us
an

ds
 o

f E
ve

nt
s/

se
c

Fig. 11. Performance results for Wnet-3 benchmark scenario.

384 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

The overall performance of WarpKit also improves steadily with the
increased loads. WaiKit has more erratic performance, particularly be-
tween 4 and 8 processors. However, it improves significantly as the load
increases from NTN-1 (where WaiKit is significantly below WarpKit across
the full range of numbers of processors) to NTN-3 (where WaiKit actually
outperforms CelKit and WarpKit, in the 2-processor case only). This
improvement is to be expected, as the increasing load increases the average
number of events to be processed each time an LP is scheduled, thus

Number of Processors

0 4 8 12 16
0

50

100

150

200

250

300

350

400

T
ho

us
an

ds
 o

f E
ve

nt
s/

se
c

WaiKit
WarpKit
Sequential

Fig. 12. Performance results for NTN-0 benchmark scenario.

WaiKit
WarpKit
Sequential

150

0

50

100

200

250

300

400

350

0 4 8 12 16

T
ho

us
an

ds
 o

f E
ve

nt
s/

se
c

Number of Processors

Fig. 13. Performance results for NTN-1 benchmark scenario.

Parallel Shared-Memory Simulator Performance • 385

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

reducing the overheads for WaiKit (recall that the lookaheads are static,
based primarily on network topology).

6. SUMMARY AND CONCLUSIONS

This article presents a performance study comparing conservative and
optimistic parallel simulation kernels, as well as a sequential simulation
kernel, on a set of large irregular ATM network benchmarks. The study

WaiKit
WarpKit
Sequential

Number of Processors

T
ho

us
an

ds
 o

f E
ve

nt
s/

se
c

0 4 8 12 16
0

50

100

150

200

250

300

350

400

Fig. 14. Performance results for NTN-2 benchmark scenario.

Number of Processors

400

350

300

250

200

150

50

0
0 4 8 12 16

T
ho

us
an

ds
 o

f E
ve

nt
s/

se
c

WaiKit
WarpKit
Sequential

100

Fig. 15. Performance results for NTN-3 benchmark scenario.

386 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

evaluates two different parallel simulation kernels with respect to relative
speedup, and also absolute speedup compared to a sequential kernel, as
well as the sensitivity of simulator performance to the size, structure,
topology, and traffic flow in the simulated networks.

Our experimental results show that parallel simulation can offer sub-
stantial execution speedup for ATM network applications. While the appli-
cation-level event granularity in a cell-level ATM simulator is small, the
high delay-bandwidth products of real ATM networks translate into simu-
lations with high potential parallelism. We show that within a circum-
scribed and well-characterized domain (i.e., cell-level ATM networks), it is
possible to make effective use of parallelism. The major remaining barrier
to the use of such a system (by users who are not expert in parallelism) is
the partitioning of the simulations across multiple PEs.

Our results also highlight the fragile nature of conservative parallel
simulation performance. In particular, we found that the conservative
kernel is very susceptible to small changes in the modeling code, which
makes it possible for it to give the best performance on a few scenarios and
the worst performance on others. The optimistic kernel, on the other hand,
provides excellent relative speedup and more robust performance on the
benchmarks tested. However, its performance is limited by the implemen-
tation overheads, which are actually higher than the grain of the model
computation for these low granularity applications.

It is worth noting what this work has not demonstrated. It has not shown
that arbitrary simulation problems can be executed in parallel by inexpert
users. The success of the system depends on careful attention to detail and
the influence of parallel execution at all levels of the system. This started
at the language interface (SimKit), which was constrained to use a logical
process decomposition and communication via messages, together with a
simple lightweight set of calls. The ATM-TN model was engineered to fit
the LP decomposition by careful placement of parallel activities in different
LPs and by putting in the extra effort needed to work with the SimKit
interface (for example, by eschewing shared state). As described earlier, the
two parallel kernels also include many careful optimizations to ensure low
overheads. The relative importance of these is probably particular to the
ATM-TN problem. Different optimizations might be important for different
problem classes.

The performance results presented in Section 5 depend on the underlying
shared memory platform. In particular, the absolute performance results
directly depend on the SGI platform. However, we believe the comparative
results and conclusions for SMP architectures are not sensitive to the
specific SGI platform. We have performed similar experiments on an
8-processor SPARC SMP platform with similar results. In general, imple-
menting kernels and kernel optimizations also has a significant impact on
performance—for example, implementations must consider cache perfor-
mance.

The original intention was that the SimKit interface provide a transpar-
ent portable interface independent of the underlying simulation kernel.

Parallel Shared-Memory Simulator Performance • 387

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

This has generally been successful, but did manifest two problems. In the
case of WarpKit, it was necessary to extend this kernel to deal with
event-flow control issues, as well as add code for state-saving (although, in
principle, we understand how to do state-saving efficiently and transpar-
ently [Gomes 1996]). In the case of WaiKit, it was necessary to specify the
channel connectivity between LPs and to compute lookahead information
for the channels. More work is also needed to improve modeling practice
and avoid small lookahead loops.

For future work, the two major problems are those of load-balancing and
further reducing kernel-level overheads. For ATM-TN, dynamic load-bal-
ancing is very difficult. The low per-event granularity means that little
time can be spent thinking about where work is to be done or on moving
LPs around between processors. For example, the overheads for measuring
actual execution times by LPs is too high to be useful. We believe this
problem would be even harder in distributed memory architectures, due to
the extra complexity and overheads of LP migration in such an environ-
ment (the cost of migration still exists in shared-memory systems—it is just
hidden as cache-miss overheads). The success of LP-level rather than
event-level scheduling in WaiKit points to one possible solution, namely to
do the load-balancing at a larger grain size than that of events or even LPs.
This is a promising idea that we explored in a new conservative algorithm
and the TasKit simulation kernel that implements it [Xiao et al. 1999]. The
performance of the new kernel has demonstrated dramatic improvement.
(Comparisons of TasKit kernel performance will be presented in a subse-
quent article.)

The second major problem is that of continuing to reduce the overheads
due to parallel execution. WaiKit shows that it may be possible to do this
by paying careful attention to the grain size at which different overheads
occur and by using simple algorithms on these larger grain sizes. Unfortu-
nately, WaiKit also shows extreme sensitivity to the application-level
modeling code; it has not yet been demonstrated that these problems can be
overcome. Progress may require further violation of SimKit’s interface (for
example, by making channels and their lookahead explicitly accessible to
users), which makes the modeling problem even harder.

One interesting feature of these results is the general robustness and
good relative speedup of the WarpKit kernel. The problem is that it has
high overheads which are difficult to overcome in a low-granularity appli-
cation such as the ATM-TN. However, in other problem domains with
higher granularity (say over 100 m-sec per-event), TimeWarp is probably a
good choice for obtaining speedup, although still requiring expert guidance
on issues such as model partitioning and event flow control.

ACKNOWLEDGMENTS

The authors wish to thank the many people who have directly contributed
to the design, implementation, and use of the ATM-TN simulator in its
current form, and to its ongoing existence in our collaborative TeleSim

388 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

research project. To name a few, these people include: Martin Arlitt, Ying
Chen, Alan Covington, Adi Damian, Julie Doerksen, Mark Fox, Steve
Franks, Pawel Gburzynski, Fabian Gomes, Remi Gurski, Tim Harrison,
Xiaoming Li, Guang Lu, Theodore Ono-Tesfaye, Srinivasan Ramaswamy,
Rob Simmonds, and Jiayun Zhu. In particular, Remi Gurski and Tim
Harrison were instrumental in establishing the Wnet and NTN benchmark
scenarios in ATM-TN.

REFERENCES

ARLITT, M., CHEN, Y., GURSKI, R., AND WILLIAMSON, C. 1995. Traffic modeling in the ATM-TN
telesim project: Design, implementation, and performance evaluation. In Proceedings of the
1995 Summer Conference on Computer Simulation (SCSC’95, Ottawa, Ont.). 847–851.

ARLITT, M. AND WILLIAMSON, C. 1995. A synthetic workload model for internet mosaic
traffic. In Proceedings of the 1995 Summer Conference on Computer Simulation (SCSC’95,
Ottawa, Ont.). 852–857.

ARLITT, M. F. AND WILLIAMSON, C. L. 1997. Internet Web servers: workload characterization
and performance implications. IEEE/ACM Trans. Netw. 5, 5, 631–645.

ATM FORUM. 1996. Traffic management 4.0 specification. ATM Forum Technical Committee.
AVRIL, H. AND TROPPER, C. 1995. Clustered time warp and logic simulation. In Proceedings of

the 9th Workshop on Parallel and Distributed Simulation (PADS ’95, Lake Placid, NY, Jun
14-16). IEEE Computer Society Press, Los Alamitos, CA.

BAGRODIA, R. AND LIAO, W. 1994. Masie: A language for design of efficient discrete-event
simulations. IEEE Trans. Softw. Eng. 20, 4 (Apr.), 225–238.

BLANCHARD, T. D., LAKE, T. W., AND TURNER, S. J. 1994. Cooperative acceleration: robust
conservative distributed discrete event simulation. SIGSIM Simul. Dig. 24, 1 (July), 58–64.

BROWN, R. 1988. Calendar queues: a fast 0(1) priority queue implementation for the
simulation event set problem. Commun. ACM 31, 10 (Oct.), 1220–1227.

CAI, W., LETERTRE, E., AND TURNER, S. J. 1997. Dag consistent parallel simulation: a
predictable and robust conservative algorithm. SIGSIM Simul. Dig. 27, 1, 178–181.

CAROTHERS, C. D., FUJIMOTO, R. M., AND LIN, Y.-B. 1995. A case study in simulating PCS
networks using Time Warp. SIGSIM Simul. Dig. 25, 1 (July), 87–94.

CHANDY, K. M. AND MISRA, J. 1979. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Trans. Softw. Eng. 5, 5 (Sept.), 440–452.

CHEN, Y.-A. AND BAGRODIA, R. 1998. Shared memory implementation of a parallel switch-level
circuit simulator. SIGSIM Simul. Dig. 28, 1, 134–141.

CHEN, Y., DENG, Z., AND WILLIAMSON, C. 1995. A model for self-similar Ethernet lan traffic:
Design, implementation, and performance implications. In Proceedings of the 1995 Summer
Conference on Computer Simulation (SCSC’95, Ottawa, Ont.). 831–837.

CLEARY, J. G. AND TSAI, J.-J. 1996. Conservative parallel simulation of ATM
networks. SIGSIM Simul. Dig. 26, 1, 30–38.

CROVELLA, M. E. AND BESTAVROS, A. 1996. Self-similarity in World Wide Web traffic: evidence
and possible causes. SIGMETRICS Perform. Eval. Rev. 24, 1, 160–169.

DAS, S. R. AND FUJIMOTO, R. M. 1993. A performance study of the cancelback protocol for Time
Warp. SIGSIM Simul. Dig. 23, 1 (July), 135–142.

DAS, S., FUJIMOTO, R., PANESAR, K., ALLISON, D., AND HYBINETTE, M. 1994. GTW: A time warp
system for shared memory multiprocessors. In Proceedings of the 1994 Winter Conference on
Simulation (WSC ’94, Lake Buena Vista, FL, Dec. 11–14), M. S. Manivannan and J. D. Tew,
Eds. Society for Computer Simulation, San Diego, CA, 1332–1339.

FUJIMOTO, R. M. 1989. Time warp on a shared memory multiprocessor. In Proceedings of the
International Conference on Parallel Processing (ICPP ’89, Aug.). Pennsylvania State
University, University Park, PA, 242–249.

FUJIMOTO, R. M. 1990. Parallel discrete event simulation. Commun. ACM 33, 10 (Oct.),
30–53.

Parallel Shared-Memory Simulator Performance • 389

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

GARRETT, M. W. AND WILLINGER, W. 1994. Analysis, modeling and generation of self-similar
VBR video traffic. SIGCOMM Comput. Commun. Rev. 24, 4 (Oct.), 269–280.

GOMES, F. 1996. Optimizing incremental state-saving and restoration. Ph.D. Dissertation.
University of Calgary, Calgary, Canada.

GOMES, F., CLEARY, J., COVINGTON, A., FRANKS, S., UNGER, B., AND ZIAO, Z.-E. 1995. SimKit: a
high performance logical process simulation class library in C1. In Proceedings of the 1995
Winter Conference on Simulation (WSC ’95, Arlington, VA, Dec. 3–6), C. Alexopoulos and K.
Kang, Eds. ACM Press, New York, NY, 706–713.

GURSKI, R. AND WILLIAMSON, C. 1996. TCP over ATM: Simulation model and performance
results. In Proceedings of the 1996 IEEE International Conference on Computers and
Communications (Phoenix, AZ, Mar.). IEEE Computer Society Press, Los Alamitos, CA,
328–335.

JEFFERSON, D. R. 1985. Virtual time. ACM Trans. Program. Lang. Syst. 7, 3 (July), 404–425.
JEFFERSON, D., BECKMAN, B., AND WIELAND, F. 1987. Distributed simulation and the time

warp operating system. In Proceedings of the Eleventh ACM Symposium on Operating
System Principles (Austin, TX, Nov. 8-11), L. Belady, Chair. ACM Press, New York, NY.

LE GALL, D. 1991. MPEG: a video compression standard for multimedia applications.
Commun. ACM 34, 4 (Apr.), 46–58.

LELAND, W. E., TAQQU, M. S., WILLINGER, W., AND WILSON, D. V. 1994. On the self-similar
nature of Ethernet traffic (extended version). IEEE/ACM Trans. Netw. 2, 1 (Feb.), 1–15.

MARTINE, D., WILSEY, P., AND MCBRAYER, T. 1995. WARPED (version 0.5). University of
Cincinnati, Cincinnati, OH.

MCCORMACK, W. AND SARGENT, R. G. 1981. Analysis of future event set algorithms for discrete
event simulation. Commun. ACM 24, 12 (Dec.).

MELAMED, B. 1992. TES modeling of video traffic. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. E75-B, 1292–1300.

MEYER, R. AND BAGRODIA, R. 1998. Improving lookahead in parallel wireless network
simulation. In Proceedings of the Sixth International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS ’98, Montreal,
Que., July). 262–267.

MINZER, S. E. 1991. Broadband ISDN and asynchronous transfer mode (ATM). In Broadband
Switching: Architectures, Protocols, Design, and Analysis, C. Chas, V. K. Konangi, and M.
Sreetharan, Eds. IEEE Computer Society Press, Los Alamitos, CA, 81–89.

NICOL, D. M. 1996. Principles of conservative parallel simulation. In Proceedings of the 1996
Winter Conference on Simulation (WSC ’96, Coronado, CA, Dec. 8–11), J. M. Charnes, D. J.
Morrice, D. T. Brunner, and J. J. Swain, Eds. ACM Press, New York, NY, 128–135.

NICOL, D. AND HEIDELBERGER, P. 1996. On extending more parallelism to serial
simulators. SIGSIM Simul. Dig. 26, 1, 202–205.

PATEL, A. AND WILLIAMSON, C. 1997. Effective bandwidth of self-similar traffic sources:
Theoretical and simulation results. In Proceedings of the IASTED Conference on Applied
Modeling and Simulation (Banff, AB, Canada, July). 298–302.

PAXSON, V. AND FLOYD, S. 1995. Wide area traffic: the failure of Poisson modeling.
IEEE/ACM Trans. Netw. 3, 3 (June), 226–244.

PHAM, C. D., BRUNST, H., AND FDIDA, S. 1998. Conservative simulation of load-balanced
routing in a large ATM network model. SIGSIM Simul. Dig. 28, 1, 142–149.

STEINMAN, J. 1992. SPEEDES: A unified approach to parallel simulation. In Proceedings of
the 6th Workshop on Parallel and Distributed Simulation (PADS ’92). ACM Press, New
York, NY.

STEVENS, W. R. 1994. TCP/IP Illustrated: The Protocols (Vol. 1). Addison-Wesley Longman
Publ. Co., Inc., Reading, MA.

SU, W. AND SEITZ, C. 1989. Variants of the Chandy-Misra-Bryant distributed discrete-event
simulation algorithm. In Proceedings of the Conference on Distributed Simulation (Miami, FL).

TANENBAUM, A. 1996. Computer Networks. 3rd ed. Prentice-Hall, New York, NY.
TAY, S. C., TEO, Y. M., AND AYANI, R. 1998. Performance analysis of time warp simulation

with cascading rollbacks. SIGSIM Simul. Dig. 28, 1, 30–37.

390 • B. Unger et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

UNGER, B. W., GOMES, F., ZHONGE, X., GBURZYNSKI, P., ONO-TESFAYE, T., RAMASWAMY, S.,
WILLIAMSON, C., AND COVINGTON, A. 1995. A high fidelity ATM traffic and network
simulator. In Proceedings of the 1995 Winter Conference on Simulation (WSC ’95, Arlington,
VA, Dec. 3–6), C. Alexopoulos and K. Kang, Eds. ACM Press, New York, NY, 996–1003.

WALLACE, G. K. 1991. The JPEG still picture compression standard. Commun. ACM 34, 4
(Apr.), 30–44.

WANG, Y., WILLIAMSON, C., AND DOERKSEN, J. 1999. CAC performance with self-similar traffic:
Simulation study and performance results. In Proceedings of the Seventh International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOT ’99, Baltimore, MD, Oct.). 102–111.

WIELAND, F., BLAIR, E., AND ZUKAS, T. 1995. Parallel discrete-event simulation (PDES): a case
study in design, development, and performance using SPEEDES. SIGSIM Simul. Dig. 25, 1
(July), 103–110.

WILLIAMSON, C., UNGER, B., AND XIAO, Z. 1998. Parallel simulation of ATM networks: Case
study and lessons learned. In Proceedings of the Second Canadian Conference on Broad-
band Research (CCBR ’98, Ottawa, Ont., June). 78–88.

XIAO, Z., GOMES, F., UNGER, B., AND CLEARY, J. 1995. A fast asynchronous GVT algorithm for
shared memory multiprocessor architecture. In Proceedings of the 9th Workshop on Parallel
and Distributed Simulation (PADS ’95, Lake Placid, NY, Jun 14-16). IEEE Computer
Society Press, Los Alamitos, CA.

XIAO, Z. AND UNGER, B. 1995a. Notes on parallelizing ATM-TN cell-level simulation models.
Tech. rep. 98-629-20. University of Calgary, Calgary, Canada.

XIAO, Z. AND UNGER, B. 1995b. Report on WarpKit: Performance study and improvement.
Tech. rep. 98-628-19. University of Calgary, Calgary, Canada.

XIAO, Z., UNGER, B., SIMMONDS, R., AND CLEARY, J. 1999. Scheduling critical channels in
conservative parallel discrete event simulation. In Proceedings of the 13th Workshop on
Parallel and Distributed Simulation (PADS ’99, Atlanta, GA, May). IEEE Computer Society
Press, Los Alamitos, CA, 20–28.

ZENG, X., BAGRODIA, R., AND GERLA, M. 1998. GloMoSim: a library for parallel simulation of
large-scale wireless networks. SIGSIM Simul. Dig. 28, 1, 154–161.

ZORANOVIC, M. AND WILLIAMSON, C. 1999. Performance and robustness testing of explicit-rate
ABR flow control schemes. In Proceedings of the Seventh International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MAS-
COT ’99, Baltimore, MD, Oct.). 11–20.

Received: May 1999; revised: April 2000; accepted: April 2000

Parallel Shared-Memory Simulator Performance • 391

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 4, October 2000.

