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ABSTRACT 
We consider in this paper the problem of slicing floorplan design 
with boundary-constrained modules. We develop a quadratic-time 
method that correctly transforms a slicing floorplan into one that 
satisfies all given boundary constraints. The transformation 
method is incorporated into our floorplanning algorithm which 
employs the simulated annealing technique to seek for a possibly 
best solution. Unlike any other existing algorithm such as the one 
in [10], our floorplanning algorithm is always able to generate 
solutions satisfying all given boundary constraints. Furthermore, 
the experimental results indicate that our floorplanning algorithm 
can also generate solutions with smaller area and interconnect 
wirelength than the algorithm in [10].  

1. INTRODUCTION 
Floorplan design is an early stage in VLSI physical design, and is 
to determine the shape and location of each module on the chip 
such that the total area and/or interconnect cost of the chip is as 
small as possible. In this stage, all (or most) of the modules are not 
designed yet and thus are called soft modules due to their 
flexibility in shape. There are two kinds of floorplans: slicing [3,6] 
and non-slicing [1,2,7]. A slicing floorplan is a floorplan that can 
be obtained by recursively cutting an enclosing rectangle by either 
a vertical line or a horizontal line. On the other hand, a floorplan 
that is not slicing is called a non-slicing floorplan. Clearly slicing 
floorplans constitute a smaller solution space than non-slicing 
floorplans. In addition, the shape flexibility of each module in a 
slicing floorplan can be efficiently utilized to pack modules as 
tightly as possible using proper shape curve computation 
techniques [4,5]. 

For slicing floorplan design several important breakthroughs have 
been made recently. The well-known simulated annealing based 
Wong-Liu algorithm [6] has been successfully extended to handle 
the case where some pre-placed modules are present [8], and the 
case where some modules are constrained to be placed within 
certain ranges [9]. The key to the success of each extension is 
based on a new shape curve computation technique. 

Besides, another new slicing floorplan design problem that 
considers boundary constraints was recently proposed [10]. The 
boundary constraints may come from the need where designers 
would like to place some modules along certain boundaries of the 
chip such that those modules are easier to be connected to certain 
I/O pads. The main idea behind the Young-Wong algorithm [10] 
for handling boundary constraints is to extend the Wong-Liu 
algorithm [6] by scanning each normalized Polish expression 
(which represents a slicing floorplan) from right to left once for 
determining the boundary information of each module in the 
floorplan. The boundary information of a module indicates 
whether there are modules above, below, on the left of, and on the 
right of the module. Hence with the boundary information, all the 
modules violating their boundary constraints in the floorplan can 
be found immediately. For example, if the boundary information 
of a module indicates that there is no module to the left of the 
module, then the module can be placed along the left boundary. 
For those modules violating their boundary constraints they will 
be then swapped with other modules in order to eliminate 
violations as many as possible. However, the swapping method 
may not always resolve all the violations, and hence a penalty 
term is added into the cost function to account for those 
violations. This unfortunately implies that the Young-Wong 
algorithm cannot guarantee that a floorplan satisfying all given 
boundary constraints is always obtainable unless the annealing 
process is long enough. 

In this paper, we consider the same slicing floorplan design 
problem as that in [10]; that is, some modules must be placed 
along the boundaries. We develop a quadratic-time method that 
correctly transforms a normalized Polish expression into a slicing 
floorplan that satisfies all given boundary constraints. The 
transformation method is incorporated into our floorplanning 
algorithm which employs the simulated annealing technique to 
seek for a possibly best solution. Unlike the Young-Wong 
algorithm [10], our floorplanning algorithm is always able to 
generate solutions satisfying all given boundary constraints. 
Furthermore, the experimental results indicate that our 
floorplanning algorithm can also generate solutions with smaller 
area and interconnect wirelength than the Young-Wong algorithm.   

2. PROBLEM FORMULATION 
Each module is assumed to be a rectangle with a fixed area; its 
aspect ratio is defined to be its height divided by its width. A soft 
module is a module whose shape can be changed as long as the 
aspect ratio is within a given range and the area is as given. A 
slicing floorplan R of n modules consists of n non-overlapping 
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rectangles such that each rectangle is large enough to 
accommodate the module assigned to it. The problem of slicing 
floorplan design with boundary constraints is described as follows. 
The input consists of five disjoint module sets MF, ML, MR, MT, 
MB, and the area and the aspect ratio range of each module. Each 
module in MF is a free module that can be placed anywhere in a 
floorplan. Each module in ML (MR, MT, MB, respectively) is a 
module with the left (right, top, bottom, respectively) boundary 
constraint and has to be placed along the left (right, top, bottom, 
respectively) boundary. Note that ML (MR, MT, MB, respectively) is 
an empty set if no module must be placed along the left (right, top, 
bottom, respectively) boundary. A slicing floorplan is said to be 
feasible if each module in ML ∪ MR ∪ MT ∪ MB (referred to as a 
boundary-constrained module) is placed along the boundary as 
specified, and each module satisfies its area and aspect ratio 
constraints; otherwise the floorplan is said to be infeasible. (See 
Figure 1 for an example, where we assume each module satisfies 
its area and aspect ratio constraints.) The objective of the problem 
is to find a feasible slicing floorplan such that the cost function 
A+λW, same as that used in [6], is as small as possible, where A is 
the total area of the floorplan, and W is the estimated interconnect 
wirelength, and λ is a user-specified constant to control the 
relative importance between area and wirelength. Given a 
floorplan, its W is defined to be ∑

≠ ji ijdijc , where each cij is the 

number of common nets between modules i and j, and each dij is 
the Manhattan distance between the centers of i and j. 
  

(a) (b)
Suppose module 2 is constrainted to be placed along the right
boundary. (a) is an infeasible floorplan but (b) is a feasible one.
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Figure 1. A feasible and an infeasible floorplans. 

3. A BRIEF REVIEW OF THE WONG-LIU 
ALGORITHM 
A slicing floorplan can be described by an oriented rooted binary 
tree called slicing tree in which each internal node is labeled with 
+ or * denoting a horizontal or a vertical cut, respectively, and 
each leaf denotes a module. Each leaf or internal node corresponds 
to a sub-floorplan. (Note that each sub-floorplan is also a 
rectangle consisting of all modules in the sub-tree rooted at the 
corresponding node.) For each internal node labeled with * (+), its 
left child is placed to the left of (below) its right child. Figure 2 
gives a slicing floorplan of 5 modules, and its corresponding 
slicing tree. If a slicing tree is traversed in postorder, then a Polish 
expression is obtained. For example the Polish expression 
corresponding to the slicing tree in Figure 2 is 21+45*3+*. A 
Polish expression is said to be normalized if there is no 
consecutive +’s nor consecutive *’s in the expression. 

The Wong-Liu algorithm in [6] uses the set of all normalized 
Polish expression as the solution space, and applies the simulated 
annealing technique to search for the possibly best solution. 
Whenever a new normalized Polish expression is generated, an 

efficient shape curve computation technique [4,5] is first used to 
find a floorplan of “best” area among all equivalent floorplans 
represented by that Polish expression. The interconnect wirelength 
is then computed from that floorplan, and finally the weighted cost 
of the area and the interconnect wirelength is used for evaluating 
whether the Polish expression should be accepted or not. 
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Figure 2. A slicing floorplan and its corresponding slicing tree. 

4. DEFINITIONS 
Recall that the five disjoint sets MF, ML, MR, MT, and MB denote 
the set of free modules and the sets of modules having the left, 
right, top and bottom boundary constraints, respectively. Based on 
what types of boundary-constrained modules are contained in a 
sub-floorplan, we define 16 disjoint types of sub-floorplans below. 

Definition 1: A sub-floorplan is said to have the F constraint if 
each module contained in it is in MF. 
Definition 2: A sub-floorplan is said to have the L constraint if it 
contains at least one module in ML, but contains no module in MR, 
MT or MB. A sub-floorplan having the R, T, or B constraint is 
defined similarly. A sub-floorplan having the L, R, T, or B 
constraint is said to have one type of boundary constraint.   
Definition 3: A sub-floorplan is said to have the LR constraint if it 
contains at least one module in ML and at least one module in MR, 
but contains no module in MT or MB. A sub-floorplan having the 
LT, LB, RT, RB, or TB constraint is defined similarly. A sub-
floorplan having the LR, LT, LB, RT, RB, or TB constraint is said 
to have two types of boundary constraints.  
Definition 4: A sub-floorplan is said to have the LRT constraint if 
it contains at least one module in ML, at least one module in MR, 
and at least one module in MT, but contains no module in MB.  A 
sub-floorplan having the LRB, LTB, or RTB constraint is defined 
similarly. A sub-floorplan having the LRT, LRB, LTB, or RTB 
constraint is said to have three types of boundary constraints.    
Definition 5: A sub-floorplan is said to have the LRTB constraint 
if at least one module in ML, at least one module in MR, at least 
one module in MT, and at least one module in MB are contained in 
it. A sub-floorplan having the LRTB constraint is said to have four 
types of boundary constraints. 

Clearly, each sub-floorplan is in exactly one of the above 16 
different types of sub-floorplans. Besides, the constraint of a sub-
floorplan can be also determined from the constraints of its two 
child sub-floorplans. For example, if the two child sub-floorplans 
have the R and the LB constraints, respectively, then the sub-
floorplan has the LRB constraint  

Definition 6: A sub-floorplan is said to have a feasible topology if 
each boundary-constrained module contained in the sub-floorplan 
is placed along the required boundary in the sub-floorplan; 
otherwise the sub-floorplan has an infeasible topology. Since each 
node in a slicing tree corresponds to a sub-floorplan, the 
definitions of feasible and infeasible topologies can be also 
applied to a node.  

125



For a sub-floorplan to have a feasible topology, each of its two 
child sub-floorplans must also have a feasible topology. However, 
a sub-floorplan obtained from horizontally (or vertically) 
combining two sub-floorplans each of which has a feasible 
topology may or may not have a feasible topology. A combining is 
said to be feasible if the resulting sub-floorplan has a feasible 
topology. By considering all possible constraints that a sub-
floorplan may have, and all possible ways of combining two sub-
floorplans each of which has a feasible topology, all possible 
feasible combinings are obtained and shown in Table 1. In Table 
1, A and B denote the left and right child sub-floorplans, 
respectively, and each is assumed to have a feasible topology. 

Table 1. All feasible combinings. 

A B A B A B A B
F 1.        F 1.        F 1.        F 1.        F 1.      L 1.      R

1.       L 1.       F 2.      R 2.      L
2.       F 2.       L 3.      L 3.      LR
1.       R 1.       F 4.      R 4.      LR
2.       F 2.       R 5.      LR 5.      L

1.       T 1.       F 6.      LR 6.      R
2.       F 2.       T 7.      LR 7.      F
1.       B 1.       F 8.      F 8.      LR
2.       F 2.       B 1.      L 1.      T 1.      L 1.      T

2.      LT 2.      T 2.      L 2.      LT
(a) 3.      LT 3.      F 3.      F 3.      LT

1.      L 1.      B 1.      B 1.      L
2.      LB 2.      B 2.      LB 2.      L

A B A B 3.      LB 3.      F 3.      LB 3.      F
1.      L 1.      RTB 1.      B 1.      LRT 1.      T 1.      R 1.      R 1.      T
2.      LT 2.      RB 2.      LB 2.      RT 2.      T 2.      RT 2.      R 2.      RT
3.      LT 3.      RTB 3.      LB 3.      LRT 3.      F 3.      RT 3.      F 3.      RT
4.      LB 4.      RT 4.      RB 4.      LT 1.      B 1.      R 1.      B 1.      R
5.      LB 5.      RTB 5.      RB 5.      LRT 2.      B 2.      RB 2.      RB 2.      R
6.      LTB 6.      R 6.      LRB 6.      T 3.      F 3.      RB 3.      RB 3.      F
7.      LTB 7.      RT 7.      LRB 7.      LT 1.      T 1.      B
8.      LTB 8.      RB 8.      LRB 8.      RT 2.      B 2.      T
9.      LTB 9.      RTB 9.      LRB 9.      LRT 3.      T 3.      TB

4.      B 4.      TB
(b) 5.      TB 5.      T

6.      TB 6.      B
7.      TB 7.      F
8.      F 8.      TB

(c)

Resulting
constraint

* (vertical cut) + (horizontal cut) Resulting
constraint

* (vertical cut) + (horizontal cut)

LR 1.      L 1.      R
L 1.       L 1.       F

R 1.       F 1.       R

T 1.       F 1.       T

B 1.       B 1.       F
LT

LB
Resulting
constraint

* (vertical cut) +(horizontal cut)

LRTB RT

RB

TB 1.      B 1.      T

 
Middle 

A B A B constraint
1.      L 1.      RT 1.      L 1.      RT
2.      LT 2.      R 2.      R 2.      LT
3.      LT 3.      RT 3.      L 3.      LRT

4.      R 4.      LRT
5.      LR 5.      T
6.      LR 6.      RT
7.      LR 7.      LT
8.      LR 8.      LRT
9.      F 9.      LRT

1.      L 1.      RB 1.      B 1.      LR
2.      LB 2.      R 2.      LB 2.      R
3.      LB 3.      RB 3.      LB 3.      LR

4.      RB 4.      L
5.      RB 5.      LR
6.      LRB 6.      L
7.      LRB 7.      R
8.      LRB 8.      LR
9.      LRB 9.      F

1.      L 1.      TB 1.      LB 1.      T
2.      LT 2.      B 2.      B 2.      LT
3.      LT 3.      TB 3.      LB 3.      LT
4.      LB 4.      T
5.      LB 5.      TB
6.      LTB 6.      T
7.      LTB 7.      B
8.      LTB 8.      TB
9.      LTB 9.      F
1.      TB 1.      R 1.      RB 1.      T
2.      B 2.      RT 2.      B 2.      RT
3.      TB 3.      RT 3.      RB 3.      RT
4.      T 4.      RB
5.      TB 5.      RB
6.      T 6.      RTB
7.      B 7.      RTB
8.      TB 8.      RTB
9.      F 9.      RTB

(d)

Resulting
constraint

* (vertical cut) + (horizontal cut)

LRT

RTB R

T

LRB B

LTB L

 

5. A TRANSFORMATION METHOD 
In this section we describe a method that correctly transforms a 
normalized Polish expression into a slicing floorplan that has a 
feasible topology. (Note that by Definition 6, a floorplan having a 
feasible topology satisfies all given boundary constraints.) The 
main idea is to first construct the slicing tree from the given Polish 
expression, and then examine each internal node of the tree in a 
bottom-up fashion (i.e., postorder traversal of the tree) and use 
Table 1 to determine if the node has a feasible topology or not. (It 

should be noted that our transformation method is designed in 
such a way that it is more efficient on a slicing tree than a Polish 
expression, and that is why the slicing tree needs to be constructed 
from a Polish expression in our method.) If the node has an 
infeasible topology, the tree will be modified to make the node 
have a feasible topology. There are three basic operations, called 
O1, O2, and O3, which can transform a node having an infeasible 
topology into one having a feasible topology in most cases (but 
not all cases). Each O1 operation changes the cut direction of a 
node, each O2 operation swaps the left and the right sub-trees of a 
node, and each O3 operation is to perform an O1 operation 
followed by an O2 operation. For example, suppose A has the R 
constraint, B has the L constraint, and both A and B have feasible 
topologies. Figure 3(a) shows a floorplan having an infeasible 
topology, but the floorplans in Figure 3(b), 3(c) and 3(d) all have 
feasible topologies. Figures 3(b), 3(c) and 3(d) can be obtained 
from Figure 3(a) by performing an O1, an O2, and an O3 operations 
on the root, respectively. Although in most cases the three basic 
operations can help to generate nodes having feasible topologies, 
there are also some cases (as shall be seen later) where the basic 
operations cannot help. 

Even if an internal node has a feasible topology, the tree also 
needs to be modified for some cases in order to ensure that the 
root has a feasible topology later on. Throughout the rest of this 
section, let C denote the internal node being examined, and A and 
B denote the left and right child nodes of C. Both A and B are 
ensured to have feasible topologies by our transformation method. 
Depending on whether C has a feasible topology or not, different 
approaches to modifying the tree are described in the following 
two sub-sections. 

(a) (b)

(c) (d)

A

*

B
A
(R)

B
(L) A

(R)

B
(L)

A
(R)

B
(L)

A
(R)
B
(L)

A

+

B

B

*

A B

+

A

 
Figure 3. Illustration of the three basic operations. 

5.1 A Feasible Combining 
Suppose C corresponds to a sub-floorplan having a feasible 
topology. If C is the root of the tree, the whole transformation 
work is done and the current tree is the output. Otherwise, the 
following three cases (i.e., Cases 1, 2, and 3) need to be 
considered. 

5.1.1 Case 1: C has the LRT, LRB, LTB, or RTB 
constraint 
When this case happens, we must add into the sub-tree rooted at C 
all the modules that have the “middle” boundary constraint but are 
not currently in the sub-tree rooted at C. The middle boundary 
constraint is determined from the constraint that C has. For 
example, if C has the LRT constraint, the middle boundary 
constraint is defined to be the T constraint (i.e., top boundary 
constraint). The middle boundary constraint with respect to the 
LRB, LTB, or RTB constraint can be found in the rightmost 
column of Table 1(d). The reason why we need to pay attention to 
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this case can be explained using the following example. In Figure 
4, assume A has the LR constraint, and B and D both have the T 
constraint. Then C has the LRT constraint. However, no matter 
which basic operation (i.e., O1, O2, or O3) is applied to E (i.e., the 
parent of C) later on, E cannot have a feasible topology. Similar 
scenarios can be created for C having the LRB, LTB, or RTB 
constraint. 

C

D
(T)

B
(T)

A
(LR)

+

A

D+

B

E

 
Figure 4. A scenario of Case 1. 

(a) (b)

(c)

parent(i)X
i j

YZ

X
i

parent(i)

j
YZ

Xi

parent(i)
j

Z Y

 
Figure 5. Illustration of the delete and insert operations. 

Method: For each module that has the middle boundary constraint 
but is not in the sub-tree rooted at C, we combine it with X, where 
X=A if the left child sub-floorplan corresponding to A contains at 
least one module having the middle boundary constraint, and X=B 
otherwise. To combine a module i with X, we first perform the 
“delete (i)” operation which deletes i and its parent, say parent(i), 
from the tree and moves the other child of parent(i) to the original 
location of parent(i) in the tree. (See Figures 5(a) and 5(b).) We 
then perform the “insert(parent(i),X)” operation which makes X 
become the other child of parent(i) and moves parent(i) to the 
original location of X in the tree. (See Figures 5(c).) Now if 
parent(i) has an infeasible topology, then we continue to apply a 
proper basic operation to make it become feasible. By using 
proper data structures, each delete, insert or basic operation can be 
implemented in constant time. Hence combining i and X can be 
done in constant time. As a result, the method for handling Case 1 
can be done in linear time because the number of modules that 
have the middle boundary constraint is not more than the total 
number of modules.  

5.1.2 Case 2: C has the LRTB constraint 
If this case happens, we need to modify the tree such that the two 
sub-trees of the root have exactly one and three types of boundary 
constraints, respectively. The reason why we need to consider this 
case can be explained using the following example. In Figure 6, 
assume A has the LRB constraint and B has the T constraint. Since 
C is not the root, we know it is not possible to obtain a floorplan 
having a feasible topology even after applying any of the three 
basic operations to the root later on. 

A
(LRB)

B
(T)+

A B

C

+

D

D

 
Figure 6. A scenario of Case 2. 

(a)

C

A

D

B

C

DA B

(b)

C

A

D

B

C
A BD

 
Figure 7. Illustration of the method for handling Case 2. 

Method: First, we make one child node of C, say X, become 
having three types of boundary constraints (i.e., having the LRT, 
LRB, LTB, or RTB constraint) such that each module having any 
of the three types of boundary constraints is in the sub-tree rooted 
at X, and make the other child node, say Y, become having the 
remaining type of boundary constraint such that each module 
having that type of boundary constraint is in the sub-tree rooted at 
Y. This can be done by performing one delete operation, one insert 
operation, and possibly one basic operation for each boundary-
constrained module. We then consider two cases. For the case 
where C is in the left sub-tree of the root, we continue to perform 
the  “subtree_delete(B)” operation which deletes parent(B) (i.e., 
C) and the subtree rooted at B, and then perform the 
“insert(parent(B),right_child(root))” operation, where root 
denotes the root of the tree and right_child(root) denotes the right 
child of root. (See Figure 7(a).) For the other case where C is in 
the right sub-tree of the root, we continue to perform the 
“subtree_delete(A)” operation, and then perform the 
“insert(parent(A),left_child(root))” operation, where 
left_child(root) denotes the left child of root. (See Figure 7(b).) 
Now if C has an infeasible topology, we need to apply a proper 
basic operation to make it feasible. Finally if the root of the tree 
has an infeasible topology, we apply one more proper basic 
operation to make the root also feasible. Since the whole floorplan 
now has a feasible topology, the transformation work is done and 
the resulting tree is the output. It is not hard to verify that the 
method for handling Case 2 can be also implemented in linear 
time. 

5.1.3 Case 3: C is obtained from one of the 
remaining feasible combinings 
For this case, we do nothing. 
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5.2 An Infeasible Combining 
Suppose C corresponds to a sub-floorplan having an infeasible 
topology. We have the following three cases (i.e., Cases 4, 5, and 
6) to consider. 

5.2.1 Case 4: The two child nodes of C have the LR 
and TB constraints, respectively 
When this case happens, no matter which basic operation is 
applied to C, we still cannot make C feasible. Figure 8 gives two 
possible scenarios for this case, where A has the LR constraint and 
B has the TB constraint. To make C have a feasible topology, we 
will modify one of its child nodes to have exactly one type of 
boundary constraint (i.e., having the T, B, L, or R constraint) and 
the other child node to have the remaining three types of boundary 
constraints. 

(a) (b)

A
(LR)

B
(TB)

+

BA

*

BA
A

(LR)
B

(TB)

 
Figure 8. Two possible scenarios of Case 4. 

Method: We first combine A with a boundary-constrained module 
that is currently in the sub-tree rooted at B. This can be done by 
performing one delete operation, one insert operation, and 
possibly one basic operation. Now A still has a feasible topology 
but becomes having three types of boundary constraints. Since A 
satisfies the condition given in Case 1, we then apply the Case 1 
method to A. After that, if C still has an infeasible topology, we 
continue to apply a proper basic operation to make C satisfy the 
condition given in Case 2, and finally apply the Case 2 method to 
C if C is not a root. It is not hard to verify that the method for 
handling Case 4 can be also implemented in linear time. 

5.2.2 Case 5: Both A and B have the same LT (RT, 
LB, or RB) constraint 
When this case happens, no matter which basic operation is 
applied to C, we still cannot make C feasible. Figure 9 shows two 
possible scenarios for this case, where both A and B have the same 
LT constraint. To make C have a feasible topology, we will modify 
one of its child nodes to have exactly one type of boundary 
constraint. 

+

BA A
(LT)

B
(LT)

*

BA
A

(LT)
B

(LT)

 
Figure 9. Two scenarios of Case 5. 

Method: We arbitrarily choose one of the two types of boundary 
constraints as the “target” boundary constraint, and then remove 
each module in B that has the target boundary constraint, and add 
it into the sub-tree rooted at A. This can be done by repeatedly 
performing one delete operation, one insert operation, and 
possibly one basic operation. Now if C still has an infeasible 

topology, one proper basic operation is applied to it. The method 
for handling Case 5 can be also implemented in linear time.  

5.2.3 Case 6: C is obtained from one of the 
remaining infeasible combinings 
For this case, we apply a proper basic operation to C such that C 
becomes having a feasible topology. Now if C is not the root but 
meets the condition given in Case 1 (Case 2), the Case 1 method 
(Case 2 method) will be then applied to C. The method for 
handling Case 6 can be also implemented in linear time. 

5.3 Overall Algorithm and Time Complexity 
As stated at the beginning of this section, the transformation 
algorithm checks internal nodes in a bottom-up fashion. The 
algorithm will be terminated either by the Case 2 method or after 
the root has been checked. When examining an internal node u, 
the algorithm first applies the corresponding method to modify the 
tree (when necessary). If Case 2 never happens and the tree gets 
changed, the algorithm needs to update the constraint information 
of each internal node which is visited prior to u in the new tree 
(with respect to the postorder traversal) before the algorithm 
continues to examine the next internal node (which is the one right 
after u in the postorder traversal of the new tree). Each update can 
be done in constant time because each node will meet the 
condition of Case 3 and hence no modification to the tree needs to 
be made. Therefore, checking and fixing each internal node takes 
linear time. There are n-1 internal nodes, and hence the overall 
time complexity of the algorithm is O(n2), where n is the number 
of modules. (Note that constructing the slicing floorplan from a 
normalized Polish expression only takes linear time.) We have the 
following theorem. 

Theorem 1: Our transformation method correctly transforms a 
normalized Polish expression into a slicing floorplan that satisfies 
all given boundary constraints. Moreover, it can be implemented 
in quadratic time.  

6. OUR FLOORPLANNING ALGORITHM 
In this section, we present our simulated annealing based 
algorithm for solving the problem of slicing floorplan design with 
boundary-constrained modules. Our algorithm is basically an 
extension of the Wong-Liu algorithm [6]. Each floorplan is 
represented by a normalized Polish expression. To generate the 
next expression from the current one, three types of operations, 
M1, M2 and M3, are used. Each M1 operation swaps two adjacent 
operands in an expression. (Each module is referred to as an 
operand.) Each M2 operation complements a chain of operators. 
(Each + or * is referred to as an operator.) Each M3 operation 
swaps two adjacent operand and operator. Since none of the three 
operations can always generate a slicing floorplan that satisfies all 
given boundary constraints, when a new Polish expression is 
generated, it will be transformed into a slicing floorplan satisfying 
all boundary constraints using our transformation method 
described in Section 5. Let e denote a normalized Polish 
expression, T’ denote the slicing tree obtained from applying the 
transformation method to e, and e’ denote the Polish expression 
obtained from the postorder traversal of T’. Note that e is the same 
as e’ if e already represents a slicing floorplan that satisfies all 
boundary constraints. Our algorithm replaces e by e’, and uses the 
same method as that given in the Wong-Liu algorithm [6] to 
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compute the cost of e’. If e’ get accepted, then in order to have the 
property that each normalized Polish expression can be reached 
from any other through a finite set of M1, M2, or M3 operations, 
our algorithm uses e (instead of e’) to generate the next Polish 
expression. The floorplan with the best cost during the entire 
annealing process is reported as the final solution. 

7. EXPERIMENTAL RESULTS 
Our algorithm has been implemented in C language. We compared 
our floorplanning algorithm with the Young-Wong algorithm [10]. 
Both algorithms used the same parameter values in the annealing 
process. That is, for each test case, both have the same initial 
temperature, termination condition, number of neighboring 
solutions generated at each temperature, initial normalized Polish 
expression, and the probabilities of the three move operations, 
M1, M2 and M3. All the experiments were conducted on a 
Pentium-III 600 processor with 128MB RAM. Two MCNC 
examples: ami33, ami49 were used as the test data. For each test 
data, we randomly generated three sets of boundary constraints. 
Each set of boundary constraints requires 16 (20) modules to be 
evenly placed along the boundaries for ami33 (ami49). The aspect 
ratio of each floorplan was set to be within 0.5~2. For each set of 
boundary constraints, we ran both algorithms 5 times. To optimize 
area alone, we set λ=0, and the experimental results are shown in 
Table 2. To optimize both area and interconnect wirelength, we set 
λ=0.0158, and the experimental results are shown in Table 3. 
Tables 2-3 list the minimum and average results of the area, 
interconnect wirelength (i.e., W) and run time generated by both 
algorithms. In both tables, the number of times that the Young-
Wong algorithm failed to find a solution satisfying all given 
boundary constraints is also shown in the column “# Failure” for 
each test case. (Note that for the Young-Wong algorithm, the 
average and minimum results are calculated only from those 
successful ones.) The last four columns of each table give the 
improvement ratios of our algorithm over the Young-Wong 
algorithm in terms of the minimum and average results of area, 
and interconnect wirelength. 
As can be seen from Table 2, when optimizing area alone, our 
algorithm improved the average area up to 9.38% for ami33, and 
up to 2.97% for ami49, as compared to the Young-Wong 
algorithm. Meanwhile the average interconnect wirelength was 
also improved up to 6.90% for ami33, and up to 15.64% for 
ami49. Our algorithm was also able to beat the Young-Wong 
algorithm in minimum area for each test case, and in minimum 
interconnect wirelength almost for all test cases.  
 

When optimizing both area and interconnect wirelength, our 
algorithm was able to improve the average area up to 4.88% for 
ami33, and up to 4.48% for ami49. The average wirelength was 
also improved up to 8.53% for ami33, and up to 10.87% for 
ami49, as shown in Table 3. Again, our algorithm was able to beat 
the Young-Wong algorithm in minimum area and in minimum 
interconnect wirelength almost for all test cases. 
It is also clear from Tables 2 and 3 that for some test cases, the 
Young-Wong algorithm failed to find feasible solutions 1~2 times, 
which never happened to our algorithm. As for the average run 
time, our algorithm was about 2~3X slower than the Young-Wong 
algorithm, but it is acceptable because our algorithm ran very fast, 
less than 1 minute almost for all test cases. 
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Table 2. Experimental results when optimizing area only. 
# Fa ilure

M in A verage M in A verage M in A verage M in A verage M in A verage M in A verage M in A verage M in A verage
am i33-1 1 .17 1.22 89.09 95.40 0 3.09 5.706 1.16 1.17 84.19 90.58 14.25 15.51 0.85% 4.10% 5.50% 5.05%
am i33-2 1 .17 1.28 94.82 111.89 1 7.02 7.523 1.16 1.16 95.08 104.17 14.35 16.07 0.85% 9.38% -0 .27% 6.90%
am i33-3 1 .17 1.19 103.25 113.70 0 5.13 7.146 1.16 1.17 102.19 106.03 12.83 15.36 0.85% 1.68% 1.03% 6.75%
am i49-1 36.47 37.52 1818.60 1906.39 2 10.28 32.92 36.41 37.04 1763.30 1826.19 80.04 84.05 0.16% 1.28% 3.04% 4.21%
am i49-2 37.11 38.17 1864.80 1874.27 2 13.82 30.2 36.25 37.25 1497.54 1581.15 52.01 63.25 2.32% 2.41% 19.69% 15.64%
am i49-3 36.22 38.09 1702.43 1802.80 1 14.03 27.74 36.01 36.96 1357.10 1522.17 50.98 56.65 0.58% 2.97% 20.28% 15.57%

Im prov. over Y oung-W ong A lg.
T im e (sec ) T im e (sec ) A rea W ire lengthA rea (m m 2) W ire length  (m m )

£ f= 0

Y oung-W ong A lgorithm O ur A lgorithm
A rea (m m 2) W ire length  (m m )

 
 

Table 3. Experimental results when optimizing both area and interconnect wirelength. 
# Failure

M in A verage M in A verage M in A verage M in A verage M in A verage M in A verage M in A verage M in A verage
am i33-1 1.17 1.21 75.13 78.56 0 4.04 6.97 1.17 1.18 67.99 73.58 12.64 15.39 0.00% 2.48% 9.50% 6.34%
am i33-2 1.21 1.23 76.20 83.12 0 3.68 6.87 1.17 1.17 76.08 82.16 15.04 16.44 3.31% 4.88% 0.16% 1.15%
am i33-3 1.19 1.24 90.67 99.02 0 3.48 6.29 1.17 1.18 88.16 90.57 13.56 15.19 1.68% 4.84% 2.77% 8.53%
am i49-1 37.00 38.87 1238.29 1436.56 0 5.83 22.64 36.44 37.13 1260.99 1323.91 50.19 56.67 1.51% 4.48% -1 .83% 7.84%
am i49-2 37.10 38.10 1316.60 1416.82 1 10.82 23.84 35.66 37.02 1306.20 1341.09 52.42 55.95 3.88% 2.83% 0.79% 5.34%
am i49-3 37.27 38.46 1287.51 1492.07 1 9.58 24.49 36.01 36.95 1204.94 1329.87 42.68 56.51 3.38% 3.93% 6.41% 10.87%

£ f=
0.0158

Y oung-W ong A lgorithm O ur Algorithm
A rea  (m m 2) W irelength (m m )

Im prov. over Y oung-W ong Alg.
T im e (sec) T im e (sec) A rea W irelengthA rea  (m m 2) W irelength (m m )
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