
Slicing Floorplan Design with Boundary-Constrained Modules
En-Cheng Liu1, Ming-Shiun Lin1, Jianbang Lai2, and Ting-Chi Wang3

1Department of Information and Computer Engineering, Chung Yuan Christian University, Chungli, Taiwan
2Tatung Corp., 22, Chungshan N. Rd., 3rd Sec., Taipei, Taiwan

3Department of Electrical Engineering, Texas A&M University, College Station, TX 77843-3259, USA

{s8777003, s8877030}@ice.cycu.edu.tw, ban@tatung.com, wangtc@ee.tamu.edu

ABSTRACT
We consider in this paper the problem of slicing floorplan design
with boundary-constrained modules. We develop a quadratic-time
method that correctly transforms a slicing floorplan into one that
satisfies all given boundary constraints. The transformation
method is incorporated into our floorplanning algorithm which
employs the simulated annealing technique to seek for a possibly
best solution. Unlike any other existing algorithm such as the one
in [10], our floorplanning algorithm is always able to generate
solutions satisfying all given boundary constraints. Furthermore,
the experimental results indicate that our floorplanning algorithm
can also generate solutions with smaller area and interconnect
wirelength than the algorithm in [10].

1. INTRODUCTION
Floorplan design is an early stage in VLSI physical design, and is
to determine the shape and location of each module on the chip
such that the total area and/or interconnect cost of the chip is as
small as possible. In this stage, all (or most) of the modules are not
designed yet and thus are called soft modules due to their
flexibility in shape. There are two kinds of floorplans: slicing [3,6]
and non-slicing [1,2,7]. A slicing floorplan is a floorplan that can
be obtained by recursively cutting an enclosing rectangle by either
a vertical line or a horizontal line. On the other hand, a floorplan
that is not slicing is called a non-slicing floorplan. Clearly slicing
floorplans constitute a smaller solution space than non-slicing
floorplans. In addition, the shape flexibility of each module in a
slicing floorplan can be efficiently utilized to pack modules as
tightly as possible using proper shape curve computation
techniques [4,5].

For slicing floorplan design several important breakthroughs have
been made recently. The well-known simulated annealing based
Wong-Liu algorithm [6] has been successfully extended to handle
the case where some pre-placed modules are present [8], and the
case where some modules are constrained to be placed within
certain ranges [9]. The key to the success of each extension is
based on a new shape curve computation technique.

Besides, another new slicing floorplan design problem that
considers boundary constraints was recently proposed [10]. The
boundary constraints may come from the need where designers
would like to place some modules along certain boundaries of the
chip such that those modules are easier to be connected to certain
I/O pads. The main idea behind the Young-Wong algorithm [10]
for handling boundary constraints is to extend the Wong-Liu
algorithm [6] by scanning each normalized Polish expression
(which represents a slicing floorplan) from right to left once for
determining the boundary information of each module in the
floorplan. The boundary information of a module indicates
whether there are modules above, below, on the left of, and on the
right of the module. Hence with the boundary information, all the
modules violating their boundary constraints in the floorplan can
be found immediately. For example, if the boundary information
of a module indicates that there is no module to the left of the
module, then the module can be placed along the left boundary.
For those modules violating their boundary constraints they will
be then swapped with other modules in order to eliminate
violations as many as possible. However, the swapping method
may not always resolve all the violations, and hence a penalty
term is added into the cost function to account for those
violations. This unfortunately implies that the Young-Wong
algorithm cannot guarantee that a floorplan satisfying all given
boundary constraints is always obtainable unless the annealing
process is long enough.

In this paper, we consider the same slicing floorplan design
problem as that in [10]; that is, some modules must be placed
along the boundaries. We develop a quadratic-time method that
correctly transforms a normalized Polish expression into a slicing
floorplan that satisfies all given boundary constraints. The
transformation method is incorporated into our floorplanning
algorithm which employs the simulated annealing technique to
seek for a possibly best solution. Unlike the Young-Wong
algorithm [10], our floorplanning algorithm is always able to
generate solutions satisfying all given boundary constraints.
Furthermore, the experimental results indicate that our
floorplanning algorithm can also generate solutions with smaller
area and interconnect wirelength than the Young-Wong algorithm.

2. PROBLEM FORMULATION
Each module is assumed to be a rectangle with a fixed area; its
aspect ratio is defined to be its height divided by its width. A soft
module is a module whose shape can be changed as long as the
aspect ratio is within a given range and the area is as given. A
slicing floorplan R of n modules consists of n non-overlapping

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD’01, April 1-4, 2001, Sonoma, California, USA.
Copyright 2001 ACM 1-58113-347-2/01/0004…$5.00.

124

rectangles such that each rectangle is large enough to
accommodate the module assigned to it. The problem of slicing
floorplan design with boundary constraints is described as follows.
The input consists of five disjoint module sets MF, ML, MR, MT,
MB, and the area and the aspect ratio range of each module. Each
module in MF is a free module that can be placed anywhere in a
floorplan. Each module in ML (MR, MT, MB, respectively) is a
module with the left (right, top, bottom, respectively) boundary
constraint and has to be placed along the left (right, top, bottom,
respectively) boundary. Note that ML (MR, MT, MB, respectively) is
an empty set if no module must be placed along the left (right, top,
bottom, respectively) boundary. A slicing floorplan is said to be
feasible if each module in ML ∪ MR ∪ MT ∪ MB (referred to as a
boundary-constrained module) is placed along the boundary as
specified, and each module satisfies its area and aspect ratio
constraints; otherwise the floorplan is said to be infeasible. (See
Figure 1 for an example, where we assume each module satisfies
its area and aspect ratio constraints.) The objective of the problem
is to find a feasible slicing floorplan such that the cost function
A+λW, same as that used in [6], is as small as possible, where A is
the total area of the floorplan, and W is the estimated interconnect
wirelength, and λ is a user-specified constant to control the
relative importance between area and wirelength. Given a
floorplan, its W is defined to be ∑

≠ ji ijdijc , where each cij is the

number of common nets between modules i and j, and each dij is
the Manhattan distance between the centers of i and j.

(a) (b)
Suppose module 2 is constrainted to be placed along the right
boundary. (a) is an infeasible floorplan but (b) is a feasible one.

1

2

3

4

5

1

3

2

4

5

Figure 1. A feasible and an infeasible floorplans.

3. A BRIEF REVIEW OF THE WONG-LIU
ALGORITHM
A slicing floorplan can be described by an oriented rooted binary
tree called slicing tree in which each internal node is labeled with
+ or * denoting a horizontal or a vertical cut, respectively, and
each leaf denotes a module. Each leaf or internal node corresponds
to a sub-floorplan. (Note that each sub-floorplan is also a
rectangle consisting of all modules in the sub-tree rooted at the
corresponding node.) For each internal node labeled with * (+), its
left child is placed to the left of (below) its right child. Figure 2
gives a slicing floorplan of 5 modules, and its corresponding
slicing tree. If a slicing tree is traversed in postorder, then a Polish
expression is obtained. For example the Polish expression
corresponding to the slicing tree in Figure 2 is 21+45*3+*. A
Polish expression is said to be normalized if there is no
consecutive +’s nor consecutive *’s in the expression.

The Wong-Liu algorithm in [6] uses the set of all normalized
Polish expression as the solution space, and applies the simulated
annealing technique to search for the possibly best solution.
Whenever a new normalized Polish expression is generated, an

efficient shape curve computation technique [4,5] is first used to
find a floorplan of “best” area among all equivalent floorplans
represented by that Polish expression. The interconnect wirelength
is then computed from that floorplan, and finally the weighted cost
of the area and the interconnect wirelength is used for evaluating
whether the Polish expression should be accepted or not.

1

2

3

4 5

*
+ +

32 1 *

4 5
Figure 2. A slicing floorplan and its corresponding slicing tree.

4. DEFINITIONS
Recall that the five disjoint sets MF, ML, MR, MT, and MB denote
the set of free modules and the sets of modules having the left,
right, top and bottom boundary constraints, respectively. Based on
what types of boundary-constrained modules are contained in a
sub-floorplan, we define 16 disjoint types of sub-floorplans below.

Definition 1: A sub-floorplan is said to have the F constraint if
each module contained in it is in MF.
Definition 2: A sub-floorplan is said to have the L constraint if it
contains at least one module in ML, but contains no module in MR,
MT or MB. A sub-floorplan having the R, T, or B constraint is
defined similarly. A sub-floorplan having the L, R, T, or B
constraint is said to have one type of boundary constraint.
Definition 3: A sub-floorplan is said to have the LR constraint if it
contains at least one module in ML and at least one module in MR,
but contains no module in MT or MB. A sub-floorplan having the
LT, LB, RT, RB, or TB constraint is defined similarly. A sub-
floorplan having the LR, LT, LB, RT, RB, or TB constraint is said
to have two types of boundary constraints.
Definition 4: A sub-floorplan is said to have the LRT constraint if
it contains at least one module in ML, at least one module in MR,
and at least one module in MT, but contains no module in MB. A
sub-floorplan having the LRB, LTB, or RTB constraint is defined
similarly. A sub-floorplan having the LRT, LRB, LTB, or RTB
constraint is said to have three types of boundary constraints.
Definition 5: A sub-floorplan is said to have the LRTB constraint
if at least one module in ML, at least one module in MR, at least
one module in MT, and at least one module in MB are contained in
it. A sub-floorplan having the LRTB constraint is said to have four
types of boundary constraints.

Clearly, each sub-floorplan is in exactly one of the above 16
different types of sub-floorplans. Besides, the constraint of a sub-
floorplan can be also determined from the constraints of its two
child sub-floorplans. For example, if the two child sub-floorplans
have the R and the LB constraints, respectively, then the sub-
floorplan has the LRB constraint

Definition 6: A sub-floorplan is said to have a feasible topology if
each boundary-constrained module contained in the sub-floorplan
is placed along the required boundary in the sub-floorplan;
otherwise the sub-floorplan has an infeasible topology. Since each
node in a slicing tree corresponds to a sub-floorplan, the
definitions of feasible and infeasible topologies can be also
applied to a node.

125

For a sub-floorplan to have a feasible topology, each of its two
child sub-floorplans must also have a feasible topology. However,
a sub-floorplan obtained from horizontally (or vertically)
combining two sub-floorplans each of which has a feasible
topology may or may not have a feasible topology. A combining is
said to be feasible if the resulting sub-floorplan has a feasible
topology. By considering all possible constraints that a sub-
floorplan may have, and all possible ways of combining two sub-
floorplans each of which has a feasible topology, all possible
feasible combinings are obtained and shown in Table 1. In Table
1, A and B denote the left and right child sub-floorplans,
respectively, and each is assumed to have a feasible topology.

Table 1. All feasible combinings.

A B A B A B A B
F 1. F 1. F 1. F 1. F 1. L 1. R

1. L 1. F 2. R 2. L
2. F 2. L 3. L 3. LR
1. R 1. F 4. R 4. LR
2. F 2. R 5. LR 5. L

1. T 1. F 6. LR 6. R
2. F 2. T 7. LR 7. F
1. B 1. F 8. F 8. LR
2. F 2. B 1. L 1. T 1. L 1. T

2. LT 2. T 2. L 2. LT
(a) 3. LT 3. F 3. F 3. LT

1. L 1. B 1. B 1. L
2. LB 2. B 2. LB 2. L

A B A B 3. LB 3. F 3. LB 3. F
1. L 1. RTB 1. B 1. LRT 1. T 1. R 1. R 1. T
2. LT 2. RB 2. LB 2. RT 2. T 2. RT 2. R 2. RT
3. LT 3. RTB 3. LB 3. LRT 3. F 3. RT 3. F 3. RT
4. LB 4. RT 4. RB 4. LT 1. B 1. R 1. B 1. R
5. LB 5. RTB 5. RB 5. LRT 2. B 2. RB 2. RB 2. R
6. LTB 6. R 6. LRB 6. T 3. F 3. RB 3. RB 3. F
7. LTB 7. RT 7. LRB 7. LT 1. T 1. B
8. LTB 8. RB 8. LRB 8. RT 2. B 2. T
9. LTB 9. RTB 9. LRB 9. LRT 3. T 3. TB

4. B 4. TB
(b) 5. TB 5. T

6. TB 6. B
7. TB 7. F
8. F 8. TB

(c)

Resulting
constraint

* (vertical cut) + (horizontal cut) Resulting
constraint

* (vertical cut) + (horizontal cut)

LR 1. L 1. R
L 1. L 1. F

R 1. F 1. R

T 1. F 1. T

B 1. B 1. F
LT

LB
Resulting
constraint

* (vertical cut) +(horizontal cut)

LRTB RT

RB

TB 1. B 1. T

Middle

A B A B constraint
1. L 1. RT 1. L 1. RT
2. LT 2. R 2. R 2. LT
3. LT 3. RT 3. L 3. LRT

4. R 4. LRT
5. LR 5. T
6. LR 6. RT
7. LR 7. LT
8. LR 8. LRT
9. F 9. LRT

1. L 1. RB 1. B 1. LR
2. LB 2. R 2. LB 2. R
3. LB 3. RB 3. LB 3. LR

4. RB 4. L
5. RB 5. LR
6. LRB 6. L
7. LRB 7. R
8. LRB 8. LR
9. LRB 9. F

1. L 1. TB 1. LB 1. T
2. LT 2. B 2. B 2. LT
3. LT 3. TB 3. LB 3. LT
4. LB 4. T
5. LB 5. TB
6. LTB 6. T
7. LTB 7. B
8. LTB 8. TB
9. LTB 9. F
1. TB 1. R 1. RB 1. T
2. B 2. RT 2. B 2. RT
3. TB 3. RT 3. RB 3. RT
4. T 4. RB
5. TB 5. RB
6. T 6. RTB
7. B 7. RTB
8. TB 8. RTB
9. F 9. RTB

(d)

Resulting
constraint

* (vertical cut) + (horizontal cut)

LRT

RTB R

T

LRB B

LTB L

5. A TRANSFORMATION METHOD
In this section we describe a method that correctly transforms a
normalized Polish expression into a slicing floorplan that has a
feasible topology. (Note that by Definition 6, a floorplan having a
feasible topology satisfies all given boundary constraints.) The
main idea is to first construct the slicing tree from the given Polish
expression, and then examine each internal node of the tree in a
bottom-up fashion (i.e., postorder traversal of the tree) and use
Table 1 to determine if the node has a feasible topology or not. (It

should be noted that our transformation method is designed in
such a way that it is more efficient on a slicing tree than a Polish
expression, and that is why the slicing tree needs to be constructed
from a Polish expression in our method.) If the node has an
infeasible topology, the tree will be modified to make the node
have a feasible topology. There are three basic operations, called
O1, O2, and O3, which can transform a node having an infeasible
topology into one having a feasible topology in most cases (but
not all cases). Each O1 operation changes the cut direction of a
node, each O2 operation swaps the left and the right sub-trees of a
node, and each O3 operation is to perform an O1 operation
followed by an O2 operation. For example, suppose A has the R
constraint, B has the L constraint, and both A and B have feasible
topologies. Figure 3(a) shows a floorplan having an infeasible
topology, but the floorplans in Figure 3(b), 3(c) and 3(d) all have
feasible topologies. Figures 3(b), 3(c) and 3(d) can be obtained
from Figure 3(a) by performing an O1, an O2, and an O3 operations
on the root, respectively. Although in most cases the three basic
operations can help to generate nodes having feasible topologies,
there are also some cases (as shall be seen later) where the basic
operations cannot help.

Even if an internal node has a feasible topology, the tree also
needs to be modified for some cases in order to ensure that the
root has a feasible topology later on. Throughout the rest of this
section, let C denote the internal node being examined, and A and
B denote the left and right child nodes of C. Both A and B are
ensured to have feasible topologies by our transformation method.
Depending on whether C has a feasible topology or not, different
approaches to modifying the tree are described in the following
two sub-sections.

(a) (b)

(c) (d)

A

*

B
A
(R)

B
(L) A

(R)

B
(L)

A
(R)

B
(L)

A
(R)
B
(L)

A

+

B

B

*

A B

+

A

Figure 3. Illustration of the three basic operations.

5.1 A Feasible Combining
Suppose C corresponds to a sub-floorplan having a feasible
topology. If C is the root of the tree, the whole transformation
work is done and the current tree is the output. Otherwise, the
following three cases (i.e., Cases 1, 2, and 3) need to be
considered.

5.1.1 Case 1: C has the LRT, LRB, LTB, or RTB
constraint
When this case happens, we must add into the sub-tree rooted at C
all the modules that have the “middle” boundary constraint but are
not currently in the sub-tree rooted at C. The middle boundary
constraint is determined from the constraint that C has. For
example, if C has the LRT constraint, the middle boundary
constraint is defined to be the T constraint (i.e., top boundary
constraint). The middle boundary constraint with respect to the
LRB, LTB, or RTB constraint can be found in the rightmost
column of Table 1(d). The reason why we need to pay attention to

126

this case can be explained using the following example. In Figure
4, assume A has the LR constraint, and B and D both have the T
constraint. Then C has the LRT constraint. However, no matter
which basic operation (i.e., O1, O2, or O3) is applied to E (i.e., the
parent of C) later on, E cannot have a feasible topology. Similar
scenarios can be created for C having the LRB, LTB, or RTB
constraint.

C

D
(T)

B
(T)

A
(LR)

+

A

D+

B

E

Figure 4. A scenario of Case 1.

(a) (b)

(c)

parent(i)X
i j

YZ

X
i

parent(i)

j
YZ

Xi

parent(i)
j

Z Y

Figure 5. Illustration of the delete and insert operations.

Method: For each module that has the middle boundary constraint
but is not in the sub-tree rooted at C, we combine it with X, where
X=A if the left child sub-floorplan corresponding to A contains at
least one module having the middle boundary constraint, and X=B
otherwise. To combine a module i with X, we first perform the
“delete (i)” operation which deletes i and its parent, say parent(i),
from the tree and moves the other child of parent(i) to the original
location of parent(i) in the tree. (See Figures 5(a) and 5(b).) We
then perform the “insert(parent(i),X)” operation which makes X
become the other child of parent(i) and moves parent(i) to the
original location of X in the tree. (See Figures 5(c).) Now if
parent(i) has an infeasible topology, then we continue to apply a
proper basic operation to make it become feasible. By using
proper data structures, each delete, insert or basic operation can be
implemented in constant time. Hence combining i and X can be
done in constant time. As a result, the method for handling Case 1
can be done in linear time because the number of modules that
have the middle boundary constraint is not more than the total
number of modules.

5.1.2 Case 2: C has the LRTB constraint
If this case happens, we need to modify the tree such that the two
sub-trees of the root have exactly one and three types of boundary
constraints, respectively. The reason why we need to consider this
case can be explained using the following example. In Figure 6,
assume A has the LRB constraint and B has the T constraint. Since
C is not the root, we know it is not possible to obtain a floorplan
having a feasible topology even after applying any of the three
basic operations to the root later on.

A
(LRB)

B
(T)+

A B

C

+

D

D

Figure 6. A scenario of Case 2.

(a)

C

A

D

B

C

DA B

(b)

C

A

D

B

C
A BD

Figure 7. Illustration of the method for handling Case 2.

Method: First, we make one child node of C, say X, become
having three types of boundary constraints (i.e., having the LRT,
LRB, LTB, or RTB constraint) such that each module having any
of the three types of boundary constraints is in the sub-tree rooted
at X, and make the other child node, say Y, become having the
remaining type of boundary constraint such that each module
having that type of boundary constraint is in the sub-tree rooted at
Y. This can be done by performing one delete operation, one insert
operation, and possibly one basic operation for each boundary-
constrained module. We then consider two cases. For the case
where C is in the left sub-tree of the root, we continue to perform
the “subtree_delete(B)” operation which deletes parent(B) (i.e.,
C) and the subtree rooted at B, and then perform the
“insert(parent(B),right_child(root))” operation, where root
denotes the root of the tree and right_child(root) denotes the right
child of root. (See Figure 7(a).) For the other case where C is in
the right sub-tree of the root, we continue to perform the
“subtree_delete(A)” operation, and then perform the
“insert(parent(A),left_child(root))” operation, where
left_child(root) denotes the left child of root. (See Figure 7(b).)
Now if C has an infeasible topology, we need to apply a proper
basic operation to make it feasible. Finally if the root of the tree
has an infeasible topology, we apply one more proper basic
operation to make the root also feasible. Since the whole floorplan
now has a feasible topology, the transformation work is done and
the resulting tree is the output. It is not hard to verify that the
method for handling Case 2 can be also implemented in linear
time.

5.1.3 Case 3: C is obtained from one of the
remaining feasible combinings
For this case, we do nothing.

127

5.2 An Infeasible Combining
Suppose C corresponds to a sub-floorplan having an infeasible
topology. We have the following three cases (i.e., Cases 4, 5, and
6) to consider.

5.2.1 Case 4: The two child nodes of C have the LR
and TB constraints, respectively
When this case happens, no matter which basic operation is
applied to C, we still cannot make C feasible. Figure 8 gives two
possible scenarios for this case, where A has the LR constraint and
B has the TB constraint. To make C have a feasible topology, we
will modify one of its child nodes to have exactly one type of
boundary constraint (i.e., having the T, B, L, or R constraint) and
the other child node to have the remaining three types of boundary
constraints.

(a) (b)

A
(LR)

B
(TB)

+

BA

*

BA
A

(LR)
B

(TB)

Figure 8. Two possible scenarios of Case 4.

Method: We first combine A with a boundary-constrained module
that is currently in the sub-tree rooted at B. This can be done by
performing one delete operation, one insert operation, and
possibly one basic operation. Now A still has a feasible topology
but becomes having three types of boundary constraints. Since A
satisfies the condition given in Case 1, we then apply the Case 1
method to A. After that, if C still has an infeasible topology, we
continue to apply a proper basic operation to make C satisfy the
condition given in Case 2, and finally apply the Case 2 method to
C if C is not a root. It is not hard to verify that the method for
handling Case 4 can be also implemented in linear time.

5.2.2 Case 5: Both A and B have the same LT (RT,
LB, or RB) constraint
When this case happens, no matter which basic operation is
applied to C, we still cannot make C feasible. Figure 9 shows two
possible scenarios for this case, where both A and B have the same
LT constraint. To make C have a feasible topology, we will modify
one of its child nodes to have exactly one type of boundary
constraint.

+

BA A
(LT)

B
(LT)

*

BA
A

(LT)
B

(LT)

Figure 9. Two scenarios of Case 5.

Method: We arbitrarily choose one of the two types of boundary
constraints as the “target” boundary constraint, and then remove
each module in B that has the target boundary constraint, and add
it into the sub-tree rooted at A. This can be done by repeatedly
performing one delete operation, one insert operation, and
possibly one basic operation. Now if C still has an infeasible

topology, one proper basic operation is applied to it. The method
for handling Case 5 can be also implemented in linear time.

5.2.3 Case 6: C is obtained from one of the
remaining infeasible combinings
For this case, we apply a proper basic operation to C such that C
becomes having a feasible topology. Now if C is not the root but
meets the condition given in Case 1 (Case 2), the Case 1 method
(Case 2 method) will be then applied to C. The method for
handling Case 6 can be also implemented in linear time.

5.3 Overall Algorithm and Time Complexity
As stated at the beginning of this section, the transformation
algorithm checks internal nodes in a bottom-up fashion. The
algorithm will be terminated either by the Case 2 method or after
the root has been checked. When examining an internal node u,
the algorithm first applies the corresponding method to modify the
tree (when necessary). If Case 2 never happens and the tree gets
changed, the algorithm needs to update the constraint information
of each internal node which is visited prior to u in the new tree
(with respect to the postorder traversal) before the algorithm
continues to examine the next internal node (which is the one right
after u in the postorder traversal of the new tree). Each update can
be done in constant time because each node will meet the
condition of Case 3 and hence no modification to the tree needs to
be made. Therefore, checking and fixing each internal node takes
linear time. There are n-1 internal nodes, and hence the overall
time complexity of the algorithm is O(n2), where n is the number
of modules. (Note that constructing the slicing floorplan from a
normalized Polish expression only takes linear time.) We have the
following theorem.

Theorem 1: Our transformation method correctly transforms a
normalized Polish expression into a slicing floorplan that satisfies
all given boundary constraints. Moreover, it can be implemented
in quadratic time.

6. OUR FLOORPLANNING ALGORITHM
In this section, we present our simulated annealing based
algorithm for solving the problem of slicing floorplan design with
boundary-constrained modules. Our algorithm is basically an
extension of the Wong-Liu algorithm [6]. Each floorplan is
represented by a normalized Polish expression. To generate the
next expression from the current one, three types of operations,
M1, M2 and M3, are used. Each M1 operation swaps two adjacent
operands in an expression. (Each module is referred to as an
operand.) Each M2 operation complements a chain of operators.
(Each + or * is referred to as an operator.) Each M3 operation
swaps two adjacent operand and operator. Since none of the three
operations can always generate a slicing floorplan that satisfies all
given boundary constraints, when a new Polish expression is
generated, it will be transformed into a slicing floorplan satisfying
all boundary constraints using our transformation method
described in Section 5. Let e denote a normalized Polish
expression, T’ denote the slicing tree obtained from applying the
transformation method to e, and e’ denote the Polish expression
obtained from the postorder traversal of T’. Note that e is the same
as e’ if e already represents a slicing floorplan that satisfies all
boundary constraints. Our algorithm replaces e by e’, and uses the
same method as that given in the Wong-Liu algorithm [6] to

128

compute the cost of e’. If e’ get accepted, then in order to have the
property that each normalized Polish expression can be reached
from any other through a finite set of M1, M2, or M3 operations,
our algorithm uses e (instead of e’) to generate the next Polish
expression. The floorplan with the best cost during the entire
annealing process is reported as the final solution.

7. EXPERIMENTAL RESULTS
Our algorithm has been implemented in C language. We compared
our floorplanning algorithm with the Young-Wong algorithm [10].
Both algorithms used the same parameter values in the annealing
process. That is, for each test case, both have the same initial
temperature, termination condition, number of neighboring
solutions generated at each temperature, initial normalized Polish
expression, and the probabilities of the three move operations,
M1, M2 and M3. All the experiments were conducted on a
Pentium-III 600 processor with 128MB RAM. Two MCNC
examples: ami33, ami49 were used as the test data. For each test
data, we randomly generated three sets of boundary constraints.
Each set of boundary constraints requires 16 (20) modules to be
evenly placed along the boundaries for ami33 (ami49). The aspect
ratio of each floorplan was set to be within 0.5~2. For each set of
boundary constraints, we ran both algorithms 5 times. To optimize
area alone, we set λ=0, and the experimental results are shown in
Table 2. To optimize both area and interconnect wirelength, we set
λ=0.0158, and the experimental results are shown in Table 3.
Tables 2-3 list the minimum and average results of the area,
interconnect wirelength (i.e., W) and run time generated by both
algorithms. In both tables, the number of times that the Young-
Wong algorithm failed to find a solution satisfying all given
boundary constraints is also shown in the column “# Failure” for
each test case. (Note that for the Young-Wong algorithm, the
average and minimum results are calculated only from those
successful ones.) The last four columns of each table give the
improvement ratios of our algorithm over the Young-Wong
algorithm in terms of the minimum and average results of area,
and interconnect wirelength.
As can be seen from Table 2, when optimizing area alone, our
algorithm improved the average area up to 9.38% for ami33, and
up to 2.97% for ami49, as compared to the Young-Wong
algorithm. Meanwhile the average interconnect wirelength was
also improved up to 6.90% for ami33, and up to 15.64% for
ami49. Our algorithm was also able to beat the Young-Wong
algorithm in minimum area for each test case, and in minimum
interconnect wirelength almost for all test cases.

When optimizing both area and interconnect wirelength, our
algorithm was able to improve the average area up to 4.88% for
ami33, and up to 4.48% for ami49. The average wirelength was
also improved up to 8.53% for ami33, and up to 10.87% for
ami49, as shown in Table 3. Again, our algorithm was able to beat
the Young-Wong algorithm in minimum area and in minimum
interconnect wirelength almost for all test cases.
It is also clear from Tables 2 and 3 that for some test cases, the
Young-Wong algorithm failed to find feasible solutions 1~2 times,
which never happened to our algorithm. As for the average run
time, our algorithm was about 2~3X slower than the Young-Wong
algorithm, but it is acceptable because our algorithm ran very fast,
less than 1 minute almost for all test cases.

8. ACKNOWLEDGMENTS
We thank Prof. F. Y. Young at Chinese University of Hong Kong
and Prof. D. F. Wong at University of Texas at Austin for kindly
providing us with the source code of their algorithm [10] for the
comparative study.

9. REFERENCES
[1] P.-N. Guo, C.-K. Cheng and T. Yoshimura, “An O-Tree

Representation of Non-Slicing Floorplan and Its Applications,” Proc.
Design Automation Conf., 1999, pp. 268-273.

[2] H. Murata and E. S. Kuh, “Sequence-Pair Based Placement Method
for Hard/Soft/Pre-Placed Modules,” Proc. International symposium
on Physical Design, 1998, 167-172.

[3] R. H. J. M. Otten, “Automatic Floorplan Design,” Proc. Design
Automation Conference, 1982, pp. 61-267.

[4] R. H. J. M. Otten, “Efficient Floorplan Optimization,” Proc.
International Conference on Computer Design, 1983, pp. 499-502.

[5] L. Stockmeyer, “Optimal Orientations of Cells in Slicing Floorplan
Designs,” Information and Control, 1983, pp. 91-101.

[6] D. F. Wong and C. L. Liu, “A New Algorithm for Floorplan Design,”
Proc. Design Automation Conference, 1986, pp. 101-107.

[7] Y.-C. Chang, Y.-W. Chang, G.-M. Wu and S.-W. Wu, “B*-Tree: A
New Representation for Non-Slicing Floorplans”, Proc. Design
Automation Conf., 2000, pp. 458-463.

[8] F. Y. Young and D. F. Wong, “Slicing Floorplans with Pre-Placed
Modules,” Proc. International Conference on Computer-Aided
Design, 1998, pp. 252-258.

[9] F. Y. Young and D. F. Wong, “Slicing Floorplans with Range
Constraint”, Proc. International Symposium on Physical Design,
1999, pp. 97-102.

[10] F. Y. Young and D. F. Wong, “Slicing Floorplans with Boundary
Constraint,” Proc. ASP-DAC, 999, pp. 17-20.

Table 2. Experimental results when optimizing area only.
Fa ilure

M in A verage M in A verage M in A verage M in A verage M in A verage M in A verage M in A verage M in A verage
am i33-1 1 .17 1.22 89.09 95.40 0 3.09 5.706 1.16 1.17 84.19 90.58 14.25 15.51 0.85% 4.10% 5.50% 5.05%
am i33-2 1 .17 1.28 94.82 111.89 1 7.02 7.523 1.16 1.16 95.08 104.17 14.35 16.07 0.85% 9.38% -0 .27% 6.90%
am i33-3 1 .17 1.19 103.25 113.70 0 5.13 7.146 1.16 1.17 102.19 106.03 12.83 15.36 0.85% 1.68% 1.03% 6.75%
am i49-1 36.47 37.52 1818.60 1906.39 2 10.28 32.92 36.41 37.04 1763.30 1826.19 80.04 84.05 0.16% 1.28% 3.04% 4.21%
am i49-2 37.11 38.17 1864.80 1874.27 2 13.82 30.2 36.25 37.25 1497.54 1581.15 52.01 63.25 2.32% 2.41% 19.69% 15.64%
am i49-3 36.22 38.09 1702.43 1802.80 1 14.03 27.74 36.01 36.96 1357.10 1522.17 50.98 56.65 0.58% 2.97% 20.28% 15.57%

Im prov. over Y oung-W ong A lg.
T im e (sec) T im e (sec) A rea W ire lengthA rea (m m 2) W ire length (m m)

£ f= 0

Y oung-W ong A lgorithm O ur A lgorithm
A rea (m m 2) W ire length (m m)

Table 3. Experimental results when optimizing both area and interconnect wirelength.
Failure

M in A verage M in A verage M in A verage M in A verage M in A verage M in A verage M in A verage M in A verage
am i33-1 1.17 1.21 75.13 78.56 0 4.04 6.97 1.17 1.18 67.99 73.58 12.64 15.39 0.00% 2.48% 9.50% 6.34%
am i33-2 1.21 1.23 76.20 83.12 0 3.68 6.87 1.17 1.17 76.08 82.16 15.04 16.44 3.31% 4.88% 0.16% 1.15%
am i33-3 1.19 1.24 90.67 99.02 0 3.48 6.29 1.17 1.18 88.16 90.57 13.56 15.19 1.68% 4.84% 2.77% 8.53%
am i49-1 37.00 38.87 1238.29 1436.56 0 5.83 22.64 36.44 37.13 1260.99 1323.91 50.19 56.67 1.51% 4.48% -1 .83% 7.84%
am i49-2 37.10 38.10 1316.60 1416.82 1 10.82 23.84 35.66 37.02 1306.20 1341.09 52.42 55.95 3.88% 2.83% 0.79% 5.34%
am i49-3 37.27 38.46 1287.51 1492.07 1 9.58 24.49 36.01 36.95 1204.94 1329.87 42.68 56.51 3.38% 3.93% 6.41% 10.87%

£ f=
0.0158

Y oung-W ong A lgorithm O ur Algorithm
A rea (m m 2) W irelength (m m)

Im prov. over Y oung-W ong Alg.
T im e (sec) T im e (sec) A rea W irelengthA rea (m m 2) W irelength (m m)

129

	Main Page
	ISPD'01
	Front Matter
	Table of Contents
	Author Index

