
The var ie ty of issues covered in this vo lume (fuzzy
reasoning, mu l t i - c r i te r ia decis ion making, p ropos i t iona l
formal isms, dynamic game theory pattern recogni t ion, as
wel l as the more t rad i t ional expert systems, AI, etc.) make
it unsui table for l ow - l eve l pedagog ic use. It wou ld be ap -
propr iate for an advanced seminar cover ing the f ront iers
of appl icat ions of AI in economic and manager ia l domains,
but its pr imary use is more l ikely to be for those c o n d u c t -

ing research in the field. I infer that the workshop on
which this vo lume is based has been held prev ious ly , and I
get the sense that s imi lar workshops wi l l be held in the
future. Thus, this vo lume represents a th i r t y - th ree facet
snapshot of the s t a t e - o f - t h e - a r t at one point in t ime. It is
as such a va luable record.

A R T I C L E S
ARRAYS AND ASSIGNMENT IN PROLOG

Wi l l iam G. Wong
Logic Fusion Inc.
1333 Moon Drive

Yardley, PA 19067
(215) 736-2463

Convent ional Pro log imp lement ions suppor t dynamic
update of the data base using assert and retract. Changes
to the data base a l low global in fo rmat ion to be shared
th roughou t var ious parts of a program. The advantage is
quick access to in format ion which wou ld o therwise be ex -
changed using shared Pro log variables.

The use of assert and retract is not recommended as
a general data manipu lat ion too l because of the overhead
of adjust ing var ious data base links. Using normal va r i -
ables is f ine as long as a s ingle value needs to be ex -
changed. However, there are a number of instances where
mult ip le values need to be exchanged and only the most
recent value is of interest. This is essent ia l ly the ass ign-
able var iable found in convent iona l languages.

The proposal presented here uses the concept of as-
s ignable var iables and shows how it can be implemented,
granted not in the most ef f ic ient fashion. The idea is that
a single parameter is able to pass the in format ion among
var ious componen ts of a program. The idea is ident ical to
inf inite streams in Concurrent Prolog except that the
stream can only be accessed as a var iable or its latest
value. The code to imp lement this in convent iona l Prolog
is:

new var ([V : _] , V) .

get_var ([V : Tail] , V) :- var (T a i l) , t . get_var ([•
Tail], V) :- get_var (Tail, V).

set var (N, V) :- var (N), !, N = [V :]. set var ([
: Tail], V) :- set var (Tail, V).

A new var iable is essent ia l ly a l ist whose last e lement
before the uninstant iated tail of the l ist is the current
value. One functor is prov ided to create new var iables
whi le two others set and access the variables. An ef -
f ic ient imp lement ion wou ld only keep track of the latest
value.

Arrays are in the same class as assignable variables.
A special functor is necessary to a l locate the arrays and
access the necessary elements. Arrays and assignable
variables are not real ly as fore ign to Pro log as some
would like them to be. It is real ly a mat ter of eff ic ient i m -
p lementat ion.

Automatic Menu Generation
Steve Cousins

Center for Intell igent Computer Systems
Department of Computer Science

Washington University
St. Louis, MO 63130

sbc@wucsl.UUCP
This note descr ibes a very s imple modi f i ca t ion to

Prolog's Defini te Clause Grammar I (DCG) fo rmal ism which
a l lows a menu system wi th the f lavor of Texas
Inst ruments ' NLMenus 2 to be easi ly imp lemented.

Introduction
A language for inter facing wi th a compu te r p rogram

may be as s imple as a command language or as comp lex
as a subset of a natural language. In e i ther case, a g r a m -
mar for this language captures in a concise way all of the
sentences in the language, and is fundamenta l l y
knowledge about that language. Compi ler wr i ters are wel l
aware of the value of a g rammar in in terpret ing input to a
computer . This same in format ion about the language can
be used on the o ther end of the commun ica t i ons channel
to assist the user in creat ing val id sentences in the
program's input language. This note descr ibes a techn ique
for bui ld ing a menu interface in Prolog automat ica l ly , given
the g rammar for a language.

The Next set
To build a menu interface to a language, it is neces-

sary to know what the "next words " possib le are at any
point in a sentence. This set of "next words" is cal led the
Next set. A menu interface s imply displays the Next set at
each point in a parse and a l lows the user to choose one
member of the set. Init ially, the Next set is the set of
words which may occur as the f irst word of any sentence
in the language. When one of these is chosen, the Next
set for that o n e - w o r d pref ix is the set of second words in
the set of sentences beginn ing wi th the chosen f i rst word.
In general, after a val id pref ix of n words has been chosen,
the set of all (n+l) th words that, when appended to the
f i rst n words forms a pref ix of a val id sentence, is cal led
the Next set, and is placed in a menu.

The method just descr ibed is essent ia l ly the basic
concept behind Texas Inst ruments ' NLMenus. A choice is
made from a menu, and then another menu becomes ac -
t ive based on the first choice. This cont inues unti l a c o m -
plete sentence has been chosen.

Having the Next sets at each point in the parse of a
sentence is also useful in command interfaces. If a user is
t yp ing and the parser has a re lat ive ly small set of legal
words, it can assist the user as she types by in forming her

SIGART Newsletter, October 1987, Number 102 Page 21

http://crossmark.crossref.org/dialog/?doi=10.1145%2F36970.36972&domain=pdf&date_stamp=1987-10-01

immediate ly of an error, l isting the next legal words if she
requests them, or even at tempt ing to correct simple mis -
takes for her in the spirit of Xerox's DWlM (Do What I
Mean) 3

In his dissertat ion, Masaru Tomita of CMU pointed out
that the above interface advantages can be had in parsers
which are str ict ly l e f t - t o - r i gh t 4 Fortunately, when Prolog's
proof procedure is used as a parser for DCGs, the parsing
is, in fact, left to right. The next sect ion describes a
modi f icat ion to the internals of the Definite Clause Gram-
mar mechanism to calculate the Next set in Prolog.
Calculat ing the Next set in Prolog

The Definite Clause Grammar (DCG) mechanism of
Prolog is a t ranslator f rom a grammar syntax to Prolog
predicates. DCGs handle terminals by t ranslat ing them
into calls to a special predicate called "c" ("connects"). By
careful ly redefining the "c" operator 5 it is possible to ca l -
culate the Next sets. The connects operator, c, is def ined
simply as:

c([WlS],W,S).
This def in i t ion reads: "if the head of the f irst a rgument
matches the second argument, succeed, and return the tai l
of the first a rgument as the third argument." If the match
fails, the predicate fails.

Based on Prolog's backtracking, we can redef ine c to
keep track of the Next set, the set of words which can fo l -
low a legal prefix such that there exists a suffix that, when
concatenated onto the prefix and the e lement f rom the
next set, the result ing sentence is in the language.

Normally, c e i ther succeeds or fails based on whether
or not W is the head of the incoming list. This is based
on the assumpt ion that the ent ire input sentence is passed
as the f irst argument. If the f irst argument is only a prefix
of a sentence however, in parsing that str ing Prolog wil l at
some point fail because legal words in the language are
at tempted to be matched against empty input. Whenever
this happens, W is a word that should be a member of the
Next set. W should be added to the Next set, but c should
fail the test so that o ther words in the set " farther down
the grammar" (since we are depending on Prolog's par -
t icular parsing mechanism for DCG's) can be found.

Assuming the predicate save(W) saves W to the Next
set, the new def in i t ion of the c operator is as fo l lows:

c([],W,[]) :- save(W),fail.
c([WlS],W,S).

Notice that the second line of the def in i t ion is just the
original def ini t ion of c, and that the first l ine never suc-
ceeds. The new line of the def ini t ion is only act ive in the
case described above.

The def ini t ion of save can be a simple assert, since
facts asserted are not retracted during backtracking. Save
is defined as:

save(W) :- assert (next(W)).
If the relat ion nex t is empty before a t tempt ing to parse a
sentence wi th a DCG (i.e. next(X) would fail), nex t wi l l
contain all of the words in the Next set when the parse
has completed (and failed).

Using this mechan ism
A simple recursive program implements the interface

described above. The predicate menu(L,W) is assumed to
take a list of words to be in the menu L and return the
word chosen, W. The predicate get sent(Sent) returns a
sentence in some g rammar th rough Sent. We assume the
g rammar starts wi th the non- te rm ina l s. Recall that in
t ry ing to prove s, the DCG mechanism wi l l automat ica l ly
make calls to c as terminal symbols are reached. The fo l -
lowing program implements get_sent:

get_sent(Sent) :- get_sent([],Sent).
get_sent(Prefix, Prefix) :-

no nexts,
s(FFrefix,[]).

get_sent(Prefix,Sent) :-
setof(X, next(X),Men u),
menu(Menu,Word),
append(Prefix,[Word],NewPrefix),
get_sent(NewPrefix,Sent).

no nexts :- retract(next(X)),fail.
no nexts.
Example

A very simple example may help to demonst ra te the
use of this technique. Consider a DCG for a language with
6 sentences:

s - - > dog_name, dog_action.
s - - > boy_name, boy_act ion.
boy_name - - > [john].
d o g _ n a m e - - > [rover].
boy_act ion - - > [yells].
boy_act ion - - > action.
clog_action - - > [barks].
clog act ion - - > action.
act ion - - > [runs].
act ion - - > [hides].

Using the new def in i t ion of ¢ and the def ini t ion of
get sent; this g rammar produces t w o menus au tomat i -
cally. The first contains the set [john,rover] and the
second contains three actions, depending on the choice
f rom the f irst menu. The menu predicate used in this ex-
ample s imply displays the set as a list and accepts a
member of the list f rom the keyboard; in actual use of this
system, the menu predicate might a l low the choice to be
made f rom a mouse, f rom funct ion keys, etc.

I ?- get_sent(X).
Choose one:
[john,rover]
l: john.
Choose one:
[hides,runs,yells]
I: runs.
X = [john,runs]

I ?- get_sent(X).
Choose one:
[john,rover]
I: rover.
Choose one:
[barks,hides,runs]
I: barks.
X = [rover, barks]

Conclus ions
The Next set is useful in bui ld ing menu interfaces to

programs. It can be calculated in Prolog wi th a one- l i ne
addit ion to the exist ing imp lementa t ion of the Definite
Clause Grammar formal ism. A l though the Next set ap-
proach does not solve all prob lems in the interface area, it
demonst ra tes the usefulness of using input language
grammars to automat ica l ly generate program interfaces.
There are languages in which this technique may prove
awkward, such as when some or all of the Next sets are
very large. With care, however, the Next set can be useful
in quickly imp lement ing power fu l interfaces using Prolog's
DCG mechanism.
Notes

1W.F. Clocksin & C.S. Mell ish, Programm n,q Ln Proloq,
Chapter 9, Spr inger-Ver lag, 1981.

SIGART Newsletter , October 198"7, N u m b e r 102 Page 22

2Texas Instruments, Explorer Natura_l Language _Menu
System User's Guide, 1985.

3Xerox , Inter l isp-D Reference ManualL Volume 2:
Environment, 1985.

4Masaru Tomita, "An Efficient Context- f ree Parsing Al-
gor i thm for Natural Languages and its Applications," Com-
puter Science Dept. Report, Carnegie-Mel lon University,

May 1985.

5Since c/3 is a predefined operator in most Prolog
implementat ions, redefining it may not be easy. The ex-
ample here was done in a version of C-Prolog with the c
operator unlocked so that its original definit ion could be
retracted. Thanks to Guil lermo Simari for unlocking it for
me. If c/3 cannot be unlocked, the Next set could still be
calculated by defining a new DCG operator exactly like the
old one, but wi th a different symbol (like ==>) and a d i f -
ferent definit ion of connects. This is easy, since the code
for DCGs is in Clocksin & Mellish.

SELECTED AI-RELATED DISSERTATIONS

Assembled by:
Susanne M. Humphrey

National Library of Medicine
Bethesda, MD 20894

and
Bob Krovetz

University of Massachusetts
Amherst, MA 01002

The fol lowing are citat ions selected by t i t le and
abstract as being related to AI, resulting from a computer
search, using the BRS Information Technologies retrieval
service, of the Dissertation Abstracts International (DAI)
database produced by University Microfi lms International.

The online file includes abstracts, which are not
published in this listing, but the citations below do include
the DAI reference for f inding the abstract in the published
DAI. Other elements of the ci tat ion are author; university,
degree, and, if available, number of pages; title; UM order
number and year-month of DAI; and DAI subject category
chosen by the author of the dissertation. References are
sorted first by the initial DAI subject category and second
by the author. In addition the database includes masters
abstracts, denoted by MAI (Masters Abstracts International)
instead of DAI as the reference to the abstract in the
published MAI.

Unless otherwise specified, paper or microform copies
of dissertat ions may be ordered from University Microfi lms
International, Dissertation Copies, Post Office Box 1764,
Ann Arbor, MI 48106; telephone for U.S. (except Michigan,
Hawaii, Alaska): 1-800-521-3042, for Canada:
1-800-268-6090. Price lists and other ordering and ship-
ping information are in the introduct ion to the published
DAI.

SCHMOLDT, DANIEL LEE. The University of Wisconsin -
Madison Ph.D. 1987, 232 pages. Evaluation of an expert
system approach to forest pest management of red
pine (Pinus resinosa). DAI V48(02), SecB, pp314.
University Microf i lms Order Number ADG87-08112.
Agriculture, Forestry and Wildlife.

MARCHANT, GARRY ALLEN. The University of Michigan
Ph.D. 1987, 184 pages. Analogical reasoning and error
detection. DAI V48(02), SecA, pp432. University
Microf i lms Order Number ADG87-12168. Business Ad-
ministrat ion, Accounting.

BASU, AMIT. The University of Rochester Ph.D. 1986, 180
pages. Imprecise reasoning in intel l igent decision sup-
port systems. DAI v47(12), SecA, pp4439. University
Microf i lms Order Number ADG87-08218. Business Ad-
ministration, Management.

CHAPMAN, BRUCE LEROY. The University of Texas at Aus-
tin Ph.D. 1986, 585 pages. KISMET: a knowledge-based
system for the simulation of discrete manufacturing
operations. DAI v47(12), SecA, pp4440. University
Microf i lms Order Number ADG87-05977. Business Ad-
ministrat ion, Management.

ZACARIAS, PRUDENCE TANGCO. Purdue University Ph.D.
1986, 148 pages. A scr ipt-based knowledge represen-
tat ion for intel l igent office information systems. DAI
V48(01), SecA, pp174. University Microf i lms Order
Number ADG87-09879. Business Administrat ion,
Management.

ALOIMONOS, JOHN. The University of Rochester Ph.D.
1987, 261 pages. Computing intrinsic images. DAI
V48(01), SecB, pp183. University Microfi lms Order
Number ADG87-09482. Computer Science.

CHEN, JENN-NAN. Northwestern University Ph.D. 1987, 137
pages. Verification and translation of distr ibuted com-
puting system software design. DAI V48(01), SecB,
pp184. University Microf i lms Order Number
ADG87-10326. Computer Science.

CHRISTENSEN, MARGARET H. Temple University Ph.D. lg87,
276 pages. Explanation generation from algebraic
specif ication through hyperresolut ion and demodula-
tion: automated heuristic assistance. (Volumes I and
II). DAI V48(02), SecB, pp493. University Microfi lms
Order Number ADG87-11310. Computer Science.

DEBRAY, SAUMYA KANTI. State University of New York at
Stony Brook Ph.D. 1986, 246 pages. Global opt imiza-
t ion of logic programs. DAI v47(12), SecB, pp4957.
University Microfi lms Order Number ADG87-07050.
Computer Science.

ETHERINGTON, DAVID WILLIAM. The University of British
Columbia (Canada) Ph.D. 1986. Reasoning wi th incom-
plete information: investigations of non-monoton ic
reasoning. DAI V48(01), SecB, pp185. This item is not
available from University Microf i lms International
ADG05-60031. Computer Science.

FREDERKING, ROBERT ERIC. Carnegie-Mel lon University
Ph.D. 1986, 173 pages. Natural language dialogue in an
integrated computational model. DAI V48(01), SecB,
pp186. University Microf i lms Order Number
ADG87-09383. Computer Science.

FRISCH, ALAN MARK. The University of Rochester Ph.D.
1986, 127 pages. Knowledge retrieval as specialized
inference. DAI v47(12), SecB, pp4957. University
Microfi lms Order Number ADG87-08227. Computer
Science.

GUPTA, ANOOP. Carnegie-Mellon University Ph.D. 1986,
264 pages. Parallelism in product ion systems. DAI
v47(12), SecB, pp4959. University Microfi lms Order
Number ADG87-02889. Computer Science.

SIGART Newsletter, October 198"7, Number 102 Page 23

