The variety of issues covered in this volume (fuzzy
reasoning, multi-criteria decision making, propositional
formalisms, dynamic game theory pattern recognition, as
well as the more traditional expert systems, Al, etc.) make
it unsuitable for low-level pedagogic use. It would be ap-
propriate for an advanced seminar covering the frontiers
of applications of Al in economic and managerial domains,
but its primary use is more likely to be for those conduct-

ing research in the field. | infer that the workshop on
which this volume is based has been heid previously, and 1
get the sense that similar workshops will be held in the
future. Thus, this volume represents a thirty-three facet
snapshot of the state-of-the-art at one point in time. It is
as such a valuable record.

ARTICLES

ARRAYS AND ASSIGNMENT IN PROLOG

William G. Wong

Logic Fusion inc.

1333 Moon Drive

Yardley, PA 19067

(215) 736-2463

Conventional Prolog implementions support dynamic
update of the data base using assert and retract. Changes
to the data base allow global information to be shared
throughout various parts of a program. The advantage is
quick access to information which would otherwise be ex-

changed using shared Prolog variables.

The use of assert and retract is not recommended as
a general data manipulation tool because of the overhead
of adjusting various data base links. Using normal vari-
ables is fine as long as a single value needs to be ex-
changed. However, there are a number of instances where
multiple values need to be exchanged and only the most
recent value is of interest. This is essentially the assign-
able variable found in conventional languages.

The proposal presented here uses the concept of as-
signable variables and shows how it can be implemented,
granted not in the most efficient fashion. The idea is that
a single parameter is able to pass the information among
various components of a program. The idea is identical to
infinite streams in Concurrent Prolog except that the
stream can only be accessed as a variable or its latest
value. The code to implement this in conventional Prolog
is:

new var ([V:_1V)

get_ var { [V : Tail |, V) :- var (Tail), t. get_var ([_:
Tail], V') :- get_var (Tail, V).

setvar (N, V):-var (N), !, N=[V: _] setvar (I
_:Tail |, V) :- set_var (Tail, V).

A new variable is essentially a list whose last element
before the uninstantiated tail of the list is the current
value. One functor is provided to create new variables
while two others set and access the variables. An ef-
ficient implemention would only keep track of the latest
value.

Arrays are in the same class as assignable variables.
A special functor is necessary to allocate the arrays and
access the necessary elements. Arrays and assignable
variables are not really as foreign to Prolog as some
would like them to be. it is really a matter of efficient im-
piementation.

SIGART Newsletter, October 1987, Number 102

Automatic Menu Generation

Steve Cousins
Center for Intelligent Computer Systems
Department of Computer Science
Washington University
St. Louis, MO 63130
shc@wucs1.UUCP

This note describes a very simple modification to
Prolog’s Definite Clause Grammar! (DCG) formalism which
allows a menu system with the flavor of Texas
Instruments’ NLMenus? to be easily implemented.

Introduction

A language for interfacing with a computer program
may be as simple as a command language or as complex
as a subset of a natural language. In either case, a gram-
mar for this language captures in a concise way all of the
sentences in the language, and is fundamentally
knowledge about that language. Compiler writers are well
aware of the value of a grammar in interpreting input to a
computer. This same information about the language can
be used on the other end of the communications channel
to assist the user in creating valid sentences in the
program’s input language. This note describes a technique
for building a menu interface in Prolog automatically, given
the grammar for a language.
The Next set

To build a menu interface to a language, it is neces—
sary to know what the "next words” possible are at any
point in a sentence. This set of "next words” is called the
Next set. A menu interface simply displays the Next set at
each point in a parse and allows the user to choose one
member of the set. Initially, the Next set is the set of
words which may occur as the first word of any sentence
in the language. When one of these is chosen, the Next
set for that one-word prefix is the set of second words in
the set of sentences beginning with the chosen first word.
In general, after a valid prefix of n words has been chosen,
the set of all (n+1)th words that, when appended to the
first n words forms a prefix of a valid sentence, is called
the Next set, and is placed in a menu.

The method just described is essentially the basic
concept behind Texas Instruments’ NLMenus. A choice is
made from a menu, and then another menu becomes ac-
tive based on the first choice. This continues until a com-
plete sentence has been chosen.

Having the Next sets at each point in the parse of a
sentence is also useful in command interfaces. If a user is
typing and the parser has a relatively small set of legal
words, it can assist the user as she types by informing her

Page 21

http://crossmark.crossref.org/dialog/?doi=10.1145%2F36970.36972&domain=pdf&date_stamp=1987-10-01

immediately of an error, listing the next legal words if she
requests them, or even attempting to correct simple mis~
takes for her in the spirit of Xerox's DWIM (Do What |
Mean)3

In his dissertation, Masaru Tomita of CMU pointed out
that the above interface advantages can be had in parsers
which are strictly left~to-right* Fortunately, when Prolog’s
proof procedure is used as a parser for DCGs, the parsing
is, in fact, left to right. The next section describes a
modification to the internals of the Definite Clause Gram-
mar mechanism to calculate the Next set in Prolog.
Calculating the Next set in Prolog

The Definite Clause Grammar (DCG) mechanism of
Prolog is a translator from a grammar syntax to Prolog
predicates. DCGs handle terminals by translating them
into calls to a special predicate called “¢” (“connects”). By
carefully redefining the “c” operator® it is possible to cal-
culate the Next sets. The connects operator, ¢, is defined
simply as:

c([w|S1w.S).
This definition reads: “if the head of the first argument
matches the second argument, succeed, and return the tail
of the first argument as the third argument.” If the match
fails, the predicate fails.

Based on Prolog’s backtracking, we can redefine ¢ to
keep track of the Next set, the set of words which can fol-
low a legal prefix such that there exists a suffix that, when
concatenated onto the prefix and the element from the
next set, the resulting sentence is in the language.

Normally, ¢ either succeeds or fails based on whether
or not W is the head of the incoming list. This is based
on the assumption that the entire input sentence is passed
as the first argument. If the first argument is only a prefix
of a sentence however, in parsing that string Prolog will at
some point fail because legal words in the language are
attempted to be matched against empty input. Whenever
this happens, W is a word that should be a member of the
Next set. W should be added to the Next set, but ¢ should
fail the test so that other words in the set “farther down
the grammar” (since we are depending on Prolog’s par-
ticular parsing mechanism for DCG’s) can be found.

Assuming the predicate save(W) saves W to the Next

set, the new definition of the ¢ operator is as follows:
c([lw.[]) :- save(W)fail.
c([w|S1W,S).

Notice that the second line of the definition is just the
original definition of ¢, and that the first line never suc-
ceeds. The new line of the definition is only active in the
case described above.

The definition of save can be a simple assert, since
facts asserted are not retracted during backtracking. Save
is defined as:

save(W) :— assert(next(W)).
If the relation next is empty before attempting to parse a
sentence with a DCG (i.e. next(X) would fail), next will
contain all of the words in the Next set when the parse
has completed (and failed).

Using this mechanism

A simple recursive program implements the interface
described above. The predicate menu(L,W) is assumed to
take a list of words to be in the menu L and return the
word chosen, W. The predicate get sent(Sent) returns a
sentence in some grammar through Sent. We assume the
grammar starts with the non-terminal s. Recall that in
trying to prove s, the DCG mechanism will automatically
make calls to ¢ as terminal symbols are reached. The fol-
lowing program implements get sent:

SIGART Newsletter, October 1987, Number 102

get_sent(Sent) :- get_sent([],Sent).

get_sent(Prefix,Prefix) :-
no_nexts,
s(Prefix,[]).

get_sent(Prefix,Sent) :-
setof(X,next(X),Menu),
menu(Menu,Word),
append(Prefix,[Word],NewPrefix),
get_sent(NewPrefix,Sent).

no_nexts :- retract(next(X)),fail.
no_nexts.
Example

A very simple example may help to demonstrate the
use of this technique. Consider a DCG for a language with
6 sentences:

s -=> dog_name, dog_action.
s -=> boy_name, boy_action.
boy _name --> [john].
dog_name --> [roverl.
boy_action --> [yelis].
boy_action --> action.
dog_action -~> [barks].
dog_action —-> action.
action --> [runs].

action --> [hides].

Using the new definition of ¢ and the definition of
get_sent, this grammar produces two menus automati-
cally. The first contains the set [john,rover] and the
second contains three actions, depending on the choice
from the first menu. The menu predicate used in this ex-
ample simply displays the set as a list and accepts a
member of the list from the keyboard; in actual use of this
system, the menu predicate might allow the choice to be
made from a mouse, from function keys, etc.

| ?- get_sent(X).
Choose one:
[john,rover]

| john.

Choose one:
[hides,runs,yells}
| runs.

X = [john,runs]

| ?- get_sent(X).
Choose one:
[john,rover]
|: rover.
Choose one:
[barks,hides,runs]
|: barks.
X = [rover,barks]
Conclusions

The Next set is useful in building menu interfaces to
programs. It can be calculated in Prolog with a one-line
addition to the existing implementation of the Definite
Clause Grammar formalism. Although the Next set ap-
proach does not solve all problems in the interface area, it
demonstrates the usefulness of using input language
grammars to automatically generate program interfaces.
There are languages in which this technique may prove
awkward, such as when some or all of the Next sets are
very large. With care, however, the Next set can be useful
in quickly implementing powerfu! interfaces using Prolog’s
DCG mechanism.
Notes

1 .
W.F. Clocksin & C.S. Mellish, Programming in Prolog
Chapter 9, Springer-Verlag, 1981. o '

Page 22

2Texas Instruments, Explorer Natural Language Menu
System User's Guide, 1985.

3xerox, Interlisp-D Reference Manual, Volume 2:
Environment, 1985.

4Masaru Tomita, “An Efficient Context-free.Parsing Al-
gorithm for Natural Languages and its Appllcattons,_ Com-
puter Science Dept. Report, Carnegie-Mellon University,
May 1985.

Ssince ¢/3 is a predefined operator in most Prolog
implementations, redefining it may not be easy. .The ex—
ample here was done in a version'of C—Pro!qg with the ¢
operator unlocked so that its original definition .coul.d be
retracted. Thanks to Guillermo Simari for unlocking l.t for
me. f c/3 cannot be unlocked, the Next set couid §t|l| be
calculated by defining a new DCG operator exactly like the
old one, but with a different symbol (like ==?) and a dif-
ferent definition of connects. This is easy, since the code
for DCGs is in Clocksin & Mellish.

SELECTED AI-RELATED DISSERTATIONS

Assembled by:
Susanne M. Humphrey
National Library of Medicine
Bethesda, MD 20894
and
Bob Krovetz
University of Massachusetts

Amherst, MA 01002

The foliowing are citations selected by title and
abstract as being related to Al, resuiting from a computer
search, using the BRS Information Technologies retrieval
service, of the Dissertation Abstracts International (DAI)
database produced by University Microfilms International.

The online file includes abstracts, which are not
published in this listing, but the citations below do include
the DAI reference for finding the abstract in the published
DAI. Other elements of the citation are author; university,
degree, and, if available, number of pages; title; UM order
number and year—-month of DAI; and DAl subject category
chosen by the author of the dissertation. References are
sorted first by the initial DAl subject category and second
by the author. In addition the database includes masters
abstracts, denoted by MAI (Masters Abstracts International)
instead of DAl as the reference to the abstract in the
published MAL.

Unless otherwise specified, paper or microform copies
of dissertations may be ordered from University Microfilms
International, Dissertation Copies, Post Office Box 1764,
Ann Arbor, Ml 48106; telephone for U.S. (except Michigan,
Hawaii, Alaska): 1-800-521-3042, for Canada:
1-800-268-6090. Price lists and other ordering and ship-
ping information are in the introduction to the published
DAI.

SCHMOLDT, DANIEL LEE. The University of Wisconsin -
Madison Ph.D. 1987, 232 pages. Evaluation of an expert
system approach to forest pest management of red
pine (Pinus resinosa). DAl Vv48(02), SecB, pp314.
University Microfilms Order Number ADG87-08112.
Agriculture, Forestry and Wildlife.

SIGART Newsletter, October 1987, Number 102

MARCHANT, GARRY ALLEN. The University of Michigan
Ph.D. 1987, 184 pages. Analogical reasoning and error
detection. DAl V48(02), SecA, pp432. University
Microfilms Order Number ADG87-12168. Business Ad-
ministration, Accounting.

BASU, AMIT. The University of Rochester Ph.D. 1986, 180
pages. Imprecise reasoning in intelligent decision sup-
port systems. DAl v47(12), SecA, pp4439. University
Microfilms Order Number ADG87-08218. Business Ad-
ministration, Management.

CHAPMAN, BRUCE LEROY. The University of Texas at Aus-
tin Ph.D. 1986, 585 pages. KISMET: a knowledge-based
system for the simuiation of discrete manufacturing
operations. DAl v47(12), SecA, pp4440. University
Microfilms Order Number ADG87-05977. Business Ad-
ministration, Management.

ZACARIAS, PRUDENCE TANGCO. Purdue University Ph.D.
1986, 148 pages. A script-based knowledge represen-
tation for intelligent office information systems. DAl
V48(01), SecA, ppl74. University Microfiims Order
Number ADG87-09879. Business Administration,
Management.

ALOIMONQS, JOHN. The University of Rochester Ph.D.
1987, 261 pages. Computing intrinsic images. DAl
V48(01), SecB, pp183. University Microfilms Order
Number ADG87-09482. Computer Science.

CHEN, JENN-NAN. Northwestern University Ph.D. 1987, 137
pages. Verification and translation of distributed com-
puting system software design. DAI V48(01), SecB,
pp184. University Microfitms Order Number
ADG87-10326. Computer Science.

CHRISTENSEN, MARGARET H. Temple University Ph.D. 1987,
276 pages. Explanation generation from algebraic
specification through hyperresolution and demoduia-
tion: automated heuristic assistance. (Volumes | and
). DAl Vv48(02), SecB, pp493. University Microfiims
Order Number ADG87-11310. Computer Science.

DEBRAY, SAUMYA KANTI. State University of New York at
Stony Brook Ph.D. 1986, 246 pages. Global optimiza-
tion of logic programs. DAl v47(12), SecB, pp4957.
University Microfilms Order Number ADG87-07050.
Computer Science.

ETHERINGTON, DAVID WILLIAM. The University of British
Columbia (Canada) Ph.D. 1986. Reasoning with incom-
plete information: investigations of non-monotonic
reasoning. DAl v48(01), SecB, pp185. This item is not
available from University Microfilms International
ADGO05-60031. Computer Science.

FREDERKING, ROBERT ERIC. Carnegie-Melion University
Ph.D. 1986, 173 pages. Natural language dialogue in an
integrated computational modei. DAl V48(01), SecB,
pp186. University Microfilms Order Number
ADG87-09383. Computer Science.

FRISCH, ALAN MARK. The University of Rochester Ph.D.
1986, 127 pages. Knowledge retrieval as specialized
inference. DAl v47(12), SecB, pp4957. University
Microfiims Order Number ADG87-08227. Computer
Science.

GUPTA, ANOOP. Carnegie~Mellon University Ph.D. 1986,
264 pages. Parallelism in production systems. DAI
v47(12), SecB, pp4959. University Microfilms Order
Number ADG87-02889. Computer Science.

Page 23

