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Lisp is the second oldest  programming language 
in use today. I t  was treated as a special 
language for  AI appl icat ions u n t i l  the recent 
trend towards symbolic processing. The 
advantages of Lisp in processing symbols 
sometimes are outweighted by the i n e f f i c i e n t  
implementations. This paper presents a d i rec t  
executien approach in implementing Lisp. The 
concept of  d i rec t  execution is explained. The 
Lisp execution environment is analyzed. The ce l l  
memery arch i tec ture  is presented as the 
e f f i c i e n t  so lu t ion for  d i rec t  execution Lisp. 
This memory s t ruc ture  reduces the number of b i t s  
required for  implementing garbage co l lec t ion  
algor i thm and the number of memory cycles for  
Lisp programs. Several examples are given to 
elaborate the d i rec t  execution concept and the 
advantages of  ce l l  memory. This d i rec t  execution 
Lisp machine has b u i l t - i n  funct ions such as 
i n te r rup t  and I /0  which are major funct ions for 
rea l - t ime app l i ca t ion .  

1. INTRODUCTION 

Lisp is the second oldest  programming language 
in use today. Unlike conventional programming 
languages, Lisp was designed for computing wi th 
symbolic expressions rather than numbers. In 
the 60's and 70's,  computers have been 
considered as number crunching machines. Some 
powerful computers emphasizing e f f i c i e n t  and 
para l le l  computation have been b u i l t  during that 
period. These machines t y p i c a l l y  execute 
ins t ruc t ions  in the range of hundreds of  m i l l i o n  
f l oa t i ng  point  operations per second. During 
the same period, Lisp was used p r imar i l y  by AI 
researchers. In the 80's,  computers have been 
treated not only as number crunchers but also as 
machines with i n te l l i gence .  This new role of  
computers creates the needs for  symbolic 
computing. With i t s  r ich  capab i l i t i es  in 
expressing information and processing l i s t s ,  
Lisp has emerged as one of the popular 
programming languages among both AI and non-Al 
programmers. 

I t  is apparent that  conventional computers are 
not e f f i c i e n t  for  symbolic processing. Star t ing 
from mid 70's, researchers in the area of  
computer arch i tec ture  begin t h e i r  pursu i t  of 
computing machines which are ideal for  symbol 
manipulat ion, in p a r t i c u l a r ,  executing Lisp. An 
experimental Lisp machine had been developed at 

Kobe Un ivers i ty  and Hitachi L td . ,  Japan 
[Taki79] .  This machine consists of  a Lisp 
processor module and shared main memory module 
connected to the UNIBUS of  DEC L S I - i i .  The Lisp 
processor is microprogrammable. There is a high 
speed stack for  l i s t  processing. Tag is used in 
th i s  system to d i s t i ngu ish  between three 
d i f f e ren t  data types. The NK3 Lisp machine, 
developed at Kyoto Un ivers i ty  [Naga79], also 
uses microcode, hardware stack, and the tagged 
data s t ruc ture .  The ALPHA machine which had 
been developed at the Fu j i tsu Labs [Haya83] uses 
a h igh ly  e f fec t i ve  stack which can support a 
value cache, a v i r t u a l  stack and high speed 
garbage co l l ec t i on  algor i thm for  v i r t u a l  memory. 
This hardware stack also supports high speed 
process switching in a mult i -process 
environment. 

At MIT several implementations of  Lisp had been 
carr ied out. The most notable ones are the 
SCHEF~E-79 chip [Suss81] and the SCHEME-81 system 
and chip [Bata82]. SCHEME is a subset of  Lisp. 
I t  uses lex ica l  scoping and allows 
t a i l - r e c u r s i o n .  The SCHEME chip implemented on 
a standard Von Neumann arch i tec ture  wi th 
microcode. I t  also uses stack and tag. The 
major impact of  SCHEME is that  the whole Lisp 
i n te rp re t i ng  environment is implemented on a 
chip. Several commercial companies adopted th is  
approach and produced Lisp machines. For 
example, Symbolics 3600 [Moon85] is the modified 
version of another MIT product, MIT Lisp machine 
[Bawd7g]. The LAMBDA machine from Lisp Machines 
Inc. uses a Lisp processor running a 20 MHz 
clock,  and a 32-b i t  word wi th 24-b i t  v i r t u a l  
address space. These machines a l l  have s im i la r  
arch i tec tures and implementations to that  of 
SCHEME chip. With the s im i l a r  implementation 
method and the advanced IC technology, the 
current  Lisp machines such as the Symbolics 
3610, the XEROX 1132, and the Texas Instrument 
Compact Lisp machine [Matt87] ,  are running 
fas ter  than-ever. Lisp has also been implemented 
on para l le l  computers such as Connection machine 
and Bu t t e r f l y  computer. Most of the Lisp 
processors were taking a conventional approach 
in t h e i r  a rch i tec ture  design. That i s ,  the 
implementation issues were f i r s t  f u l l y  analyzed, 
then %he proper hardware or software were 
designed to accommodate those time consuming, 
c r i t i c a l  issues. As a r e s u l t ,  a micro- level  
machine was designed as the core of  the system, 
extra stack and tagged data s t ruc ture  were used 
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to provide e f f i c ien t  execution environment for 
Lisp. Like a l l  the other programming languages, 
the execution of Lisp program requires two 
steps. F i rs t ,  Lisp programs are translated into 
low level machine code. Second, the machine 
code is executed by the hardware processor. 
Although some machine code has the same 
functions as those defined in Lisp, the whole 
execution process s t i l l  requires machine code 
translat ion before the program can run. I f  Lisp 
is the preferred language because of i ts  
ab i l i t i e s  in expressing and manipulating 
information, then any other languages wi l l  not 
be able to do the same things e f fec t ive ly .  The 
extra language translat ion may not only 
increases the processing time but also loses the 
advantages of the Lisp language. This paper 
presents a direct  execution approach for 
designing Lisp machine. Direct execution means 
the elimination of the machine code translat ion 
process. The notion of direct  execution language 
(DEL) has been presented in [Chu81]. I t  is 
understood that DEL is able to obtain direct  and 
ef fect ive support from i ts  architecture. 
However, i t  is not easy to find such a DEL. We 
would l ike to argue that for each given 
programming language i t  is possible to design an 
architecture which d i rec t l y  execute this 
language. This approach may not viable for 
general purpose processor, but, for dedicated 
processor, i t  becomes very a t t rac t ive .  In the 
following sections, we f i r s t  discuss the 
execution environment of Lisp. The concept of 
direct  execution is explained and i ts  
implementation method is presented. The cel l  
memory architecture is presented as the 
architecture for d i rect  execution Lisp machine. 
Several examples are used to demonstrate the 
advantages and the implementations. 

2. LISP EXECUTION ENVIRONMENT 

The process of executing Lisp program is one of 
interpretat ion.  This means that a complete Lisp 
l i s t  is composed or assembled and then presented 
for execution. I ts  results are then printed, 
and the process is done again on the next l i s t  
in the program. This in terpret ive process is an 
abstract fetch-execute cycle. Using Lisp i t s e l f  
to describe the process, the following Lisp 
statement is executed continuously: 

(PRINT (EVAL (READ)) ). 

This Lisp cycle has remarkable resemblance to 
the low level machine instruct ion cycle except 
the machine instruct ion becomes l i s t  or l i s t  of 
l i s t s .  One may ask, can we use Lisp as our 
assembly language? The answer is yes. However, 
because of the recursive nature of Lisp, a novel 
architecture is inevitable for the core 
processor. 

From the language theory perspective the 
processor is a sequential machine which 
recognizes i t s  own machine (assembly) language. 
The complexity or the power of the processor is 
manifested through i ts  machine language. I f  the 
machine language is of type O {regular) 
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language, then a f i n i t e  state (regular} machine 
is adequate for recognizing i t .  Fini te state 
machine is the simplest type of sequential 
machine. Most of the current general purpose or 
the micro level Lisp processors are of this 
type. Since Lisp or other high level 
programming language is subset of type I 
(context free~ language, a pushdown automaton is 
required for recognizing such language. A f i n i t e  
state machine plus a stack is able to mimic the 
operations of a pushdown automaton. A typical 
example is that when a Pascal program is 
executed, the micro level processor has to 
al locate stack or heap in order to do i t .  
Therefore, i f  Lisp is the assembly language, 
then the processor has to be a pushdown 
automaton or a f i n i t e  state machine with 
b u i l t - i n  stack. 

Recognizing or accepting a language is formally 
called parsing. The parsing process is s t ra ight  
forward for regular languages since the number 
of states involved may be as l i t t l e  as two 
states, fetch and execute. The parsing for 
context free languages is ncnt r iv ia l  at a l l .  
There are many parsing methods described in Aho 
and Ullman's book [Aho72]. The algorithm which 
is most suitable for programming languages and 
hardware implementation is called the syntax 
directed recursive decent algorithm. Detailed 
description about this algorithm is given in 
[Back79]. The hardware implementatiun uf this 
algori th~ on a stack based architecture for 
direct execution BASIC is reported in ESrid83]. 
Although the same design methodology is used in 
this paper for the direct  execution Lisp 
processor, the capabi l i t ies of manipulating l i s t  
structure makes this processor a unique one. 

I f  one takes away the "read" and "pr in t "  
functions which are analogous to the fetch cycle 
of a machine instruct ion,  then the execute cycle 
of Lisp is simply the function "eva]". As a 
matter of fact ,  "eva]" is the major function of 
any Lisp machine. The "read" and "pr in t "  
functions can be wri t ten in Lisp and executed by 
the eva] function. Consequently, the major 
e f fo r t  of a Lisp machine design is on designing 
an eval processor. 

3. IMPLEMENTATION ISSUES 

By taking the language directed design method, 
the f i r s t  task becomes specifying the grammar. 
The grammar for Lisp has f a i r l y  simple syntax. 
Nevertheless, the language is recursive and 
that makes i t  a context free language. A 
tentat ive version of the .grammar for I.isp is 
given in the following. I t  is expressed in BNF. 

< i n i t i a l  expression> ::= <expr> 
<expr> ::= n i l  I <atom> I < l is t> I<value> I 

<func> 
<atom> ::= <alphanumeric> I <alphanumeric> 

<atom> 
<l is t> ::= (<expr>) 
<value> ::= <numeric> I <numeric> <value> 
<func> ::= <lambda form> l<defined func> 



<lambda form> : : :  ((lambda (<parms>) <func l i s t> )  
<arg l i s t> )  

<parms> ::= <atom> I <atom> <parms> 
<func l i s t>  ::= <func> I <func> <func l i s t>  
<arg l i s t>  : : :  <exp> I <exp> <arg l i s t>  
<defined func> ::= (<atom> <arg l i s t> )  

In BNF, everything within the square brackets is 
nonterminal symbol. Otherwise, i t  is a terminal 
symbol which the machine can recognize. The set 
of terminal symbols is not shown here. They 
include the alphanumeric, the numeric, and the 
b u i l t - i n  functions. There are not too many 
rules in this grammar. But, i t  is highly 
recursive. For instance, the <atom> is used to 
define i t s e l f .  The nonterminal <func> includes 
the b u i l t - i n  functions and user supplied 
functions. With the language directed approach, 
i t  is very easy to add b u i l t - i n  functions such 
as interrupt  or I /0 operations. These functions 
are very d i f f i c u l t  to implement with the 
conventional design methodology. A microceded 
f i n i t e  state machine and a stack on RAN memory 
were used as the pushdown automaton to recognize 
the language generated by this grammar. After 
the successful recognit ion, the semantics 
associated with that function w i l l  be carried 
out by the hardware data path. In order to 
increase the performance the components of the 
data path should accommodate the semantics of 
Lisp. 

The major operations of Lisp are l i s t  handling 
processes. Since l i s t  is conveniently 
represented by linked l i s t  data structure, a 
large portion of Lisp functions simply 
manipulate pointers. This implies that a 
register  f i l e  is needed to f a c i l i t a t e  this type 
of operations. From the above grammar one can 
see that the basic item used in a Lisp program 
is the expression, or s-expression. The 
implementation of expression has deciding factor 
on the performance of the processor. Most  of 
the exist ing Lisp systems use the word-oriented 
memory structure. That is ,  a word plus tag bi ts 
are fetched at a time, then the type of the 
expression w i l l  be determined by the value in 
the tag. This arrangement creates extra memory 
access when fetching a l i s t .  A l i s t  can be 
represented by a CONS cel l  which has CAR and CDR 
pointers. Fetching these two pointers takes two 
memory reference cycles. In fact ,  accessing 
CONS cel ls is the primary operation in Lisp. I f  
the processor can accomplish the same task with 
less memory cycle, then i t  de f in i te l y  w i l l  have 
faster speed. The cell  memory structure is our 
solution to reduce memory cycle. 

The other issue in a l l  Lisp implementations is 
the memory management, or sometimes referred to 
as the garbage col lect ion (GC). In the word 
oriented memory system, most of the GC 
algorithms require certain number of bi ts 
allocated for each word to store information 
such as colors, mark f lag,  or reference count. 
In the cell memory system, the GC information is 
associated with each cell  which has several 
words instead of with each word. This means the 
amount of bi ts required to support a given 

garbage col lect ion algorithm is less in the cel l  
memory system. Also the number of garbage 
col lect ion cycles becomes less when col lect ing 
the same number of words. I t  is believed that 
the cel l  memory is better suited than the 
word-oriented memory system for Lisp execution 
environment. 

4. CELL MEMORY ARCHITECTURE 

The expression as ~efined in the grammar could 
be an atom, a l i s t ,  a function, a numeric value, 
or n i l .  The cel l  structure should be able to 
express al l  of them. In our design, each cell  
has the same width of 120 b i ts .  There are four 
d i f ferent  type of cel ls which can be d i s t i n -  
guished by two bi ts in the ce l l .  The four cel l  
types and the i r  functions are outl ined below: 

. ROOT cell  
This cel l  is used in conjunction with 
the ATOM cell  to make up an atom. This 
cell holds a pointer to a corresponding 
ATOM ce l l ,  along with pointers point to 
l i s t s  which are used by the garbage 
col lector .  

2. ATOM cell  
A complete atom is formed by using this 
cel l  along with the root ce l l .  This 
cel l  also holds pointers to the atom's 
function, value, property l i s t ,  and 
pr in t  name. The reason for using two 
cel ls to represent one atom is because 
of the size l im i ta t ion  of the ce l l .  With 
120 b i ts ,  there are not enough space to 
store pointers to the four at t r ibutes of 
the atom and the l i s t s  for garbage 
col lector .  

. CONS cell  
This is the basic Lisp cel l  which holds 
the CAR and CDR pointers. I t  also has 
pointers for the garbage col lector .  

4. VALUE cell  
This cel l  is pointed to by the pr in t  
name of an atom. I t  is designed to hold 
an integer, f loat ing point number, or a 
str ing of i0 characters along with 
pointers for the garbage col lector .  
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Each cel l  type consists of two 32-bi t  words, two 
24-bit  words, two 2- b i t  tags, and one 4-b i t  
f i e ld .  The f i r s t  four words are used as address 
pointers. The other 8 b i ts  are used to 
dist inguish cel l  type, the color of the ce l l ,  
and the states of the garbage col lector .  

The four words within each cel l  are address 
f ie lds .  They are pointers labeled as follows: 

1. ROOT ce l l :  CAR, CDR, SP, I USE. 
2. ATOM ce l l :  NAME, VALUE, FUNC, PROP. 
3. CONS ce l l :  CAR, CDR, SP, I USE. 
4. VALUE ce l l :  LSW, MSW, EXW,-I USE. 



The SP and I USE pointers keep track of the 
stack and the ~n-use l i s t .  One of the advantages 
of the language directed design methodology is 
the creation of a real-time environment by 
introducing interrupt and I/O functions into the 
language. However, the garbage collection 
algorithm has to be real-time in order to 
maintain this advantage. With garbage collector 
running in parallel i t  is possible to provide a 
transparent GC. But, this approach greatly 
increases the hardware complexity. We choose an 
incremental sequential GC which is a mark and 
sweep algorithm simTlar to the one proposed by 
steel [Stee75]. The SP and I USE fields on each 
cell were added in order-to implement the 
incremental GC. The detailed operations of the 
garbage collector on the cell memory are 
reported by Hoover [Hoov87]. The CAR and CDR 
pointers are used as defined in Lisp. The value 
cell allows the storage of non-address data. I t  
only has one I USE pointer for garbage 
collector. The f i ~ t  two 32-bit words are the 
least and the most significant 32-bit words. EXW 
represents the extended 24-bit word. The f i r s t  
three words together can be used to hold a 
standard floating point number. The main 
purpose of the value cell is for I/O operations 
and data type representations such as fixnum, 
flonum, and string. 

Figure I shows the representation of an atom 
which is both a variable and a function. The 
atom is stored in the OBLIST which is a linked 
l i s t .  I t  takes a pair of ROOT cell and ATOM cell 
to represent one atom. In this example, the 
print name of this atom is X, so the NAME 
pointer of the ATOM cell is pointing to a CONS 
cell whose CAR pointer points to a VALUE cell 
with character X. Similarly, the VALUE pointer 
of the ATOM cell points to a CONS cell which 
provides a l i s t  (5 10.5) as the value. VALUE 
cells have been used to hold an integer 5 and a 
floating point number 10.5. The FUNC pointer of 
the ATOM cell also points to a CONS cell whose 
CAR pointer points to a lambda form of the 
function. The lambda form basicly involves 
similar structure as an atom. 

oblist ~ ROOT 
I~III I I I the rest of oblist 

ATOM 

~CONS bW CONS lambda form 
l , l  I I 1 I ,  I -~ I  [ I 

J~ VALUE i VALU~E CONS 
I×L I i i Isl I i I [~t/1 t I 

VALUE 

Figure 1. Representation of an ATOM. 

(LAMBDA (A) (CAR A)) 

CONS CONS CONS 

CONS CONS CONS 
LAMBDA /~ ~i I ] [ ~ I[I I~I I h / ' q ~  ~ 1 J 

A CAR A 

Figure ~. LAMBDA form representation. 

An example representation of the function "head" 
is demonstrated in Figure 2. "head" is defined 
as the CAR of a l i s t .  Lambda form is used as the 
internal representation of a function. The 
lambda form of function "head" is (LAMBDA (A) 
(CAR A)). This form is represented by three 
linked CONS cells. The CAR pointer of the f i r s t  
CONS cell points to an atom structure which is 
not shown here. This atom structure contains the 
build-in function LAMBDA. The CAR pointer of 
the second CONS cell points to an atom which has 
the print name A. The last CONS cell has i ts 
CAR points to another CONS cell which contains 
the l i s t  (CAR A). Its CDR pointer becomes nil to 
signify the end of the l i s t .  The CDR pointers of 
the f i r s t  two CONS cells are used to complete 
the linked l i s t .  

When a Lisp statement such as (SETQ FLG X) is 
entered into the system, the responses from the 
ce l l  memory is described in Figure 3. F i r s t ,  
the Lisp statement is represented by three CONS 
ce l l s  on the top of  the Figure. The CAR pointers 
of  these three ce l l s  point  to three atoms, SETQ, 
FLG, and X. SETQ is a b u i l d - i n  funct ion whi le 
the other two atoms have t h e i r  atom st ructures 
which include ROOT and ATOM ce l l s .  Before 
executing the statement, the VALUE poin ter  of 
the ATOM ce l l  for  FLG may not be used or points 
to other value. Af ter  the execut ion, th i s  
po inter  points to the value of X. I f  X is known 
as in Figure i ,  t h i s  po in ter  w i l l  be po in t ing to 
the CONS ce l l  which has a l i s t  (5 10.5) as i t s  
value. 

(SETQ FLG X) 
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CONS CONS CONS 

SETQ (atom) FIG (atom) X (atom) 

\ 
I ROOT value of X 
I, i i I / 

I ATOM / 
'  i_Z/ 

Figure 3. Example of function execution. 



5. SYSTEM ARCHITECTURE 

The block diagrams of  the d i rec t  execution Lisp 
processor and the ce l l  memory is presented in 
Figure 4. The Lisp processor in th i s  f igure  
includes a microcode storage and a spec ia l l y  
designed chip which has 16 in terna l  reg is ters  
for  fast  pointer  operat ions. The schematic 
diagram of the data path un i t  is shown in Figure 
5. Besides the microprogrammable con t ro l l e r  and 
the ALU u n i t ,  the 16 32-b i t  reg is ters  occupied 
most of  the chip. The ce l l  memory consists of 
four modules for  the pointer /data f i e l d s ,  and 
8 - b i t  f i e l d  for  tag, co lor ,  and the state of the 
garbage co l l ec to r .  Each ce l l  is referenced by 
one address. There are other control  b i t s  from 
the Lisp processor to select  the modules w i th in  
the c e l l .  

The operation of the system is bet ter  understood 
with an execution example. In the fo l lowing is 
the l i s t  of microcode, in i t s  mnemonics form, 
for  the b u i l d - i n  funct ion,  CAR. 

carcmd: 
readcdr(cur rp t r ,  c u r r p t r ) ;  / *get  the 

argument l i s t * /  
i f n o t n i l ( c u r r p t r ) ;  

jump(carcmdl); 
jump(reperr) ;  

carcmdl: 
r eadca r ( cu r rp t r , cu r rp t r ) ;  / *get  

argument*/ 
eval ;  / *evaluate the argument*/ 
i f n o t n i l ( c u r r p t r ) ;  

jump(carcmdE); 
jump(ex i teva l ) ;  

carcmd2: 
l a t chaddr (cu r rp t r ) ;  
ontag; 

t jump( jaer ror ) ;  / *  atom * /  
tjump(carcmd3); / *  root * /  
tjump(carcmd4); / *  cons * /  

SOURCE B 

B BUS / s%cE 
DESTINATION[ 1 

Des.z_9___ SELECT H 

I 

G- i 
[ . . . . . . .  

0~'.' 

US I.__ t CONTROLLER 
BUS iNTERFACE 1 

SIXTEEN 
32 - BIT REGISTERS 

32 - BIT / 
ALU AND 
REGISTER 

~__ PAD REGISTER F -- AND INTERFACE 

32 IIO PADS 

BUS 

l 

SOURCE A 

A BUS 
SOURCE. 

AND 
3ESTiNAT;ON 

SELECT OEST A 

Figure 5. The schematic of the data path un i t  

COUT 

carcmd3: / *  value * /  
f i n i sh read ;  
s e t n i l ( c u r r p t r ) ;  
jump(reperr) ;  

carcmd4: 
f in i sh read ;  
r eadca r ( cu r rp t r , cu r rp t r ) ;  
jump(ex i teva l ) ;  

41 
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M~Y 
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ltESEI 
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MEMORY AOORESS 

I - - - 1 [ - - I F -  
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Figure 4. The Lisp system wi th ce l l  memory. 
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This microcode sequence is part of the recursive 
EVAL cycle since the main function of the 
processor is to do oval. At the beginning of 
EVAL cycle, the address of a l i s t  structure is 
put in a register called currptr. At the end of 
the cycle, this register wi l l  contain the 
address of the resulting value. The above micro 
sequence wi l l  be invoked once the processor 
recognizes the f i r s t  element in the current l i s t  
is the function CAR. So the f i r s t  statement is 
to fetch the argument l i s t  by reading in, from 
the same memory cel l ,  the CDR pointer of the 
current l i s t  and puts i t  into the register 
currptr. Several tests are conducted following 
the f i r s t  statement. They include the testing 
for empty argument l i s t ,  testing for the result 
n i l ,  and the testing for the proper cell type 
that the argument l i s t  should have. Under the 
carcmdl section, the function eval is called in 
order to evaluate the argument. Different type 
of errors wi l l  be reported as the carcmd2 
indicates. At the completion of the CAR 
operation, the CAR pointer of the argument l i s t  
is returned into the register currptr. The 
operation, exiteval, involves the internal stack 
operation, POP. What POP does is to restore the 
previous level of the nested EVAL cycle. This 
means a lot of information has to be retrieved. 
In our current implementation, POP operation has 
17 memory references to pointers. With the cell 
memory structure, we on7y need to set up the 
address 5 times. The other 12 memory references 
are to the different modules within the same 
ce77. Similar speed up occurs in the internal 
PUSH operation. 

Since the I/0 and the interrupt are built into 
the language, the Lisp processor is able to 
communicate with I/O devices and even a math 
coprocessor through i ts address and data buses. 
This unique feature allows this Lisp processor 
to be applied to a rea7-time control 
environment. 

6. CONCLUDING REFiARKS 

Direct execution of a programming language 
eliminates the process of intermediate code 
translation. This design methodology was 
examp7ified through the design of the Lisp 
processor. The print- eval-read loop of the 
Lisp language makes i t  a suitab7e candidate for 
direct execution. A microcoded f in i te  state 
machine and the internal stack provide the 
capabilities to recognize Lisp. The precised 
syntax of Lisp has been defined, and a 
s imp l i f i ed  version of  the grammar was reported 
in th is  paper. Cell memory arch i tec ture  was 
presented as an e f f i c i e n t  memory s t ruc ture  for  
the d i rec t  execution Lisp, I t  reduces the extra 
b i ts  overhead for  the garbage co l lec t ion  and the 
overall memory cycles required for Lisp 
processing. The uniform size of the cell memory 
allows the memory manager not to worry about the 
d i f f icu l t ies  caused by cells of various sizes. 
The Lisp processor chip which performs recursive 
decent interpretation algorithm has been 
designed and fabricated. A prototype system has 
been assembled. An IBM PC was used as the 

testing bed. The microcode which covers a subset 
of functions from Common Lisp has been designed 
and is currently under testing. Although i t  is 
not easy to address the performance issue 
between different Lisp machines, we believe our 
Lisp machine should have better performance. As 
a rough estimate, the average eval operation may 
take 800 to 900 clock cycles. With a 2 MHz 
c7ock, this translates into about 2200 to 2500 
eval cycles per second. This is the performance 
with non-optimized microcode. With the 
technique such as late binding we can greatly 
improve the number of clock cycles required for 
each eval operation. Besides having the faster 
processing speed, this Lisp machine has bui l t - in  
interrupt and I/0 functions which open the gate 
for real-time app7ication. 
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