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Abstract:

Lisp is the second oldest programming language
in use today. It was treated as a speciai
Tanguage for Al applications until the recent
trend towards symbolic processing. The
advantages of Lisp 1in processing symbols
sometimes are outweighted by the inefficient
implementations. This paper presents a direct
execution approach in implementing Lisp. The
concept of direct execution is explained. The
Lisp execution envircnment is analyzed. The cell
memory architecture is presented as the
efficient solution for direct execution Lisp.
This memory structure reduces the number of bits
required for implementing garbage collection
algorithm and the number of memory cycles for
Lisp programs. Several examples are given to
elaborate the direct execution concept and the
advantages of cell memory. This direct execution
Lisp machine has built-in functions such as
interrupt and I/0 which are major functions for
real-time application.

1. INTRODUCTION

Lisp is the second oldest programming language
in use today. Unlike conventional programming
Janguages, Lisp was designed for computing with
symbolic expressions rather than numbers. In
the 60's and 70's, computers have been
considered as number crunching machines. Some
powerful computers emphasizing efficient and
parallel computation have beer built during that
period. These machines typically execute
instructions in the range of hundreds of million
floating point operations per second. During
the same period, Lisp was used primarily by AI
researchers. In the 80's, computers have been
treated not only as number crunchers but also as
machines with intelligence. This new role of
computers creates the needs for symbolic
computing. With its rich capabilities in
expressing information and prccessing lists,
Lisp has emerged as one of the popular
programming languages among both AI and non-Al
programmers.

It is apparent that conventional computers are
not efficient for symbolic processing. Starting
from mid 70's, researchers in the area of
computer architecture begin their pursuit of
computing machines which are ideal for symbol
manipulation, in particular, executing Lisp. An
experimental Lisp machine had been developed at

Kobe University and Hitachi Ltd., Japan
[Taki79]. This machine consists of a Lisp
processor module and shared main memory module
connected to the UNIBUS of DEC LSI-11. The Lisp
processor is microprogrammable. There is a high
speed stack for list processing. Tag is used in
this system to distinguish between three
different data types. The NK3 Lisp machine,
developed at Kyoto University [Naga79], also
uses microcode, hardware stack, and the tagged
data structure. The ALPHA machine which had
been developed at the Fujitsu Labs [Haya83] uses
a highly effective stack which can support a
value cache, a virtual stack and high speed
garbage collection algorithm for virtual memory.
This hardware stack also supports high speed
process switching in a multi-process
environment.

At MIT several implementations of Lisp had been
carried out. The most notable ones are the
SCHEME-79 chip [Suss81] and the SCHEME-81 system
and chip [Bata82]. SCHEME is a subset of Lisp.
It uses lexical scoping and allows
tail-recursion. The SCHEME chip implemented on
a standard Von Neumann architecture with
microcode. It also uses stack and tag. The
major impact of SCHEME is that the whole Lisp
interpreting environment 1is implemented on a
chip. Several commercial companies adopted this
approach and produced Lisp machines. For
example, Symbolics 3600 [Moon85} is the modified
version of another MIT product, MIT Lisp machine
[Bawd79]. The LAMBDA machine from Lisp Machines
Inc. uses & Lisp processor running a 20 MHz
clock, and a 32-bit word with 24-bit virtual
address space. These machines all have similar
architectures and implementations to that of
SCHEME chip. With the similar implementation
method and the advanced IC techrology, the
current Lisp machines such as the Symbolics
3610, the XEROX 1132, and the Texas Instrument
Compact Lisp machine [Matt87], are running
faster than-ever. Lisp has also been implemented
on parallel computers such as Connection machine
and Butterfly computer. Most of the Lisp
processors were taking a conventional approach
in their architecture design. That is, the
implementation issues were first fully analyzed,
then the proper hardware or software were
designed to accommodate those time consuming,
critical issues. As a result, a micro-level
machine was designed as the core of the system,
extra stack and tagged data structure were used
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to provide efficient execution environment for
Lisp. Like all the other pregramming languages,
the execution of Lisp program reguires two
steps. First, Lisp programs are translated into
low level machine code. Second, the machine
code is executed by the hardware processor.
Although some machine <code has the same
functions as theose defined in Lisp, the whole
execution process still requires machine code
translation before the program can run. If Lisp
is the preferred language because of its
abilities in expressing and manipulating
information, then any other languages will not
be able to do the same things effectively. The
extra language translation may not only
increases the processing time but also Toses the
advantages of the Lisp language. This paper
presents a direct execution approach for
designing Lisp machine. Direct execution means
the elimiration of the machine code translation
process. The riotion of direct execution language
(DEL) has been presented in [Chu8ll. It s
understood that DEL is able tc obtain direct and
effective support from its architecture.
However, it is not easy to find such a DEL. We
would like to argue that for each given
programming language it is possible to design an
architecture which directly execute this
language. This approach may not viable for
gerieral purpose processor, but, for dedicated
processor, it becomes very attractive. In the
following sections, we first discuss the
execution environment of Lisp. The concept of
direct execution is explained and its
implementation method 1is presented. The cell
memory architecture is presented as the
architecture for direct execution Lisp machine.
Several examples are used to demonstrate the
advantages and the implementations.

2. LISP EXECUTION ENVIRCNMENT

The process of executing Lisp program is one of
interpretation. This means that a ccmplete Lisp
1ist is composed or assembled and then presented
for execution. Its results are then printed,
and the process is done again on the next list
in the program. This interpretive process is an
abstract fetch-execute cycle. Using Lisp itself
to describe the process, the fcllowing Lisp
statement is executed continucusly:

(PRINT (EVAL (READ) ) ).

This Lisp cycle has remarkable resemblance to
the low level machine instruction cycle except
the machine instruction becomes list or list of
lists. One may ask, can we use Lisp as our
assembly language? The answer is yes. However,
because of the recursive nature of Lisp, a ncvel

architecture is inevitable for the core
processor,

From the Tlarnguage theory perspective the
processur is a sequential machine which

recognizes its own machine (assembly) language.
The complexity or the power of the prccessor is
manifested through its machine language. If the
machine language is of type € {regular)
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language, then a finite state (regular) machine
is adequate for recognizing it. Finite state
machine is the simplest type of sequential
machine. Most of the current general purpose or

the micro level Lisp processors are of this
type. Since Lisp or other high level
programming language is subset of ‘type 1

{context free) language, a pushdown automaton is
required for recognizing such language. A finite
state machine plus a stack is able to mimic the
operatiors of a pushdown automaton. A typical
example is that when a Pascal program is

executed, the microc level processor has to
allocate stack or heap in order to do it.
Therefcre, if Lisp is the assembly Tlanguage,
ther the processor has to be a pushdown
automatcri or a finite state machine with

built-in stack.

kecognizing or accepting a language is formally
called parsing. The parsing process is straight
forward for regular languages since the number
of states involved may be as little as two
states, fetch and execute. The parsing for
centext free languages is ncontrivial at all.
There are many parsing methods described in Aho
and Ullman's book [Aho72]. The algorithm which
is most suitable for programming languages and
hardware implementation is called the syntax
directed recursive decent algcrithm. Detailed
descripticn about this algorithm is given in
[Back79]. The hardware implementaticn of this
algorithm on & stack based architecture for
direct execution BASIC is reported in [Srid83].
Although the same design methodclogy is used in
this paper for the direct execution Lisp
prccessor, the capabilities of manipulating 1list
structure makes this processor a unique one.

If one takes away the ‘"read" and "print"
functions which are analogous to the fetch cycle
of a machine instruction, then the execute cycle
of Lisp 1is simply the function "eval". As a
matter of fact, "eval" is the major function of
any Lisp machine. The '"read" and ‘'print"
functicns can be written in Lisp and executed by
the eval function. Consequently, the major
effort of a Lisp machine design is on designing
an eval processor,

3. IMPLEMENTATICN ISSUES

By taking the language directed design methcd,
the first task becomes specifying the grammar.
The grammar for Lisp has fairly simple syntax.
MNevertheless, the language 1is recursive and
that makes it a context free Tlanguage. A
tentative version of the grammar for Lisp is
given in the following. It is expressed in BNF.

<initial expression> ::= <expr>

<expr> ::= nil | <atom> | <list> [<value> |
<func>

<atom> ::= <alphanumeric> | <alphanumeric>
<atom>

<list> ::= (<expr>)

<value> ::= <numeric> | <numeric> <value>

<func> ::= <lambda form> |<defined func>



<lambda form> ::=
<arg list>)

<parms> ::= <atom> | <atom> <parms>

<func list> ::= <func> | <func> <func list>

<arg list> ::= <exp> | <exp> <arg list>

<defined func> ::= {<atom> <arg list>)

((1ambda {<parms>) <func Tist>)

In BNF, everything within the square brackets is
nonterminal symbol. Otherwise, it is a terminal
symbol which the machine can recognize. The set
of terminal symbols is not shown here. They
include the alphanumeric, the numeric, and the
built-in functions. There are not too many
rules in this grammar. But, it is highly
recursive. For instance, the <atom> is used to
define itself. The nonterminal <func> includes
the built-in  functions and user supplied
functions. With the language directed approach,
it is very easy to add built-in functions such
as interrupt or I/0 operations. These functions
are very difficult to implement with the
conventional design methodology. A microceded
finite state machine and a stack on RAM memory
were used as the pushdown autcmaton to recognize

the language generated by this grammar. After
the successful recognition, the semantics
associated with that function will be carried

out by the haerdware data path. In order to
increase the performance the components of the
data path should accommodate the semantics of
Lisp.

The major operations of Lisp are list handling

processes. Since list is conveniently
represented by linked 1list data structure, a
large portion of Lisp functions simply
manipulate pointers. This implies that a

register file is needed to facilitate this type
of operations. From the above grammar one can
see that the basic item used in a Lisp program
is the expression, or s-expression. The
implementation of expression has deciding factor
on the performance of the processor. Most of
the existing Lisp systems use the word-oriented
memory structure. That is, a word plus tag bits
are fetched at a time, then the type of the
expression will be determined by the value in
the tag. This arrangement creates extra memory
access when fetching a 1list. A Tist can be
represented by a CONS cell which has CAR and CDR
pointers. Fetching these two pointers takes two
memory reference cycles. In fact, accessing
CONS celis is the primary operation in Lisp. If
the processor can accomplish the same task with
less memory cycle, then it definitely will have
faster speed. The cell memory structure is our
solution to reduce memory cycle.

The other issue 1in all Lisp implementations is
the memory management, or sometimes referred to
as the garbage collection (GC). In the word
oriented memory system, most of the GC
algorithms require certain number of bits
allocated for each word to store information
such as coclors, mark flag, or reference count.
In the cell memory system, the GC information is

associated with each cell which has several
words instead of with each word. This means the
amount of bits required to support a given
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garbage collection algorithm is less in the cell
memory system. Also the number of garbage
collection cycles becomes less when collecting
the same number of words. It is believed that
the cell memory 1is better suited than the
word-uriented memory system for Lisp execution
environment.

4. CELL MEMORY ARCHITECTURE

The expression as cdefined in the grammar could
be an atom, a list, a function, a numeric value,
or nil, The cell structure should be able to
express all of them. In our design, each cell
has the same width of 120 bits. There are four
different type of cells which can be distin-
guished by two bits in the cell. The four cell
types and their functions are cutlined below:

1. PROOT cel
This cell is used in conjunction with
the ATOM cell to make up an atom. This
cell holds a pcinter to a corresponding
ATCM cell, along with pointers point tc
lists which are used by the garbage
collector.

2. ATOM cell
A complete atom is formed by using this
cell along with the root cell. This
cell also holds pointers to the atom's
function, value, property list, and
print name. The reason for using two
cells to represent one atom is because
of the size limitation of the cell. With
12C bits, there are not enough space to
store pocinters to the four attributes of
the atom and the 1lists for garbage
collector.

3. CONS cell
This is the basic Lisp cell which holds
the CAR and CDR pointers. It alsoc has
pointers for the garbage collector.

4. VALUE cell
This cell is pointed to by the print
name of an atom. It is designed to hold
an integer, floating point number, or a
string of 10 characters alcng with
pointers for the garbage collector.

Each cell type consists of two 32-bit words, two
24-bit words, two 2- bit tags, and one 4-bit
field. The first four words are used as address
pointers. The other 8 bits are wused to
distinguish cell type, the color of the cell,
and the states of the garbage collector.

The four words within each cell
fields.

are address
They are pointers labeled as follows:
ROOT cell: CAR, CDR, SP, I USE.
ATOM cell: NAME, VALUE, FUNC, PROP.
CONS cell: CAR, CDR, SP, I USE.
VALUE cell: LSW, MSW, EXW, I _USE.
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The SP and I _USE pointers keep track of the
stack and the in-use list. One of the advantages
of the language directed design methodology is
the creation of a real-time environment by
introducing interrupt and 1/0 functions into the
language. However, the garbage collection
algorithm has to be real-time in order to
maintain this advantage. With garbage collector
running in parallel it is possible to provide a
transparent GC. But, this approach greatly
increases the hardware complexity. We choose an
incremental sequential GC which is a mark and
sweep algorithm similar to the one proposed by
steel [Stee75). The SP and I_USE fields on each
cell were added in order to implement the
incremental GC. The detailed operations of the
garbage collector on the cell memory are
reported by Hoover [Hoov87]. The CAR and CDR
pointers are used as defined in Lisp. The value
cell allows the storage of non-address data. It
only has one I _USE pointer for garbage
collector. The first two 32-bit words are the
least and the most significant 32-bit words. EXW
represents the extended Z4-bit word. The first
three words together can be used to hold a
standard floating point number. The main
purpose of the value cell is for I/0 operations
and data type representations such as fixnum,
flonum, and string.

Figure 1 shows the representation of an atom
which 1is both a variable and a function. The
atom is stored in the OBLIST which is a Tlinked
list. It takes a pair of ROOT cell and ATCM cell
to represent one atom. In this example, the
print name of this atom is X, so the NAME
pointer of the ATOM cell is pointing to a CONS
cell whose CAR pointer points to a VALUE cell
with character X. Similarly, the VALUE pointer
of the ATOM cell points to a CONS cell which
provides a list (5 10.5) as the value. VALUE
cells have been used to hold an integer 5 and a
floating point number 10.5. The FUNC pointer of
the ATOM cell also points to a CONS cell whose
CAR pointer points to a lambda form of the
function. The lambda form basicly involves
similar structure as an atom.

ROOT

ObliSt \
i ATOM
MSEK‘ lambda form

VALUE

the rest of oblist

VALUE CONS

VALUE

Figure 1. Representation of an ATOM.
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(LAMBDA (A) (CAR A))

CONS CONS CONS

CONS

LAMBDA

a CAR A

Figure 2. LAMBDA form representation.

An example representation of the function "head"
is demonstrated in Figure 2. “head" is defined
as the CAR of a list. Lambda form is used as the
internal representation of a function. The
lambda form of function "head" is (LAMBDA (A)
(CAR A)). This form 1is represented by three
Tinked CONS cells. The CAR pointer of the first
CONS cell points to an atom structure which is
not shown here. This atom structure contains the
build-in function LAMBDA. The CAR pointer of
the second CONS cell points to an atom which has
the print name A. The last CONS cell has its
CAR points to another CONS cell which contains
the 1ist (CAR A). Its CDR pointer becomes nil to
signify the end of the 1ist. The CDR pointers of
the first two CONS cells are used to complete
the linked 1list.

When a Lisp statement such as (SETQ FLG X) is
entered into the system, the responses from the
cell memory is described in Figure 3. First,
the Lisp statement is represented by three CONS
cells on the top of the Figure. The CAR pointers
of these three cells point to three atoms, SETQ,
FLG, and X. SETQ is a build-in function while
the other two atoms have their atom structures
which include ROOT and ATOM cells. Before
executing the statement, the VALUE pointer of
the ATOM cell for FLG may not be used or points
to other value. After the execution, this
pointer points to the value of X. If X is known
as in Figure 1, this pointer will be pointing to
the CONS cell which has a list (5 10.5) as its
value.

(SETQ FLG X)

CONS CONS CONS

e e S

SETQ (atom) FLG (atom) X (atom)
J/ ROOT value of X
ATOM
Figure 3. Example of function execution.

CONS



5. SYSTEM ARCHITECTURE

The block diagrams of the direct execution Lisp
processor and the cell memory is presented in
Figure 4. The Lisp processor in this figure
includes a microcode storage and a specially
designed chip which has 16 dinternal registers
for fast pointer operations. The schematic
diagram of the data path unit is shown in Figure
5. Besides the microprogrammable controller and
the ALU unit, the 16 32-bit registers occupied
most of the chip. The cell memory consists of
four modules for the pointer/data fields, and
8-bit field for tag, color, and the state of the
garbage collector. Each cell is referenced by
one address. There are other contrel bits from
the Lisp processor to select the modules within
the cell.

The operation of the system is better understood
with an execution example. In the following is
the list of microcode, in its mnemonics form,
for the build-in function, CAR.

carcmd:
readcdr{currptr, currptr); /*get the
argument Tist*/
ifrnotnil(currptr);
jump{carcmdl);
jump(reperr);
carcmdl:
readcar{currptr,currptr); /*get
argument*/
eval; /*evaluate the argument*/
ifnotnil{currptr);
jump(carcmdzZ);
jump{exiteval);
carcmd?:
latchaddr{currptr);
ontag;
tjump{jaerror); /* atom */
tjump(carcmd3); /* rcot */
tjump{carcmd4;; /* cons */
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carcmd3:

finishread;
setnil(currptr);
Jjump(reperr);

carcmdd :

finishread;
readcar(currptr,currptr};
jump(exiteval);

/* value */

LATCH MEMODRY ADDRESS
LU |ERAOR M | ' ] =
MAS ] .
LU t | L J L
il R0 o | )
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Figure 4. The Lisp system with cell memory.
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The schematic of the data path unit



This microcode sequence is part of the recursive
EVAL cycle since the main function of the
processor is to do eval. At the beginning gf
EVAL cycle, the address of a list structure is
put in a register called currptr. At the.end of
the cycle, this register will contain the
address of the resulting value. The above micro
sequerce will be invoked once the processor
recognizes the first element in the current ]1§t
is the function CAR. So the first statement is
to fetch the argument list by reading in, from
the same memory cell, the CDR pointer of the
current 1ist and puts it 1into the register
currptr. Several tests are conducted foT]ow!ng
the first statement. They include the testing
for empty argument list, testing for the result
nil, and the testing for the proper cell type
that the argument Tist should have. Under the
carcmdl section, the function eval is called in
order to evaluate the argument. Different type

of errors will be vreported as the carcmd2
indicates. At the completion of the CAR
operation, the CAR pointer of the argument list

is returned into the register currptr. The
operation, exiteval, involves the internal stack
operation, POP. What POP does is to restore the
previous Tlevel of the nested EVAL cycle. This
means a lot of information has to be retrieved.
In our current implementation, POP operation has
17 memory references to pointers. With the cell
memory structure, we only need to set up the
address 5 times. The other 12 memory references
are to the different modules within the same
cell. Similar speed up occurs in the internal
PUSH operaticn.

Since the I/0 and the interrupt are built into
the 1language, the Lisp processor s able to
communicate with I/0 devices and even a math
coprocessor through its address and data buses.
This unique feature allows this Lisp processor

to  be applied to a real-time control
environment.

6. CONCLUDING REMARKS

Di(eqt execution of a programming language
eliminates the process of intermediate code
translation. This design methodology was
examplified through the design of the Lisp
processor. The print- eval-read loop of the

suitable candidate for
A microcoded finite state

Lisp language makes it a
direct execution.

machipe. and the internal stack provide the
capabiiities to recognize Lisp. The precised
syntax of Lisp has been defined, and a

simplified version of the grammar was reported
in this paper. Cell memory architecture was
presented as an efficient memory structure for
the direct execution Lisp. It reduces the extra
bits overhead for the garbage collection and the
overall memory cycles required for Lisp
processing. The uniform size of the cell memory
allows the memory manager not to worry about the
difficulties caused by cells of various sizes.
The Lisp processor chip which performs recursive
decent  interpretation algorithm has been
designed and fabricated. A prototype system has
been assembled. An IBM PC was used as the
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testing bed. The microcode which covers a subset
of functions from Common Lisp has been designed
and is currently under testing. Although it is
not easy to address the performance issue
between different Lisp machines, we believe our
Lisp machine should have better performance. As
a rough estimate, the average eval operation may
take 800 to 900 clock cycles. With a 2 MHz

clock, this translates into about 2200 to 2500
eval cycles per second. This is the performance
with  non-optimized microcode. With  the
technique such as Tate binding we can greatly
improve the number of clock cycles required for
each eval operation. Besides having the faster
processing speed, this Lisp machine has built-in
interrupt and 1/0 functions which open the gate
for real-time application.
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