
DIRECT EXECUTION LISP AND CELL MEMORY

Y. P. Chiang and M. L. Manwaring

Abstract:

Department of E lec t r i ca l and Computer Enqineering
Washington State Un ivers i t y , Pullman, WA 99164

Lisp is the second oldest programming language
in use today. I t was treated as a special
language for AI appl icat ions u n t i l the recent
trend towards symbolic processing. The
advantages of Lisp in processing symbols
sometimes are outweighted by the i n e f f i c i e n t
implementations. This paper presents a d i rec t
executien approach in implementing Lisp. The
concept of d i rec t execution is explained. The
Lisp execution environment is analyzed. The ce l l
memery arch i tec ture is presented as the
e f f i c i e n t so lu t ion for d i rec t execution Lisp.
This memory s t ruc ture reduces the number of b i t s
required for implementing garbage co l lec t ion
algor i thm and the number of memory cycles for
Lisp programs. Several examples are given to
elaborate the d i rec t execution concept and the
advantages of ce l l memory. This d i rec t execution
Lisp machine has b u i l t - i n funct ions such as
i n te r rup t and I /0 which are major funct ions for
rea l - t ime app l i ca t ion .

1. INTRODUCTION

Lisp is the second oldest programming language
in use today. Unlike conventional programming
languages, Lisp was designed for computing wi th
symbolic expressions rather than numbers. In
the 60's and 70's, computers have been
considered as number crunching machines. Some
powerful computers emphasizing e f f i c i e n t and
para l le l computation have been b u i l t during that
period. These machines t y p i c a l l y execute
ins t ruc t ions in the range of hundreds of m i l l i o n
f l oa t i ng point operations per second. During
the same period, Lisp was used p r imar i l y by AI
researchers. In the 80's, computers have been
treated not only as number crunchers but also as
machines with i n te l l i gence . This new role of
computers creates the needs for symbolic
computing. With i t s r ich capab i l i t i es in
expressing information and processing l i s t s ,
Lisp has emerged as one of the popular
programming languages among both AI and non-Al
programmers.

I t is apparent that conventional computers are
not e f f i c i e n t for symbolic processing. Star t ing
from mid 70's, researchers in the area of
computer arch i tec ture begin t h e i r pursu i t of
computing machines which are ideal for symbol
manipulat ion, in p a r t i c u l a r , executing Lisp. An
experimental Lisp machine had been developed at

Kobe Un ivers i ty and Hitachi L td . , Japan
[Taki79] . This machine consists of a Lisp
processor module and shared main memory module
connected to the UNIBUS of DEC L S I - i i . The Lisp
processor is microprogrammable. There is a high
speed stack for l i s t processing. Tag is used in
th i s system to d i s t i ngu ish between three
d i f f e ren t data types. The NK3 Lisp machine,
developed at Kyoto Un ivers i ty [Naga79], also
uses microcode, hardware stack, and the tagged
data s t ruc ture . The ALPHA machine which had
been developed at the Fu j i tsu Labs [Haya83] uses
a h igh ly e f fec t i ve stack which can support a
value cache, a v i r t u a l stack and high speed
garbage co l l ec t i on algor i thm for v i r t u a l memory.
This hardware stack also supports high speed
process switching in a mult i -process
environment.

At MIT several implementations of Lisp had been
carr ied out. The most notable ones are the
SCHEF~E-79 chip [Suss81] and the SCHEME-81 system
and chip [Bata82]. SCHEME is a subset of Lisp.
I t uses lex ica l scoping and allows
t a i l - r e c u r s i o n . The SCHEME chip implemented on
a standard Von Neumann arch i tec ture wi th
microcode. I t also uses stack and tag. The
major impact of SCHEME is that the whole Lisp
i n te rp re t i ng environment is implemented on a
chip. Several commercial companies adopted th is
approach and produced Lisp machines. For
example, Symbolics 3600 [Moon85] is the modified
version of another MIT product, MIT Lisp machine
[Bawd7g]. The LAMBDA machine from Lisp Machines
Inc. uses a Lisp processor running a 20 MHz
clock, and a 32-b i t word wi th 24-b i t v i r t u a l
address space. These machines a l l have s im i la r
arch i tec tures and implementations to that of
SCHEME chip. With the s im i l a r implementation
method and the advanced IC technology, the
current Lisp machines such as the Symbolics
3610, the XEROX 1132, and the Texas Instrument
Compact Lisp machine [Matt87] , are running
fas ter than-ever. Lisp has also been implemented
on para l le l computers such as Connection machine
and Bu t t e r f l y computer. Most of the Lisp
processors were taking a conventional approach
in t h e i r a rch i tec ture design. That i s , the
implementation issues were f i r s t f u l l y analyzed,
then %he proper hardware or software were
designed to accommodate those time consuming,
c r i t i c a l issues. As a r e s u l t , a micro- level
machine was designed as the core of the system,
extra stack and tagged data s t ruc ture were used

52

http://crossmark.crossref.org/dialog/?doi=10.1145%2F36974.36981&domain=pdf&date_stamp=1987-09-01

to provide e f f i c ien t execution environment for
Lisp. Like a l l the other programming languages,
the execution of Lisp program requires two
steps. F i rs t , Lisp programs are translated into
low level machine code. Second, the machine
code is executed by the hardware processor.
Although some machine code has the same
functions as those defined in Lisp, the whole
execution process s t i l l requires machine code
translat ion before the program can run. I f Lisp
is the preferred language because of i ts
ab i l i t i e s in expressing and manipulating
information, then any other languages wi l l not
be able to do the same things e f fec t ive ly . The
extra language translat ion may not only
increases the processing time but also loses the
advantages of the Lisp language. This paper
presents a direct execution approach for
designing Lisp machine. Direct execution means
the elimination of the machine code translat ion
process. The notion of direct execution language
(DEL) has been presented in [Chu81]. I t is
understood that DEL is able to obtain direct and
ef fect ive support from i ts architecture.
However, i t is not easy to find such a DEL. We
would l ike to argue that for each given
programming language i t is possible to design an
architecture which d i rec t l y execute this
language. This approach may not viable for
general purpose processor, but, for dedicated
processor, i t becomes very a t t rac t ive . In the
following sections, we f i r s t discuss the
execution environment of Lisp. The concept of
direct execution is explained and i ts
implementation method is presented. The cel l
memory architecture is presented as the
architecture for d i rect execution Lisp machine.
Several examples are used to demonstrate the
advantages and the implementations.

2. LISP EXECUTION ENVIRONMENT

The process of executing Lisp program is one of
interpretat ion. This means that a complete Lisp
l i s t is composed or assembled and then presented
for execution. I ts results are then printed,
and the process is done again on the next l i s t
in the program. This in terpret ive process is an
abstract fetch-execute cycle. Using Lisp i t s e l f
to describe the process, the following Lisp
statement is executed continuously:

(PRINT (EVAL (READ))).

This Lisp cycle has remarkable resemblance to
the low level machine instruct ion cycle except
the machine instruct ion becomes l i s t or l i s t of
l i s t s . One may ask, can we use Lisp as our
assembly language? The answer is yes. However,
because of the recursive nature of Lisp, a novel
architecture is inevitable for the core
processor.

From the language theory perspective the
processor is a sequential machine which
recognizes i t s own machine (assembly) language.
The complexity or the power of the processor is
manifested through i ts machine language. I f the
machine language is of type O {regular)

53

language, then a f i n i t e state (regular} machine
is adequate for recognizing i t . Fini te state
machine is the simplest type of sequential
machine. Most of the current general purpose or
the micro level Lisp processors are of this
type. Since Lisp or other high level
programming language is subset of type I
(context free~ language, a pushdown automaton is
required for recognizing such language. A f i n i t e
state machine plus a stack is able to mimic the
operations of a pushdown automaton. A typical
example is that when a Pascal program is
executed, the micro level processor has to
al locate stack or heap in order to do i t .
Therefore, i f Lisp is the assembly language,
then the processor has to be a pushdown
automaton or a f i n i t e state machine with
b u i l t - i n stack.

Recognizing or accepting a language is formally
called parsing. The parsing process is s t ra ight
forward for regular languages since the number
of states involved may be as l i t t l e as two
states, fetch and execute. The parsing for
context free languages is ncnt r iv ia l at a l l .
There are many parsing methods described in Aho
and Ullman's book [Aho72]. The algorithm which
is most suitable for programming languages and
hardware implementation is called the syntax
directed recursive decent algorithm. Detailed
description about this algorithm is given in
[Back79]. The hardware implementatiun uf this
algori th~ on a stack based architecture for
direct execution BASIC is reported in ESrid83].
Although the same design methodology is used in
this paper for the direct execution Lisp
processor, the capabi l i t ies of manipulating l i s t
structure makes this processor a unique one.

I f one takes away the "read" and "pr in t "
functions which are analogous to the fetch cycle
of a machine instruct ion, then the execute cycle
of Lisp is simply the function "eva]". As a
matter of fact , "eva]" is the major function of
any Lisp machine. The "read" and "pr in t "
functions can be wri t ten in Lisp and executed by
the eva] function. Consequently, the major
e f fo r t of a Lisp machine design is on designing
an eval processor.

3. IMPLEMENTATION ISSUES

By taking the language directed design method,
the f i r s t task becomes specifying the grammar.
The grammar for Lisp has f a i r l y simple syntax.
Nevertheless, the language is recursive and
that makes i t a context free language. A
tentat ive version of the .grammar for I.isp is
given in the following. I t is expressed in BNF.

< i n i t i a l expression> ::= <expr>
<expr> ::= n i l I <atom> I < l is t> I<value> I

<func>
<atom> ::= <alphanumeric> I <alphanumeric>

<atom>
<l is t> ::= (<expr>)
<value> ::= <numeric> I <numeric> <value>
<func> ::= <lambda form> l<defined func>

<lambda form> : : : ((lambda (<parms>) <func l i s t>)
<arg l i s t>)

<parms> ::= <atom> I <atom> <parms>
<func l i s t> ::= <func> I <func> <func l i s t>
<arg l i s t> : : : <exp> I <exp> <arg l i s t>
<defined func> ::= (<atom> <arg l i s t>)

In BNF, everything within the square brackets is
nonterminal symbol. Otherwise, i t is a terminal
symbol which the machine can recognize. The set
of terminal symbols is not shown here. They
include the alphanumeric, the numeric, and the
b u i l t - i n functions. There are not too many
rules in this grammar. But, i t is highly
recursive. For instance, the <atom> is used to
define i t s e l f . The nonterminal <func> includes
the b u i l t - i n functions and user supplied
functions. With the language directed approach,
i t is very easy to add b u i l t - i n functions such
as interrupt or I /0 operations. These functions
are very d i f f i c u l t to implement with the
conventional design methodology. A microceded
f i n i t e state machine and a stack on RAN memory
were used as the pushdown automaton to recognize
the language generated by this grammar. After
the successful recognit ion, the semantics
associated with that function w i l l be carried
out by the hardware data path. In order to
increase the performance the components of the
data path should accommodate the semantics of
Lisp.

The major operations of Lisp are l i s t handling
processes. Since l i s t is conveniently
represented by linked l i s t data structure, a
large portion of Lisp functions simply
manipulate pointers. This implies that a
register f i l e is needed to f a c i l i t a t e this type
of operations. From the above grammar one can
see that the basic item used in a Lisp program
is the expression, or s-expression. The
implementation of expression has deciding factor
on the performance of the processor. Most of
the exist ing Lisp systems use the word-oriented
memory structure. That is , a word plus tag bi ts
are fetched at a time, then the type of the
expression w i l l be determined by the value in
the tag. This arrangement creates extra memory
access when fetching a l i s t . A l i s t can be
represented by a CONS cel l which has CAR and CDR
pointers. Fetching these two pointers takes two
memory reference cycles. In fact , accessing
CONS cel ls is the primary operation in Lisp. I f
the processor can accomplish the same task with
less memory cycle, then i t de f in i te l y w i l l have
faster speed. The cell memory structure is our
solution to reduce memory cycle.

The other issue in a l l Lisp implementations is
the memory management, or sometimes referred to
as the garbage col lect ion (GC). In the word
oriented memory system, most of the GC
algorithms require certain number of bi ts
allocated for each word to store information
such as colors, mark f lag, or reference count.
In the cell memory system, the GC information is
associated with each cell which has several
words instead of with each word. This means the
amount of bi ts required to support a given

garbage col lect ion algorithm is less in the cel l
memory system. Also the number of garbage
col lect ion cycles becomes less when col lect ing
the same number of words. I t is believed that
the cel l memory is better suited than the
word-oriented memory system for Lisp execution
environment.

4. CELL MEMORY ARCHITECTURE

The expression as ~efined in the grammar could
be an atom, a l i s t , a function, a numeric value,
or n i l . The cel l structure should be able to
express al l of them. In our design, each cell
has the same width of 120 b i ts . There are four
d i f ferent type of cel ls which can be d i s t i n -
guished by two bi ts in the ce l l . The four cel l
types and the i r functions are outl ined below:

. ROOT cell
This cel l is used in conjunction with
the ATOM cell to make up an atom. This
cell holds a pointer to a corresponding
ATOM ce l l , along with pointers point to
l i s t s which are used by the garbage
col lector .

2. ATOM cell
A complete atom is formed by using this
cel l along with the root ce l l . This
cel l also holds pointers to the atom's
function, value, property l i s t , and
pr in t name. The reason for using two
cel ls to represent one atom is because
of the size l im i ta t ion of the ce l l . With
120 b i ts , there are not enough space to
store pointers to the four at t r ibutes of
the atom and the l i s t s for garbage
col lector .

. CONS cell
This is the basic Lisp cel l which holds
the CAR and CDR pointers. I t also has
pointers for the garbage col lector .

4. VALUE cell
This cel l is pointed to by the pr in t
name of an atom. I t is designed to hold
an integer, f loat ing point number, or a
str ing of i0 characters along with
pointers for the garbage col lector .

54

Each cel l type consists of two 32-bi t words, two
24-bit words, two 2- b i t tags, and one 4-b i t
f i e ld . The f i r s t four words are used as address
pointers. The other 8 b i ts are used to
dist inguish cel l type, the color of the ce l l ,
and the states of the garbage col lector .

The four words within each cel l are address
f ie lds . They are pointers labeled as follows:

1. ROOT ce l l : CAR, CDR, SP, I USE.
2. ATOM ce l l : NAME, VALUE, FUNC, PROP.
3. CONS ce l l : CAR, CDR, SP, I USE.
4. VALUE ce l l : LSW, MSW, EXW,-I USE.

The SP and I USE pointers keep track of the
stack and the ~n-use l i s t . One of the advantages
of the language directed design methodology is
the creation of a real-time environment by
introducing interrupt and I/O functions into the
language. However, the garbage collection
algorithm has to be real-time in order to
maintain this advantage. With garbage collector
running in parallel i t is possible to provide a
transparent GC. But, this approach greatly
increases the hardware complexity. We choose an
incremental sequential GC which is a mark and
sweep algorithm simTlar to the one proposed by
steel [Stee75]. The SP and I USE fields on each
cell were added in order-to implement the
incremental GC. The detailed operations of the
garbage collector on the cell memory are
reported by Hoover [Hoov87]. The CAR and CDR
pointers are used as defined in Lisp. The value
cell allows the storage of non-address data. I t
only has one I USE pointer for garbage
collector. The f i ~ t two 32-bit words are the
least and the most significant 32-bit words. EXW
represents the extended 24-bit word. The f i r s t
three words together can be used to hold a
standard floating point number. The main
purpose of the value cell is for I/O operations
and data type representations such as fixnum,
flonum, and string.

Figure I shows the representation of an atom
which is both a variable and a function. The
atom is stored in the OBLIST which is a linked
l i s t . I t takes a pair of ROOT cell and ATOM cell
to represent one atom. In this example, the
print name of this atom is X, so the NAME
pointer of the ATOM cell is pointing to a CONS
cell whose CAR pointer points to a VALUE cell
with character X. Similarly, the VALUE pointer
of the ATOM cell points to a CONS cell which
provides a l i s t (5 10.5) as the value. VALUE
cells have been used to hold an integer 5 and a
floating point number 10.5. The FUNC pointer of
the ATOM cell also points to a CONS cell whose
CAR pointer points to a lambda form of the
function. The lambda form basicly involves
similar structure as an atom.

oblist ~ ROOT
I~III I I I the rest of oblist

ATOM

~CONS bW CONS lambda form
l , l I I 1 I , I -~ I [I

J~ VALUE i VALU~E CONS
I×L I i i Isl I i I [~t/1 t I

VALUE

Figure 1. Representation of an ATOM.

(LAMBDA (A) (CAR A))

CONS CONS CONS

CONS CONS CONS
LAMBDA /~ ~i I] [~ I[I I~I I h / ' q ~ ~ 1 J

A CAR A

Figure ~. LAMBDA form representation.

An example representation of the function "head"
is demonstrated in Figure 2. "head" is defined
as the CAR of a l i s t . Lambda form is used as the
internal representation of a function. The
lambda form of function "head" is (LAMBDA (A)
(CAR A)). This form is represented by three
linked CONS cells. The CAR pointer of the f i r s t
CONS cell points to an atom structure which is
not shown here. This atom structure contains the
build-in function LAMBDA. The CAR pointer of
the second CONS cell points to an atom which has
the print name A. The last CONS cell has i ts
CAR points to another CONS cell which contains
the l i s t (CAR A). Its CDR pointer becomes nil to
signify the end of the l i s t . The CDR pointers of
the f i r s t two CONS cells are used to complete
the linked l i s t .

When a Lisp statement such as (SETQ FLG X) is
entered into the system, the responses from the
ce l l memory is described in Figure 3. F i r s t ,
the Lisp statement is represented by three CONS
ce l l s on the top of the Figure. The CAR pointers
of these three ce l l s point to three atoms, SETQ,
FLG, and X. SETQ is a b u i l d - i n funct ion whi le
the other two atoms have t h e i r atom st ructures
which include ROOT and ATOM ce l l s . Before
executing the statement, the VALUE poin ter of
the ATOM ce l l for FLG may not be used or points
to other value. Af ter the execut ion, th i s
po inter points to the value of X. I f X is known
as in Figure i , t h i s po in ter w i l l be po in t ing to
the CONS ce l l which has a l i s t (5 10.5) as i t s
value.

(SETQ FLG X)

55

CONS CONS CONS

SETQ (atom) FIG (atom) X (atom)

\
I ROOT value of X
I, i i I /

I ATOM /
' i_Z/

Figure 3. Example of function execution.

5. SYSTEM ARCHITECTURE

The block diagrams of the d i rec t execution Lisp
processor and the ce l l memory is presented in
Figure 4. The Lisp processor in th i s f igure
includes a microcode storage and a spec ia l l y
designed chip which has 16 in terna l reg is ters
for fast pointer operat ions. The schematic
diagram of the data path un i t is shown in Figure
5. Besides the microprogrammable con t ro l l e r and
the ALU u n i t , the 16 32-b i t reg is ters occupied
most of the chip. The ce l l memory consists of
four modules for the pointer /data f i e l d s , and
8 - b i t f i e l d for tag, co lor , and the state of the
garbage co l l ec to r . Each ce l l is referenced by
one address. There are other control b i t s from
the Lisp processor to select the modules w i th in
the c e l l .

The operation of the system is bet ter understood
with an execution example. In the fo l lowing is
the l i s t of microcode, in i t s mnemonics form,
for the b u i l d - i n funct ion, CAR.

carcmd:
readcdr(cur rp t r , c u r r p t r) ; / *get the

argument l i s t * /
i f n o t n i l (c u r r p t r) ;

jump(carcmdl);
jump(reperr) ;

carcmdl:
r eadca r (cu r rp t r , cu r rp t r) ; / *get

argument*/
eval ; / *evaluate the argument*/
i f n o t n i l (c u r r p t r) ;

jump(carcmdE);
jump(ex i teva l) ;

carcmd2:
l a t chaddr (cu r rp t r) ;
ontag;

t jump(jaer ror) ; / * atom * /
tjump(carcmd3); / * root * /
tjump(carcmd4); / * cons * /

SOURCE B

B BUS / s%cE
DESTINATION[1

Des.z_9___ SELECT H

I

G- i
[.

0~'.'

US I.__ t CONTROLLER
BUS iNTERFACE 1

SIXTEEN
32 - BIT REGISTERS

32 - BIT /
ALU AND
REGISTER

~__ PAD REGISTER F -- AND INTERFACE

32 IIO PADS

BUS

l

SOURCE A

A BUS
SOURCE.

AND
3ESTiNAT;ON

SELECT OEST A

Figure 5. The schematic of the data path un i t

COUT

carcmd3: / * value * /
f i n i sh read ;
s e t n i l (c u r r p t r) ;
jump(reperr) ;

carcmd4:
f in i sh read ;
r eadca r (cu r rp t r , cu r rp t r) ;
jump(ex i teva l) ;

41

12

~TACK

NT,

i

M~Y

B~Y

ltESEI

CDNTFIDLLER i - -

DATA PATH

S1
S. 3--

10WA
IOAS

MEMORY AOORESS

I - - - 1 [- - I F -

cAR I c0a ! cO, I

OATA

l r ! r '
IO AOORESS

IDWll

Figure 4. The Lisp system wi th ce l l memory.

56

This microcode sequence is part of the recursive
EVAL cycle since the main function of the
processor is to do oval. At the beginning of
EVAL cycle, the address of a l i s t structure is
put in a register called currptr. At the end of
the cycle, this register wi l l contain the
address of the resulting value. The above micro
sequence wi l l be invoked once the processor
recognizes the f i r s t element in the current l i s t
is the function CAR. So the f i r s t statement is
to fetch the argument l i s t by reading in, from
the same memory cel l , the CDR pointer of the
current l i s t and puts i t into the register
currptr. Several tests are conducted following
the f i r s t statement. They include the testing
for empty argument l i s t , testing for the result
n i l , and the testing for the proper cell type
that the argument l i s t should have. Under the
carcmdl section, the function eval is called in
order to evaluate the argument. Different type
of errors wi l l be reported as the carcmd2
indicates. At the completion of the CAR
operation, the CAR pointer of the argument l i s t
is returned into the register currptr. The
operation, exiteval, involves the internal stack
operation, POP. What POP does is to restore the
previous level of the nested EVAL cycle. This
means a lot of information has to be retrieved.
In our current implementation, POP operation has
17 memory references to pointers. With the cell
memory structure, we on7y need to set up the
address 5 times. The other 12 memory references
are to the different modules within the same
ce77. Similar speed up occurs in the internal
PUSH operation.

Since the I/0 and the interrupt are built into
the language, the Lisp processor is able to
communicate with I/O devices and even a math
coprocessor through i ts address and data buses.
This unique feature allows this Lisp processor
to be applied to a rea7-time control
environment.

6. CONCLUDING REFiARKS

Direct execution of a programming language
eliminates the process of intermediate code
translation. This design methodology was
examp7ified through the design of the Lisp
processor. The print- eval-read loop of the
Lisp language makes i t a suitab7e candidate for
direct execution. A microcoded f in i te state
machine and the internal stack provide the
capabilities to recognize Lisp. The precised
syntax of Lisp has been defined, and a
s imp l i f i ed version of the grammar was reported
in th is paper. Cell memory arch i tec ture was
presented as an e f f i c i e n t memory s t ruc ture for
the d i rec t execution Lisp, I t reduces the extra
b i ts overhead for the garbage co l lec t ion and the
overall memory cycles required for Lisp
processing. The uniform size of the cell memory
allows the memory manager not to worry about the
d i f f icu l t ies caused by cells of various sizes.
The Lisp processor chip which performs recursive
decent interpretation algorithm has been
designed and fabricated. A prototype system has
been assembled. An IBM PC was used as the

testing bed. The microcode which covers a subset
of functions from Common Lisp has been designed
and is currently under testing. Although i t is
not easy to address the performance issue
between different Lisp machines, we believe our
Lisp machine should have better performance. As
a rough estimate, the average eval operation may
take 800 to 900 clock cycles. With a 2 MHz
c7ock, this translates into about 2200 to 2500
eval cycles per second. This is the performance
with non-optimized microcode. With the
technique such as late binding we can greatly
improve the number of clock cycles required for
each eval operation. Besides having the faster
processing speed, this Lisp machine has bui l t - in
interrupt and I/0 functions which open the gate
for real-time app7ication.

7. ACKNOWLEDGEMENT

This pro ject was supported by a contract from
the Boeing High Tech Center and the Boeing
M i l i t a r y Airplane Company. The authors would
7ike to express t he i r appreciat ion towards the
group of graduate students involved in th i s
pro ject .

REFERENCE:

[Aho72] Aho, A.V., and J.D. Ullman, The Theory
of Parsin@~ Translation, and Compiling, Vol. I :
Parsing, Prentice-Hall, Englewood Cli f fs, NJ,
1972.

[Back79] Backhouse, R.C., Syntax of Programmin@
Languages, Theory and Practice, Prentice-Hall',
International, 1979.

[Bata82] Bata7i J., E. Goodhue, C. Hanson, H.
Shrobe, R.M. Stallman, and G.J. Sussman, "The
SCHEME-81 Architecture -- System and Chip by the
Designers" Proc. 1982 MIT Conference on
Advanced Research in VLSI, Jan. 1982, PP. 69-77.

CBawd79] Bawden A., "The LISP Machine",
A l t j f i c i a l Intelligence: An MIT Perspective, Vol
2., by Winston P.H. and R.H. Brown, MIT Press,
1979, PP. 343-373.

[Chu81] Chu Y. and M. Abrams, ogrammlng "Pr
Languages and Direct-Execution Computer
Architecture", Computer, July 1981, PP. 22-32.

[Haya83] Hayashi, H., A. Hattori, and H.
Akimoto, "ALPHA: A High Performance LISP Machine
Equipped with a new Stack Structure and Garbage
Collection System", Proc. the 10th International
Symposium on Computer Architecture, 1983, PP.
342-348.

[Hoov87] Hoover, R. P., "An Indirect Execution
Lisp Machine with a Real-Time Interrupt
Response", Master Thesis, Dept. of Elec. and
Comp. Engr., Washington State University Aug.
1987.

57

Direct Execution Lisp and Cell Memory (Addendum)
Y.P. Chiang and M.L. Manwaring

The CAN editors inadvertently omitted the last page of references of the above paper in
the September 1987 issue of the CAN (Vol. 15, No. 4, pp.52-57). It is reproduced below:

[Matt87] Matthews, G., R. Hewes, and S. Krueger,
" Single-chip processor Runs Lisp Environments",
Computer Design, May 1987, PP. 69-76.

[Moon85] Moon, D.A., "Architecture of the
Symbolics 3600", Proc. the 12th International
Symposium on Computer Architecture, 1985, PP.
76-83.

[Naga79] Nagao, M., J. Tsu j i i , K. Nakajima, K.
Mitamura, and H. I to , "LISP Machine NK3 and
Measurement of i ts Performance", Proc.
International Joint Conference on A r t i f i c i a l
Intel l igence, 1979, PP. 625-662.

[Stee75] Steel, Guy L. J r . , "Multiprocessing
Compactifying Garbage Col lect ion",
Communications of the ACM, Vol. 18 No. 9,
Sept. 1975, PP. 495-508.

[Srid83] Sridhar, R. "A Direct Execution
Architecture for BASlC", Master Thesis, Dept. of
Elec. and Comp. Engr., Washington State
University, Feb. 1983.

[Suss81] Sussman, G.J., J. Holloway, G.L. Steel,
J r . , and A. Bel l , "SCHEME-79 LISP on a Chip",
Computer, Vol. 14, July 1981, PP. 10-21.

[Taki79] Taki, K., Y. Kaneda, and S. Maekawa,
"The Experimental LISP Machine", Proc.
International Joint Conference on A r t i f i c i a l
Intel l igence, 1979, PP. 865-867.

I0

