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Abstract — We proposea method of synthesizing pipeline
controllers as four-phase asynchronous circuits fr om specifica-
tions describedas two-phasedependencygraphs. Pipeline two-
phasedependencygraphs are transformed into four-phaseones
by applying a transformation rule to each simple loop in the
graphs. Four-phasedependencygraphs are easily mapped onto
four-phaseasynchronouscontrol circuits. We also discusssome
simplification of four-phasedependencygraphs.

I . INTRODUCTION

Asynchronouscircuits areexpectedto be an effective ap-
proachto high-speedand/orlow-powerprocessors.Therehave
beena lot of worksdonefor asynchronousdesign[1] includ-
ing synthesismethodsof controllers[2, 3, 4], andpipelinecon-
troller design[5, 6, 7, 8].

We have proposeda synthesismethodof four-phaseasyn-
chronouscontrollersthat controlsfour-phaseresourcesbased
on mappingof dependency graphs,which representthe ex-
ecution ordersof micro-operations[9, 10]1. Executionof a
micro-operationimplementedby a four-phaseresourceis de-
composedinto cyclic executionof a working phase,a stable
phase,anidle (i.e.return-to-zero)phaseandanotherstable(i.e.
spacer)phase.

Although dependency graphsare capableof describing
pipelineexecutionof micro-operations,the mappingis appli-
cableonly to non-pipelinedependency graphssince,to imple-
mentthe specifiedexecutionorder, the mappingtakesadvan-
tageof the fact thatwhole idle phasescanbe safelyexecuted
after thecompletionof wholeworking phasesin non-pipeline
circuits.

STGscan describesuchfour-phasepipeline, but writing
STGsdescribingsuchcomplex behavior isnotconsideredto be
acceptablyeasy. Addingtwo-phase(transitionsignalinglogic)
to four-phase(level sensitive logic) convertersto eachmicro-
operationmaysolve theproblemsincetwo-phasedependency
graphscanbe easilymappedonto two-phasecontrol circuits.

1Althoughweusedto call asynchronouscircuitsusingreturn-to-zerohand-
shakestwo-phaseor four-cycling, wecall themfour-phasein thispaper.

This approach,however, may needlarger hardware because
sucha converterhave to implementa finite statemachine.

In thispaper, weproposeasynthesismethodof four-phase
asynchronouscontrollersfrom dependency graphsdescribing
pipelineexecution.We assumethatmicro-operationsthatcan
beexecutedin parallelin thegivendependency graphsusesep-
aratefunctionalresourcessothatwecanignorethearbitration
problem.In SectionII, we clarify theproblemconcernedwith
mappingof dependency graphs.In SectionIII, weproposethe
intermediateform of graph,four-phasedependency graph,and
describethetransformationfrom original to four-phasedepen-
dency graphs.

I I . TWO-PHASE DEPENDENCY GRAPHS

A. Circuit synthesisusingdependency graphs

We target synthesisof four-phaseasynchronous(speed-
independentor quasi-delay-insensitive[11]) control circuits.
They control four-phaseasynchronousdata-paths(resources)
in thefour-phaserequest-acknowledgmentmanner.

Without lossof generality, anasynchronousdata-pathused
for a micro-operation(register-to-registerdatatransfer)canbe
modeledasfollows. Therequestsignaltriggersthestartof the
operation,andtheacknowledgmentsignalrepresentsits com-
pletion.Whentherequestsignalis reset,theacknowledgment
signal is also resetwithout affecting the correspondingdata-
path.We call theformerperioda working phaseandthelatter
periodanidle phase.

We have proposeda model called dependency graph in
[9, 10] asa variantof control/data-flow graphsto describethe
specificationof asynchronouscontrol circuits. It is also re-
gardedasasubclassof Petrinetsor free-choicenets.Although
it is capableof describingconditionalbranchesandloops,we
exclude the capability in this paperto simplify the problem.
Fig. 1(a)showsanexampleof adependency graph.

A dependency graphis a setof four typesof nodesanddi-
rectededgesbetweenthem.A noderepresentsanoperation.A
directededgerepresentstheexecutionorderof theoperations
denotedby its startandendnodes.Executionof anoperation
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Fig. 1. Exampleof adependency graph.

is controlledby tokensmoving alongedges.
Eachtypeof nodesoperatesasfollows. An oval nodede-

notesa micro-operation.It startsexecutionwhena token ar-
rivesin its inputedgeandtransfersthetokento its outputedge
whentheexecutioncompletes.A smallsquare(fork) nodeand
a smallcircle (join) nodedenotethestartandtheendof paral-
lel processingrespectively. Whena token arrivesin the input
edgeof a fork node,it removesthe tokenandputsa tokenon
everyoutputedges.Conversely, whentokensarrivein all input
edgesof a join node,it removesthemandput a token on the
outputedge.A blackdotdenotesaninitial positionof a token.
It sendsa token at the beginning to its outputedge,andthen
transfersevery input token to theoutput. A graphmustbeso
constructedasto satisfythe conditionthatany edgedoesnot
hold two or moretokensat any time.

Fig. 1(b) shows anexampleof executiontiming of micro-
operationsin (a). A boxdenotesthatthecorrespondingopera-
tion isexecutedin theperiod.Arrowsdenotecausalitybetween
operations.B andD canbeexecutedin parallel,andsocanC
andE. C canstart whenB completes,andE canstart when
bothB andD complete.

The graphshown in Fig. 1(a) canbe mappedonto a cir-
cuit shown in (c). Edges,fork nodes,join nodesand token
initial positionscorrespondto wires, wire branches,Muller’s
C elementsandinvertersrespectively. Micro-operationscor-
respondto request-acknowledgmentinterconnectionswith the
data-paths.

Although tokensrepresentonly the executionof working
phasesof micro-operations,idle phasesof all micro-operations
canbe interpretedto be executedwhentokensreturnto their
initial positions. The executiontimings of the graphandthe
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Fig. 2. Exampleof apipelinedependency graph.

circuit (Fig. 1(b)and(d) respectively) areobviouslyequivalent
exceptfor theexecutionof idle phasesin (d).

B. Mappingproblemof pipelinedependency graphs

Dependency graphscanmodelnotonly simpleparallelex-
ecutionbut also pipeline execution. Fig. 2(a) and (b) show
an exampleof a pipelinedependency graphandits execution
timing respectively. Micro-operations� A, C � and � B, D � are
alternatelyexecutedin parallelexcept for sometransientpe-
riod.

If we applythemappingmethoddescribedin SectionII.A
to the pipelinedependency graph,we canobtainthe mapped
circuit shown in Fig.2(c)andits executiontiming in (d). Obvi-
ously, timing in (b) and(d) arenot equivalent.For example,B
andD areexecutedin parallelin (b), but their working phases
cannot in (d). Instead,anidle phaseof B andaworkingphase
of D areexecutedin parallel. This meansthat themappingis
not applicableto pipelinedependency graphs.

The reasonof the inequality is that two-phase(conven-
tional) dependency graphsdo not distinguish two types of
events, namely, 0-to-1 and 1-to-0 transitions on wires in
mappedcircuits. For pipelinecontrolcircuits, idle phasescan
no longerbe interpretedto beexecutedimplicitly, sinceother
tokensaffect their executiontiming. For example,even if the
tokenin thefirst loopreturnsto its initial position,anidle phase
of B cannotstartexecutionbecauseit is alsocontrolledby the
token in the secondloop. For non-pipelinecontrol circuits,
thereis no suchinteractionof loopsin dependency graphs.
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I I I . GRAPH TRANSFORMATION FROM TWO-PHASE TO

FOUR-PHASE

A. Four-phaseinterpretationof dependency graphs

A straightforward solution to the mappingproblemmen-
tionedabove is to changeinterpretationof dependency graphs
so that they representfour-phaseexecution. We call sucha
graphwith four-phaseinterpretationa four-phasedependency
graph. Fig. 3(a) shows an exampleof a pipeline four-phase
dependency graph.

A four-phasedependency graph consistsof almost the
sametypesof elementsas two-phaseone. Only for distinc-
tion betweentheir appearances,we use � symbolsinsteadof
black dots. Working phasesand idle phasesof an operation
arecontrolledby two typesof tokens,namely, working tokens
andidle tokensrespectively. A � symboldenotesnot only an
initial position of tokens,but a token exchanger. It sendsa
working tokenat thebeginningto its outputedge,andthenin-
vertsevery input tokento theoppositetypewhile transferring
it to the output. A four-phasedependency graphmustbe so
constructedasto satisfytheconditionsthatany edgedoesnot
hold two or moretokensat any time, andinput edgesof any
join nodedo not holddifferenttypesof tokensat any time.
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Fig. 4. Transformationof a singleloopgraph.

Fig. 3(b) shows the executiontiming of the graphin (a).
For example,at first, only thefirst working phaseof A is exe-
cuted,thoughevery tokenexchangeroutputsa working token.
After that, the token arrived in the outputedgeof A is trans-
ferred throughjoin nodeJ1, fork nodeF1 and join nodeJ2,
andstartsa working phaseof B. On theotherhand,thework-
ing token copiedat F1 is invertedto an idle token at X1 and
the idle tokenstartsan idle phaseof A. As the result,thefirst
idle phaseof A andthefirst working phaseof B areexecuted
in parallel.

A four-phasedependency graphmodelsa level sensitive
asynchronouscontrolcircuit moreexactly. Therefore,thecir-
cuit mappedfrom the graphusingthe samemappingmethod
asthat for two-phasegraphsoperateson theexecutiontiming
equivalent to the original grapheven if it describespipeline
operations.For example,Fig. 3(c), which shows the mapped
circuit from (a),operateson thetiming in (b).

B. Transformationrule

It is, however, not a trivial problemto composea four-
phasedependency graphthat operatesas intended. We con-
siderobtainingfour-phasedependency graphsby transforming
two-phaseones.

Considerthe two-phasedependency graphshown in Fig.
2(a). It intendsA andC to beexecutedin parallel,i.e., work-
ing phasesof A andC mustbeexecutedin parallelin thetrans-
formedfour-phasedependency graph.It is naturalthatanidle
phaseof B is executedin parallelwith working phasesof A
andC, thoughits executiontiming hassomechoice.Hencewe
intendto composea four-phasedependency graphso that the
oppositephasesof A andB, B andC,andC andD areexecuted
in parallel.

Considera simpler two-phasedependency graph in Fig.
4(a). It consistsof a singleloop with micro-operationsA and
B. Fig. 4(b) shows a four-phasedependency graphso com-
posedasto executetheoppositephasesof A andB in parallel.
Sincethegraphin Fig. 2(a)consistsof simpleloopsincluding
onetokeninitial position,anequivalentfour-phasedependency
graphcanbeconstructedby transformingevery loop into the
form of Fig. 4(b)andcomposingthemagainby unifying nodes
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Fig. 5. Transformationof a genericsimpleloop.

with thesamelabel.Thegraphin Fig. 3(a)canbeconstructed
from Fig. 2(a)in this way.

In general,eachsimple loop in a two-phasedependency
graphmay containany numberof micro-operation,fork and
join nodes.Without lossof generality, we candescribesuch
a simpleloop asshown in Fig. 5(a). NodeA andB represent
thefirst andthelastmicro-operationsrespectively thata token
passesthroughwhile it travelsroundtheloop. Boxes1, 2 and
3 representsub-paths,i.e., partsof thesequenceof edgesand
nodesin the loop. According to the definition of A and B,
boxes1 and3 doesnot includeany micro-operation,while box
2 may include micro-operations.The areasurroundedwith
dashedline shows examplesof the contentsof such boxes.
Fork and join nodesin the boxes are connectedwith other
nodesin any boxes,or in otherpartsof the graph. If a loop
include lessthan two micro-operation,we insert one or two
dummymicro-operationsnext to the token initial positionso
that the loop fits the form of the figure. We provide this rule
simply for generality, but sucha loop is redundantandshould
be eliminatedaheadof time unlessit is the only loop in the
graph.Fig.5(b)showstheexecutiontiming of A, B andmicro-
operationsin box 2. Thenumberof micro-operationsin box2
affectsonly thelengthof theboxeslocatedin therow 2.

Fig.5(c)showstheproposedfour-phasedependency graph
correspondingto the genericsimple loop in (a). It is gener-
atedby addinga bypassfrom F1 to J3, addingtwo feedback
pathslike Fig. 4 usingthe bypass,andaddingthe third feed-
back path from F3 to J1 via X2. The last feedbackpath is
requiredsothat thegraphsatisfiestheconditionmentionedin

SectionIII.A, i.e., if it did notexist, atokencopiedin F1might
passthroughX1 andA andcatchupwith anothertokenin box
2. Its executiontiming is shown in Fig. 5(d). The timing of
working phasesis equivalent to (b). Idle phasescanbe exe-
cutedin parallelwith as many micro-operationsas possible.
Any idle phase,however, is not executedin parallelwith any
otheridle phasesinceworking andidle phasesrepresentedby
four-phasedependency graphsaresymmetric.

Applying this transformationto a simple loop in a two-
phasedependency graphdoesnotaffecttheconnectivity of this
loopandotherpartsof thegraph,sincethetransformationdoes
not changethe contentsof boxes,which arethe only partsin
theloop connectedto otherparts.We canthereforesafelyap-
ply the transformationto every simpleloop without affecting
any connectivity. Hence,four-phasedependency graphscanbe
obtainedby applyingthe transformationto every simpleloop
in thegiventwo-phasedependency graphs.

The outline of the transformationalgorithm can be de-
scribedasfollows:

1. Finding every simple loop in the specifieddependency
graph.

2. For eachsimpleloop:

(a) Matchingtheloop to thepatternof Fig. 5(a).

(b) Transformingtheloop to theform of Fig. 5(c).

Obviously, in the way of the transformation,the graphbeing
transformedincludestwo-phasepartandfour-phasepartat the
sametime. Thatdoesnot,however, preventthealgorithmfrom
beingappliedbecauseany four-phasepartin a two-phasesim-
ple loop is hiddenin theboxes1, 2 or 3.

Although we can prove that the execution timing of the
transformedfour-phasedependency graphis equivalentto that
of the two-phaseone,spacedid not permit us to describethe
proof.

C. Simplificationof four-phasedependency graphs

Thetransformationdescribedaboveaddsthreefork nodes,
threejoin nodesandthreetokenexchangerwhile removingone
tokeninitial positionfor eachsimpleloop. Transformedgraphs
mayincludesomeredundancy, whichshouldbeeliminatedfor
reducinghardwarevolumeof themappedcircuits.

If box 2 is empty, thepathfrom F1 to J3is redundantand
canbeeliminated,andthereforethefeedbackpathfrom F3 to
J1,which is for avoidanceof catchingup in box 2 mentioned
above, canalsobe eliminated.Further, if box 2 consistsof a
sequenceof any numberof fork nodesfollowedby asequence
of any numberof join nodes,thefork nodesandthejoin nodes
canbeunifiedwith F1 andJ3in Fig. 5(c) respectively, andthe
pathfrom F1 to J3andthefeedbackpathfrom F3 to J1canbe
eliminatedbecauseof thesamereason.

Applying the transformationandsimplification rules,we
canobtainthe four-phasedependency graphin Fig. 3(a) from
thetwo-phaseonein Fig. 2(a).
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D. Example

Considerthepipelinetwo-phasedependency graphshown
in Fig. 6(a). It specifiesnot only parallelexecutionof B and
(C, D), but pipelineexecutionof A and(E, F), (A, C) andE,
andD andF.

We first transformthe simple loop indicatedas the light
gray region. The dark gray regionscorrespondto the boxes
1, 2 and3 in Fig. 5(a). By applying the transformationrule
describedabove,theloop is transformedinto thelight grayre-
gion of Fig. 5(b). The mediumgray region representsnodes
andedgesaddedby the transformation.Other fork and join
nodesin the light gray region areaddedby transformationof
otherloops. Note that thetransformationdoesnot changethe
darkgrayregions.By applyingthetransformationruleto three
othersimple loops,we obtainFig. 6(b) asthe four-phasede-
pendency graph.

Thegraphincludessomeredundancy. For example,since
edgee1 is redundant,the edgeandthe feedbackpathinclud-
ing X1 canbe eliminated. The four-phasedependency graph

shown in Fig. 6(c) is obtainedby applying suchsimplifica-
tion. Thisgraphcanbeeasilymappedontoa four-phaseasyn-
chronouscontrol circuit using the correspondencedescribed
above.

IV. CONCLUSION

We have proposeda methodof synthesizingpipelinecon-
trollersasfour-phaseasynchronouscircuitsfromspecifications
describedas two-phase(conventional) dependency graphs.
Pipeline two-phasedependency graphsare transformedinto
four-phaseonesby applyingatransformationrule to eachsim-
ple loop in thegraphs.four-phasedependency graphsareeas-
ily mappedontofour-phaseasynchronouscontrolcircuits.We
have alsodiscussedsomesimplificationof four-phasedepen-
dency graphs.

Wehavenotdiscussedtransformationof dependency graphs
that include conditionalbranches.To synthesizemoreprac-
tical circuits, we have to expandthe methodto suchclasses



of dependency graphs. It may be achieved by modifying the
transformationrule sothat it canhandlemoregenericform of
loopsincludingbranchingnodes.
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