
High-Level Design for Asynchronous Logic

Ross Smith, Michiel Ligthart
Theseus Logic

{ross.smith, michiel.ligthart}@theseus.com

Abstract
Asynchronous, self-timed, logic is often eschewed
in digital design because of its ad-hoc
methodologies and lack of available design tools.
This paper describes a complete High Level
Design flow for asynchronous circuits based on
Register Transfer Level (RTL) VHDL using
commercial simulation and synthesis tools.
Contrary to previous asynchronous approaches,
the proposed RTL methodology closely resembles
familiar synchronous design styles.

1.0 Introduction
In 1997, the Semiconductor Industry Association
(SIA) identified a major design crisis approaching in
its “National Technology Road Map for
Semiconductors” [Sia97]. Specifically, they
mentioned the drastic increase of clock frequency and
the exponential increase of circuit complexity, and
concluded that a novel asynchronous approach could
be required to solve some of the industry’s future
problems. Additionally, the trend towards Systems-
On-Chip (SOC) technology may very well encourage
the use of asynchronous design in the electronics
industry. The prime goal of SOC technology is to
create truly reusable Intellectual Property (IP) blocks
that can be built quickly and are guaranteed to work
the first time. Together with high quality IP pieces,
an overall design methodology should provide a
simple means for IP assembly, based on plug and
play principles. Clock free, asynchronous circuits
constitute an attractive SOC approach. From the
system’s architecture point of view, it is much easier
to build SOCs using asynchronous rather than
synchronous blocks where multiple clock domains
need to be interfaced.

As it turns out, several promising asynchronous
design methodologies have been proposed over the
past ten years. Excellent overviews of the state-of-
the-art can be found in [Berkel99], [Hauck95] and
[Nanya93]. However, most of these asynchronous
design methodologies lack easily accessible, standard
High Level Design tools based on conventional
Hardware Description Languages.

This paper introduces a complete High Level Design
methodology for asynchronous, self-timed circuits
based on a Register Transfer Level (RTL) description
in VHDL1 as illustrated in figure 1. The paper is
organized as follows. We start with a description of
an asynchronous design methodology called NULL
Convention Logic (NCL) and its relation to other
delay-insensitive techniques. Next, we describe an
RTL simulation environment implemented with off-
the-shelf IEEE 1076/1164 compliant VHDL
simulators. We continue with an explanation of how
this HDL description is used with a commercial
Logic Synthesis tool such as Design Compiler to
synthesize an optimized, asynchronous netlist ready
for Place and Route. The result section compares
several manual designs with synthesized results, as
well as synthesized asynchronous designs with
synthesized synchronous designs.

2.0
NULL C
that yield
circuits a
synchron
alternatin
wavefron

1 The ap

ModelSim

Figure 1:

NULL Convention Logic
onvention Logic (NCL) [Fant96] is a logic
s inherently asynchronous, delay insensitive
nd systems. In an NCL design each gate is a
ization node, managing the interaction of
g DATA and NULL wavefronts. DATA
ts contain the computational information

proach is also applicable to Verilog HDL.

VHDL

HDL Compiler
Design Compiler .db

library

Ensemble

Place & Route

 HLD flow for asynchronous design in NCL.

mailto:michiel.ligthart}@theseus.com

and are processed by the gates to perform the desired
data transformation. NULL wavefronts do not
contain any computational information and are used
to separate successive DATA wavefronts. The
wavefront flow and interaction is managed through
an asynchronous acknowledge / request signaling
protocol. This request-acknowledgement protocol is
illustrated in figure 2. When the outputs of the circuit
are all DATA, the completion detection circuit
signals a request for NULL to the inputs. When all
outputs of the circuit are at NULL, a request for new
DATA is issued by the same completion detection
circuitry.

The representation of NCL gates in a three-level
logic is called 3NCL. Although 3NCL is a
convenient mathematical abstraction, it has no
efficient physical implementation due to the binary
nature of signals used in design practice. For
physical implementation each signal a in 3NCL is
represented by two wires a.rail1 and a.rail0 in a
circuit under the following encoding of 3NCL
symbolic values:

a=’1’ ⇔ a.rail1=’1’, a.rail0=’0’;
a=’0’ ⇔ a.rail1=’0’, a.rail0=’1’;
a=’N’ ⇔ a.rail1=’0’, a.rail0=’0’.

In NCL, this behavior is pushed down to the level of
each particular gate of a circuit. If the current ouput
of a gate is NULL then the gate keeps its output at
NULL as long as NULL is present at any one of its
inputs. When all gate inputs receive DATA, the
output of the gate changes to DATA. The output
then maintains DATA until all inputs receive NULL
before changing to NULL.

This behavior is naturally expressed in a multi-valued
logic with ‘1’ and ‘0’ as DATA values and ‘N’ for
NULL. The behavior of a 2-input gate in NCL is
shown in figure 3. Notice how the NCL gate
switches differently depending on the current value
of the output. This sequential behavior of the gates is
referred to as hysteresis.

current value of
output Z is

NULL

 current value of
output Z is

DATA
a b z a b z
D D D D D D
D N N D N D
N D N N D D
N N N N N N

Figure 3. Symbolic tables for 2-input NCL gates.

The combination of values a.rail1 = ’1’,
a.rail0 = ’1’ is not used. This encoding is
known as a dual-rail encoding [Sims58].

Implementation of 3NCL logic through a dual-rail
encoding, called 2NCL, gives a physical
representation of NCL. Sequential behavior of a gate
in 2NCL is ensured through a feedback from the
gate’s output to its inputs, which allows
representation of the gate’s behavior by the logic
equation

g = S + g R

where S and R are the set and reset functions of the
gate. A general view on semi-static CMOS
implementations of gates in 2NCL is shown in figure
4a.

A refined picture of a gate’s structure is obtained
through consideration of specific properties of dual-
rail circuits under two-phase (set and reset) operation.
These properties are:

1.0 In a dual-rail circuit a transition from NULL
to DATA is monotonic; and
2.0 The transition of primary inputs of a
combinational circuit from DATA to NULL results in
the setting of all gates in a circuit into the NULL state

From (1) it follows that a set function S of a gate
must be positive unate [Brayton90]. Set conditions
for NCL gates are conveniently specified with
threshold functions, a particular subclass of unate
functions. A threshold function S is one that can be
defined by a system of inequalities: S(x1,…,xn) = 1 iff
w1x1 + w2x2 + … + wnxn ≥ m, where wi are the
weights, m is the threshold value and “+” is an
arithmetic sum. In the case where all weights are
equal to ‘1’ a threshold function can be characterized
by two numbers: i) n – number of inputs, and ii) m –

Completion
detection

Re
gist
er

Re
gist
er

Combinational
circuitry

Request for DATA/NULL
Completion

detection

Re
gist
er

Re
gist
er

Combinational
circuitry

Request for DATA/NULL

Figure 2. Basic NCL circuit with REQ/ACK.

the threshold value. This simplified representation is
called an m-of-n threshold function.

The reset function for an NCL gate follows from
point (2). An NCL gate changes its output to NULL
when all its inputs are NULL. Bearing in mind that
DATA values at inputs of a gate are encoded by “01”
or “10” we arrive at

R(x1,…,xn) = x1 ∨ x2 ∨ …∨ xn

A refined view on the implementation of a 2NCL
gate is shown in figure 4(b). In this paper, we refer
to this implementation as a threshold gate with
hysteresis. Actual CMOS implementations of these
kinds of gates are described in [Sobelman98].

3.0 RTL design for NCL
RTL descriptions of asynchronous designs should
closely match common synchronous description
styles, with minor adjustments to account for the
asynchronous behavior. For NCL this means the
RTL description style has to account for:

• NULL/DATA behavior
• Hysteresis
• Asynchronous registers with REQ/ACK

signals

In addition, to stay at an acceptable level of
abstraction, designs should be described in 3NCL
(multi-value abstraction) rather than 2NCL (dual-rail
implementation).

These requirements are met with the following HDL
coding rules:

• Introduce a 3-valued logic type with values
{‘N’, ‘1’, ‘0’}.

• Use a simulation-only assignment inside
processes to describe the NULL/DATA and
hysteresis behavior.

• Rely on logic synthesis to expand signals

into their dual-rail equivalents.

• Use a pre-defined and pre-mapped function
call for the req/ack circuit generation used
with asynchronous registers.

These rules allow the designer to use a familiar style
of VHDL (if-then-else, case, arithmetic and relational
operators, process as well as dataflow assignments,
register inferencing, etc.). An example of a 3NCL
circuit described in VHDL is shown in figure 5.

The following three sub-sections discuss the
simulation and synthesis implications of this
approach.

3.1 Simulation

During simulation, NULL/DATA behavior and
hysteresis are modeled with an NCL-specific
simulation package ‘ncl_logic’.

The package defines a type NCL_LOGIC,
completely analogous to the IEEE 1076/1164
STD_LOGIC type, with the addition of a new value
‘N’ for NULL:

type ncl_logic IS (
 'U','X','0','1','N','Z','-');

type ncl_logic_vector is array (
natural range <>) OF ncl_logic;

library ncl;
use ncl.ncl_logic.all;
entity example is
 port (a,b,s : in ncl_logic;
 z : out ncl_logic);
end example;
architecture ncl of example is begin
 process (a,b,s) begin
 if s = '1' then
 z <= a;
 else
 z <= b;
 end if;
 hysteresis(a,b,s,z);
 end process;
end ncl;

 Figure 5. Example of a 3NCL description in VHDL.

Figure 4. Implementation of an NCL gate in CMOS.

p-tree

n-tree

Set
function

function
Reset

. .
 .x1

xn

g

n-tree
m-of-n

function. .
 .x1

xn

g

threshold

a) b)

+ z
a

b

zack

ncl
register

req
cmpd

Based on this type, all basic Boolean functions (and,
nand, or, nor, etc.) as well as conversion functions
defined in the IEEE 1076/1164 ‘std_logic’ package
are overloaded for NCL_LOGIC and
NCL_LOGIC_VECTOR.
Hysteresis functionality is provided through a pre-
defined procedure, which is included in the
‘ncl_logic’ package. This procedure is called at the
end of every process or dataflow statement with all
input and output process signals as parameters.
Because hysteresis is an inherent characteristic of
NCL’s threshold gates, it should not be synthesized.
Therefore, the hysteresis procedure is surrounded by
‘synthesis on/off’ pragmas. In pseudo-VHDL code,
this looks as follows:

hysteresis (input_signals, output_signal)
-- synthesis_off
 if (all input_signals = 'N') then
 output_signal <= 'N';
 elsif (any input_signals = 'N') then
 output_signal <= output_signal;
 end if;
-- synthesis_on

The function causes the output signal to be modified
only when the inputs are either all NULL or all
DATA. The hysteresis function is invoked as the last
statement in a process as shown in figure 5, or on
concurrent signal assignments as follows :

z <= a and b when hysteresis(a&b)
else unaffected;

Analogous to STD_LOGIC, NCL_LOGIC also has
support for arithmetic packages

• NCL_ARITH
• NCL_SIGNED
• NCL_UNSIGNED

with full support for all arithmetic and relational
operators.

With this functionality, we can now describe 3NCL
circuits in VHDL and simulate them with any IEEE
1076/1164 compliant simulator. For improved
performance, NCL packages can be pre-compiled and
linked with the simulator just like STD packages.

3.2 Synthesis

In order to use conventional logic synthesis tools for
NCL, the flow has to handle:

• The ‘N’ value in NCL_LOGIC
• Hysteresis

• Asynchronous registers with ACK/REQ
signals

The first issue can be handled by treating the ‘N’
value in NCL_LOGIC as a ‘-’ (don’t care) value.
This enables tools such as Design Compiler to treat a
3NCL variable as a single wire. Hence, the same
3NCL description used for simulation purposes can
now be used as input for logic synthesis.

Hysteresis is completely ignored during logic
optimization and technology mapping. Because
every node in the network has hysteresis, the
combination of two nodes with hysteresis results in a
new node with hysteresis. Likewise, if a node with
hysteresis is split into two nodes, the two nodes will
both have hysteresis. Hysteresis is also ignored
during technology mapping, because every library
cell has hysteresis. If a node in a network is mapped
onto one or more cells from a library, each mapped
cell will have hysteresis. Therefore, the functionality
of the cells in the library is described without
hysteresis as well.

Asynchronous registers can be inferenced with an
incompletely specified ‘if (condition)
then (assignment)’ statement, which
synchronous synthesis tools map to a D-LATCH
primitive. For NCL purposes, the primitive is
overloaded with an asynchronous register with pins
IN, OUT, and REQ (RST is optional). Completion
detection, which produces Request and Acknowledge
signals, is provided through a pre-defined function
call CMPD() as illustrated in figure 6.

 process (req, a, b, z) begin
 if (req = ‘1’) then
 z <= a + b;
 end if;
 zack <= cmpd(z);
 hysteresis (req, a, b, z);
 end process;

By ignoring the ‘N’ value and hysteresis, logic
synthesis for NCL is reduced to a standard synthesis

Figure 6. HDL code and synthesized circuit
of inferred asynchronous register.

problem that can use commercial synthesis tools.
The logic synthesis for NCL is implemented in two
steps (see also figure 7):

1) Translate 3NCL RTL into a 3NCL netlist

The circuit description in 3NCL, using the multi-
valued NCL_LOGIC type, is input to a commercial
synthesis tool, e.g., Design Compiler. The synthesis
tool optimizes the HDL and maps it to a generic
Boolean library. Dataflow components, such as
adders, incrementors, and comparators are mapped
on built-in DesignWare components. The resulting
netlist is referred to as a 3NCL netlist. Note that the
signals in this 3NCL netlist are still of the type
NCL_LOGIC, i.e., can carry values ‘0’, ‘1’, and ‘N’.

2) Translate 3NCL into a 2NCL netlist

In the second step, the intermediate 3NCL netlist is
expanded into a fully dual-rail 2NCL netlist by
redefining all signals as dual-rail signals, and
overloading all generic Boolean components (AND,
OR, XOR, INV, MUX etc.) with dual-rail
equivalents. The actual expansion is described in a
VHDL package that is read before the 3NCL code
from step 1 is read. Like step 1, the 2NCL
transformation in step 2 is done with a commercial
synthesis tool. At this point, the original 3NCL
behavioral description has been transformed into a
fully dual-rail gate level representation, with
preservation of arithmetic functions.

Step 2 subsequently reads in a standard synthesis
library with threshold gates and performs ASIC-type
optimization and technology mapping.

The dual rail definition is provided in a package
which is read in together with the intermediate 3NCL
netlist. This package describes a dual rail signal as a
record and overloads the basic components for dual
rail implementations:

type dual_rail_logic is record
 rail1 : std_logic ;
 rail0 : std_logic ;
end record;

function "and" (a,b: dual_rail_logic)

return r: dual_rail_logic;
 r.rail1 <= a.rail1 and b.rail1;
 r.rail0 <= (a.rail0 and b.rail0) or
 (a.rail0 and b.rail1) or
 (a.rail1 and b.rail0);
end and;

3.3 Design Compiler scripts and libraries

The flow described above has been implemented in
Design Compiler (DC) scripts and libraries that are
transparent to the designer. An NCL library is
identical to any other .db library compiled for DC
and contains gate functionality, timing parameters,
and wire load models.

Setting up DC to run with NCL and perform the
actual dual rail expansion is implemented in two
scripts ‘ncl_init’ and ‘ncl_compile’. Figure 8 shows
how a VHDL description is mapped and optimized
for NCL in DC. NCL commands are in italic
typeface.

> ncl_init
> read –f vhdl ifthen.vhd
> ncl_compile
> read –f db ncl_25.db
> target_library = ncl_25.db
> link_library = ncl_25.db
> symbol_library = generic.sbd
> compile

Figure 8. Design Compiler script for NCL circuit
synthesis.

4.0 Results
Table 1 compares manual NCL design using
schematic capture with synthesized NCL designs.
The synthesized designs were written in VHDL and

L

mpiler

ign Compiler

dual rail
definition

L
t

2NCL
netlist
VHD

generic
library

Design Co

Des

3NC
netlis

NCL
library
optimized with DC. As expected, synthesis generates
Figure 7. Two-step implementation of logic
synthesis for NCL.

excellent results compared with manual design. Area
results are in number of transistors.

design manual synthesis ratio
if-then-else 40 40 100 %
and4 66 68 103 %
test7 140 122 87 %
clipper 339 208 61 %
set_cnt 238 202 85 %
and16 352 336 95 %
shift 506 284 56 %
case 594 482 81 %
sync_state 1008 814 81 %
bit_cnt 1059 1072 101 %

Table 1: Comparison of manual and synthesized
asynchronous designs (area is in transistors).

Table 2 compares synthesized NCL circuits with
synthesized clocked circuits, mapped on an
equivalent LCB500k library [Lsi95]. 'X2vhd' is a 16-
bit arithmetic limit/round operation that is purely
combinational and hence the synchronous and
asynchronous VHDL descriptions are identical. The
‘decoder’ example is a Viterbi decoder where the
asynchronous VHDL description is a straight
translation from the synchronous VHDL. The,
‘hostfird’ example is a thirty-two by 16-bit
unidirectional FIFO buffer which was redesigned for
NCL. The gate count is the number of actual library
gates. Notice that the gate count of ‘hostfird’, which
was redesigned for NCL, is comparable to the gate
count of the synchronous design, whereas straight re-
implementations done for ‘X2vhd’ and ‘decoder’
generate much larger designs.

 number of gates
module synchr NCL ratio

addrconv 41 62 1.5
X2vhd 395 826 2.1
decoder 1010 1804 1.8
hostfird 1691 1123 0.7

Table 2. Comparison of synthesized synchronous
and NCL designs.

5.0 Summary
In this paper, we have introduced a flow to simulate
and synthesize asynchronous, delay-insensitive
circuits with commercial EDA tools identical to the
flow used for synchronous circuits. An RTL
description of an asynchronous circuit in VHDL can
be simulated with any IEEE 1076/1164 compliant
simulator and synthesized with a commercial

synthesis tool such as Design Compiler. The
resulting netlist, mapped on a standard cell library of
threshold gates, is ready for automatic place and
route. The availability of this flow will make
asynchronous circuit design easier to adopt.

Acknowledgements

Many people provided us with invaluable feedback
during the development of our NCL simulation and
synthesis flow. Special thanks go to Kelvin Lwin
and Tam Nguyen for implementing the packages and
running the experiments. Alexander Taubin and
Alex Kondratyev contributed the section on NCL.

References
[Berkel99] ‘Special issue on asynchronous circuits
and systems’ C. H. (Kees) van Berkel, Mark B.
Josephs, and Steven M. Nowick, eds., Proceedings of
the IEEE, 87(2), February 1999.
[Brayton90] R. K. Brayton, G.D. Hachtel, and A.L.
Sangiovanni-Vincentelli. Multilevel Logic
Synthesis. Proceedings of the IEEE, Vol.78, No.2,
February 1990, pp. 264-300
[Fant96] Karl M. Fant and Scott A. Brandt. NULL
conventional logic: A complete and consistent logic
for asynchronous digital circuit synthesis.
International Conference on Application-specific
Systems, Architectures, and Processors, pages 261-
273, 1996.
[Hauck95] Scott Hauck. Asynchronous design
methodologies: An overview. Proceedings of the
IEEE, 83(1): 69-93, January 1995.
[Lsi95] LCB500K Preliminary Design Manual, LSI
Logic Corporation, Milpitas, CA, 1995.
[Nanya93] Takashi Nanya, ‘Challenges to
dependable asynchronous processor design’, in
Logic Synthesis and Optimization, Tsutomu Sasao,
editor, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1993.
[Sia97] Semiconductor Industry Association, “The
National Technology Road Map for Semiconductors’,
1997 Edition
[Sims58] C. Sims and H. J. Gray. Design criteria for
autosynchronous circuits. Proc. Eastern Joint
Computer Conf. (AFIPS), volume 14, pages 94-99,
December 1958.
[Sobelman98] Gerald E. Sobelman and Karl Fant.
CMOS circuit design of threshold gates with
hysteresis. Proc. International Symposium on
Circuits and Systems, pages 61-64, June 1998.

	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

