Eliminating Isochronic-Fork Constraints in
Quasi-Delay-Insensitive Circuits

Nattha Sretasereekul

RCAST
The University of Tokyo
Tokyo, 153-8904
Tel: +81-3-5452-5167
Fax: +81-3-5452-5161
nattha@hal.rcast.u-tokyo.ac.jp

Abstract— The Quasi-Delay-Insensitive (QDI) model
The
isochronic-fork assumption requires uniform wire de-

assumes that all the forks are isochronic.
lays and uniform switching thresholds of the gates
associated with the forking branches. This paper
presents a method for determining such forks that
do not have to satisfy the isochronic fork require-
ments, and presents experimental results that show
many isochronic forks assumed for existing QDI cir-
cuits do not actually have to be “isochronic”or can be
even ignored.

I. INTRODUCTION

Delay-insensitive (DI) circuits are a class of asyn-
chronous circuits whose correct operation is independent
of any delays in gates and wires. The delay insensitivity
is attractive, especially with deep-submicron technologies
in which uncertainty in process parameters may increase.

In practice, however, the class of completely DI cir-
cuits is extremely limited [1]. Then as a compromise, the
isochronic fork assumption is introduced. DI circuits with
the isochronic-fork assumption are known as quasi-delay-
insensitive (QDI) circuits.

The isochronic-fork assumption requires uniform wire
delays and uniform thresholds of gates in VLSI fabrica-
tion [1, 2]. As a matter of fact, several methods to make
sure the validity of the isochronic-fork assumption have
been proposed [2, 3]. However, careful examination of
possible transition races caused by different branches of
an isochronic fork leads us to an observation that some of
the isochronic forks do not have to be satisfied.

This paper presents a method for determining such
isochronic forks, and presents experimental results that
show many isochronic forks assumed for existing QDI cir-
cuits do not actually have to be “isochronic” or can be
even ignored.

Takashi Nanya

RCAST
The University of Tokyo
Tokyo, 153-8904
Tel: +81-3-5452-5160
Fax: +81-3-5452-5161
nanya@hal.rcast.u-tokyo.ac.jp

II. QDI circulTs

A digital circuit is called the delay-insensitive circuit if
its correct operation does not depend on delays in circuit
elements, i.e., gates and wires. This behavior strictly relies
on the acknowledgment requirement that every transition
on each circuit variable must be acknowledged by causing
a transition on some other circuit variable.

Since DI circuits can be built from only C-elements,
single input gates (buffers and inverters) and wires, only
a small class of circuits is allowed [1]. In practice, com-
binatorial gates (such as AND, OR, etc.) and forks (or
branched wires) are necessary to construct any useful cir-
cuits. The branched wires which are connected to the
combinatorial gates always cause unacknowledged transi-
tions that make the circuit lose delay-insensitivity, and
may cause unexpected hazards.

Quasi-delay-insensitive (QDI) circuits are delay-
insensitive under the isochronic-fork assumption. The
isochronic fork has been defined in terms of acknowledg-
ment by Martin [1] as follows.

“In an isochronic fork, when a transition on one
output is acknowledged, and thus completed, the
transitions on all outputs are acknowledged, and
thus completed.”

The introduction of the isochronic-fork assumption to
the DI model is sufficient to construct any useful circuits.

III. DON'T-WORRY ISOCHRONIC FORKS

By its definition, the implementation of an isochronic
fork requires that all the branches have the same wire
delay and all the receiving gates have the same switch-
ing threshold. These requirements may be difficult to be
satisfied in practice. However, when we carefully exam-
ine isochronic forks and properties of the gates driven by
these forks, we see that some of the claimed isochronic
forks do not actually have to be isochronic since they do
not introduce any hazard to the circuit. Such isochronic
forks are called don’t-worry isochronic forks, for which we

transition race pair

S R () S,
L0y
b2 1->0

Fig. 1. An isochronic fork and a transition race pair.

do not have to worry about any delay constraints for their
implementation.

Since unacknowledged transitions may cause hazards,
we examine all possible transition races caused by these
transitions. Fig.1 shows an isochronic fork with branches
bl and b2. Suppose the down-going transition of bl (ex-
pressed as bl—) is unacknowledged. Since bl—, without
isochronic-fork constraints, is not guaranteed to occur at
the expected time, the transition races between b1— and
other input transitions of G2 must be examined. That
is the transition races between b1— and y—, and between
bl— and y+ are examined whether they cause hazards or
not. For the ease of later referring, we call each transition
race a transition race pair.

We can observe that if the gate G2 in Fig.1 is the
n-input gate, the unacknowledged transition bl— causes
2(n — 1) transition race pairs to be checked. Since we an-
alyze, at a time, one unacknowledged transition such as
bl—, it is sufficient to consider only pairs of transitions
formed by b1—.

A transition race pair is called a do-worry transition
race pair if it can possibly cause hazards, and is called a
don’t-worry transition race pair if it can cause no hazard.
There are three conditions for a transition race pair to be
hazard-free, thus don’t-worry.

Condition 1: The transition race does not constitute any
multiple input change for a function hazard.

We know that a transition race of inputs of a 2-input
AND gate is always hazard-free when the transition race
is 00 — 11 or 11 — 00, but may possibly cause static-0-
hazard when the transition race is 01 — 10 or 10 — 01. In
Fig.1, if the transition race of inputs of G2 is always 00 —
11 or 11 — 00, this isochronic fork becomes don’t-worry.
In contrast, if the transition race can be 01 — 10 or 10
— 01, this isochronic fork is do-worry. Similar arguments
hold for general case of n-input gates and n>2.

Condition 2: The transition race occurs when the gate
ts disabled.

In addition to condition 1, in case of n-input gates, any
transition race pairs can not cause any hazards when the

gates are disabled.
The last condition needs the single assumption below:

A single wire delay is less than any delay of signal prop-
agation path that passes through the environment outside
the circuit.

In Fig.1, when transition race pair (bl—,y+) occurs,
the transition race can be hazard-free under the constraint
that the delay of the path from x— to b1— is less than the
delay of the path from z— to y+. Therefore, a transition
race pair is considered to be hazard-free if its constraint
satisfies the following condition.

Condition 3: If path dl is a wire inside the circuit while
path d2 passes through the environment outside the circuit,
then the constraint that requires (delay of d1) < (delay of
d2) is already satisfied.

IV. ALGORITHMS

Given a logic gate net-list and its behavior specification,
we search the forks, determine whether these forks have to
be isochronic or not, examine whether the isochronic forks
are do-worry or don’t-worry, and derive layout constraints
for implementing the do-worry isochronic forks to ensure
DI correct operations.

In this paper, the logic gate net-list in BLIF [4] format
and its behavior specification in STG format are used.

A. Determining forks

Since a circuit under consideration must be closed, a
given gate logic net-list (BLIF) is transformed into the
closed circuit by representing the environment of the cir-
cuit as gates. From the closed circuit, the forks can be
determined as follows.

Assume a closed circuit net-list S=(V,E), where V is
a set of circuit variables v, va, ..., v, and E is a set of
circuit elements eq, es, ..., €,,. Each variable is the output
of one element, but may be the input of one element or
more elements. The variable that is the input of more than
one element introduces a fork. We define fork elements as
follows.

Definition Let x be a variable of a closed circuit. If x
is the input of elements ey, ea, ..., ey, where b>2, then x
1s said to be the input of the fork f; which has renamed

branched wires fi1, fio, ...,fip as outputs.
X
X, tog Xt _]ti_'l_,toel
X,toe, 2 ,toe,

. > (]
rename
. .

I_XJO% I_be_, toe

Procedure DFORKS(V,E)
Inputs: A logic net-list S = (V, E) in BLIF format.
Outputs: A logic net-list S’ = (V', E’) including forks
as circuit elements in BLIF format.
Operations: Find forks, add forks as gates to BLIF,
and rename branched wires of forks.

1 foreach variable v; € V do
2 b=0
3 foreach element e; € E do
4 if v; € {inputs of e;} then
5 b = b + the number of inputs of e; that
are fed by v;
end if
end foreach
6 if b > 2 then
7 create_fork(v;, b)
8 rename(v;)
end if

end foreach

Fig. 2. Algorithm for determining forks in a closed circuit.

A fork element will be considered as a gate, but it is
different from the normal gates in the sense that it has
multiple outputs while the normal gates have only one
output. A k-input gate can be expressed as [i1, iz, ..., i ;
o1], while a b-output fork can be expressed as [i1 ; o1, 02,
.., 0p]. We use “” to separate inputs and outputs of the
gate.

Procedure DFORKS of Fig.2 shows the algorithm for
determining forks in a closed circuit. The output of the
procedure will be the new logic net-list S’=(V’, E’) that
includes forks in BLIF format.

For each variable v; € V, an auxiliary b is used for
counting the number of possible branches of v;. A variable
v; may be fed to one or more inputs of an element e;. If b >
2, the fork element with input v; is created by the function
create_fork(), and the name of v; at the corresponding
elements is changed by the function rename().

This algorithm performs in O(n?), where n is the num-
ber of circuits variables. After applying this algorithm,
the number of variables increases to be n’ because branch
variables of forks and fork elements are added. n’ is equal
to the number of fan-ins of gates in the net-list.

B. Determining isochronic forks

A fork that contains at least one unacknowledged
branch transition is an isochronic fork. In this paper,
we introduce the extended STG (E-STG) to determine
isochronic forks. The E-STG is the STG that has been
added the consideration of forks. We can easily identify
the unacknowledged branch transitions from the E-STG.

Procedure DISOF of Fig.3 shows the algorithm for de-
termining isochronic forks. Inputs for the procedure are
the logic net-list created by procedure DFORKS, STG,
and gate logic function and properties. Outputs of the

Procedure DISOF(V’, E’, init, start)
Inputs: A logic net-list (created by DFORKS)
S’ = (V', E') in BLIF format,
STG,
gate logic function and properties.
Outputs: An extended STG G = (Gs,Gp),
a sequence of circuit states B,
a set of unacknowledged transitions U.
Operations: Create a sequence of circuit states,
create E-STG, and then
unacknowledged transitions are
informed by E-STG.

1 U={}

2 foreach variable v; € V' do
3 EQ[i] = create_equation(v;)
end foreach

4 P =N =1init

5 N = start

6 B=BUN

7 while (N # P) and (N # init) do
8

P=N
9 N = compute_new_state(EQ)
10 B=BUN
11 for (i=1,2,...,n')do
12 if N[i] # P[i] then
13 T = transitions(N|i], P)
14 G=GUT
end if
end for
end while
15 foreach d € Gp do
16 if d ¢ Gs then
17 U=U\{d}
end if
end for

Fig. 3. Algorithm for determining isochronic forks.

procedure are an E-STG, a sequence of circuit states and
a set of unacknowledged transitions.

In the DISOF procedure, start represents the start con-
ditions. The start conditions of a circuit can be deter-
mined from the initial marking of the given STG. For ex-
ample, for a circuit with initial marking “.marking { A+,
B+}”, there are two start conditions: starting with A+
and starting with B+. We analyze the circuit with each
start condition separately, and then combine all results
together at the last step.

An equation set EQ is an auxiliary array that is used for
computing the next value of V’. EQ][i] is the output logic
function of the element whose output is v;. The value of
EQJi] is computed from the element input variable values
in the present state.

Each variable v; € V' of the net-list has its own equation
that is created by the function create_equation() (line 3).

An auxiliary array P is used for keeping the value of

each variable v; € V' in the present state. An auxiliary
array N is used for keeping the value of each variable
v; € V' in the next state. Each element of P and N are
initially settled to have the same value with each element
of init which is the array that keeps the initial values of the
circuit (line 4). Then the element of N that corresponds
to start is settled to have the start value (line 5).

For each time we analyze the circuit with each start con-
dition, a set B keeps a sequence of circuit states (events).
Note each B is not the full set of the reachable states of
the circuit.

An array G = (Ggs,Gp) is a set of parts of E-STG.
Each part of E-STG is in [source transition , destination
transition] format. Gp is a set of destination transitions
that corresponds to G g that is a set of source transitions.

An auxiliary array T is also in the same format as
G. It is used for keeping the results from the function
transitions(N[i], P) which computes the transitions that
cause the transition of N[i] (line 13). Then it is added
to G (line 14). The transitions that cause the transition
of N[i] can be determined by checking the value of the
each input of FQ[i]. This depends on the properties of
individual gates.

The complete B and G are performed by while loop of
the procedure. The conditions to stop the repetition are
when the circuit gets to the steady state (N = P) or when
the circuit gets back to the initial state (N = init).

While the repetition do not get to the stop condi-
tion, the next state N is computed by the function
compute_new_state(EQ) (line 9), N is added to B (line
10), T is computed if there exist N[i] # P[i] (line 13), and
T is added to G (line 14).

U is a set of unacknowledged transitions. An unac-
knowledged transition can be determined by checking the
sets Gp and Gg. Once a transition occurs (d € Gp),
but never causes any other transition (d ¢ Gg) , then
this transition is determined to be unacknowledged. A set
of isochronic forks is automatically informed by a set of
unacknowledged transitions.

This algorithm performs in O((n')?). The worst case is
of line 16 (checking each destination transition with source
transitions).

C. Determining don’t-worry isochronic forks

The last step is the determination that which isochronic
fork must be satisfied, i.e. the do-worry isochronic fork,
and which isochronic fork do not have to be satisfied, i.e.
the don’t-worry Isochronic fork. The conditions described
in section (III) are used in this determination.

Procedure DCNST of Fig.4 shows the algorithm for de-
termining don’t-worry and do-worry isochronic forks, and
creating layout constraints for the do-worry ones. Inputs
for the procedure are a logic net-list S’ = (V', E’), an ex-
tended STG G = (Gs,Gp), a sequence of circuit states
B, a set of unacknowledged transitions U, and gate haz-

Procedure DCNST(V', E’',G, B,U)
Inputs: A logic net-list (created by DFORKS)
S" = (V', E') in BLIF format,
an extended STG G = (Gg,Gp),
a sequence of circuit states B,
a set of unacknowledged transitions U,
gate hazard properties.
Outputs: Layout constraints for worried
isochronic forks.
Operations: Select hazardous gates,
create transition race pairs,
examine each race pair is hazardous
or hazard-free, and
create layout constraints for
the hazardous transition race pairs.

1 RPAIR={}

2 foreach e € E' do
3 if Ju € U such that u.name € V'
and w.name € { inputs of e } then

4 R = create_race_pair(u, e)
5 RPAIR = RPAIR |JR

end if

end foreach

6 foreach r € RPAIR do
7 if ck_hz free(r, B) = true then
8 RPAIR = RPAIR — {r}
9 elseif ck_gdisable(r, B) = true then
10 RPAIR = RPAIR — {r}
11 elseif ck_extpath(r, E',G) = true then
12 RPAIR = RPAIR — {r}

else
13 create_constraint(r, G)

end foreach

Fig. 4. Algorithm for determining don’t-worry and do-worry
isochronic forks, and creating layout constraints for the do-worry
ones.

ard properties. The output of the procedure is a set of
do-worry isochronic forks with layout constraints.

An auxiliary array RPAIR is a set of all possible tran-
sition race pairs that are caused by all unacknowledged
transitions. An auxiliary array R is a set of possible tran-
sition race pairs that are caused by unacknowledged tran-
sitions of inputs of each gate e € E’.

An auxiliary variable u represents an unacknowledged
transition consisting of w.name which is the name of
v; € V', and u.tran which is the transition of u.name. If
there exist an input of the gate e € E’ that is an u.name
of u € U, the transition race pairs between u and other
input transitions of the gate is then created by the func-
tion create_race_pair(u, e) that sends the result to R (line
4). Then R is added to RPAIR (line 5).

Next, each transition race pair is checked whether it
satisfies conditions 1, 2 and 3 or not. If the transition
race pair satisfies at least one of these three conditions,
we say that it is the hazard-free transition race pair, and

Fig. 5. The circuit diagram implemented with CB-C10 library [5].

then remove it from the set RPAIR.

Function ck_hz free(r, B) considers each transition race
pair r € RPAIR by using gate hazard properties and the
sequence of events B. This function checks on whether the
transition race pair is satisfying the condition 1 or not.

Function ck_gdisable(r, B) also considers each transi-
tion race pair r € RPAIR by using gate hazard properties
and the sequence of events B. It checks on whether the
gate is satisfying the condition 2 or not.

Function ck_extpath(r, E',G) checks on whether the
paths from the origin of the fork to the gate under con-
sideration are satisfying the condition 3 or not.

Finally, if the transition race pair does not satisfy any
conditions, it must be carefully implemented under the
constraint that one transition must occurs before the other
transition. The constraint is derived by the function
create_constraint(r, G).

This algorithm performs in O((n’)?). The worst case is
of line 7 (checking each transition race pair).

D. An Example

A practical example is shown here. By algorithm
DFORKS, we obtain the new net-list of a controller as
shown in the diagram of Fig.5. The dot lines represent
environment paths. The new name of each branch of forks
is defined.

From this circuit diagram, their E-STG that includes
the consideration of forks are obtained by algorithm
DISOF as shown in Fig.6. In each fork, a branch tran-
sition that is not followed by any transition is unacknowl-
edged. Such a branch transition is identified by a dot cir-
cle. The fork that contains at least one unacknowledged
branch transition is the isochronic fork.

Finally, by algorithm DCNST, we obtain the do-worry
constraints. The result of the analysis is shown in Fig.7.

(L f12+

wil+
falr {taze f4s+

w2+

{f21%) 22+

51+ f52+ i f53+

f21- {f22-}

{53

Fig. 6. The extended STG (E-STG).

We can observe that there exist many unacknowledged
transitions as shown in Fig.6. Among transition race pairs
caused by these unacknowledged transitions, only three
transition race pairs cause do-worry constraints.

To illustrate the elimination, the analysis of fork
f2(Da; f21, f22) of Fig.5 is described as follows. In
Fig.6, since transitions f21+ and f22— are unac-
knowledged, the fork f2(Da; 21, f22) is isochronic.
All transition race pairs caused by these transitions
are examined. The transition race pairs caused by
f21+ are (f21+4, f114), (f21+4, f11-), (f21+4, f314),
(f21+, f31-), (f214, f524+) and (f21+, f52—). The
pairs (f214, f11—), (f214, f314) and (f21+4, f52+)
satisfy condition 1, while the pairs (f21+, f114),
(f21+, f31—) and (f21+4, f52—) satisfy condition 3. That
is there is no hazardous transition race caused by the
unacknowledged transition f21+. With the similar con-
sideration, there is also no hazardous transition race
caused by the unacknowledged transition f22—. Clearly,
the isochronic fork f2(Da; f21, f22) is the don’t-worry
isochronic fork.

Thetotal of transition race pairs = 48

Do-worry constraints are listed below:

(1) transition race pair (f11+,f52+):

Delay(Lat -> f11+) must be less than Delay(Lat+ -> f52+).
Deay(Lat+ ->f52+) is

Deay(Lat ->f12+ ->w1+ ->Dr+ ->f43+ ->w2+ ->Zr+ ->f52+)

(2) transition race pair (f31+,f52-):

Delay(Zat -> f31+) must be less than Delay(Za+ -> f52-).
Delay(Zat+ -> f52-) is

Delay(Zat ->f32+ ->w2- ->Zr- ->f52-)

(3) transition race pair (f11-,f52-):

Deay(La ->f11-) must be less than Delay(La -> f52-).
Delay(La ->f52-) is

Delay(La ->f12- ->w1- ->Dr- ->f43- ->w2- ->Zr- ->f52-)

Fig. 7. The result of isochronic fork analysis.

V. EXPERIMENTAL RESULTS

The algorithms for eliminating isochronic-fork con-
straints presented in the previous section have been im-
plemented. The results obtained from a set of well-known
benchmarks (STGs) are shown in Table I. All circuits are
implemented with CB-C10 library [5] by using Petrify [6].
(Note that the Petrify tool generates speed-independent
(SI) circuits that are equivalent to QDI circuits.)

In Table I, the first column show the name of bench-
mark circuits, the second column shows the number of
isochronic forks and branches (in the parenthesis) and the
third column shows the number of transition race pairs
caused by unacknowledged branch transitions. The fourth
column shows the number of do-worry transition race pairs
which are the results of the proposed algorithms having
been applied to eliminate don’t-worry race pairs.

From Table I, we see that only a small number of do-
worry transition race pairs remain. In addition, some do-
worry transition race pairs are very easy to be satisfied and
therefore, may be ignored. For example, in Fig.7, although
the transition race pair (f11+4, f52+) is determined to
be a do-worry race pair, the constraints required can be
considered to be already satisfied, because the delay of the
path (La+ — f52+) is much larger than the delay of the
path (La+ — f11+).

VI. CONCLUSIONS

We have shown a method to determine which
isochronic-fork constraint does not have to be satisfied
while preserving the DI correct operation. We also pre-
sented algorithms to analyze isochronic forks by introduc-
ing extended state transition graph (E-STG).

The algorithms have been implemented, and some
benchmarks are tried. From the experimental results, we
have shown that many of the isochronic-fork constraints
claimed in QDI design can actually be neglected in the

TABLE I
EXPERIMENTAL RESULTS.
o) do-worry
circuit forks(branches) | racepairs | race pairs
chul33 6(15) 52 3
alloc_outbound 7(18) 54 3
nak_pa 5(18) 68 8
vbe5b 5(13) 54 2
vbe5c 5(12) 48 3
nowick 6(19) 76 0
converta 6(22) 148 12
half 3(7) 14 2

layout or fabrication processes.

Our algorithms can be used for evaluating the safety
level of the technology mapping tools to obtain logic cir-
cuits.

ACKNOWLEDGMENTS

This work was supported in part by the Semiconductor
Technology Academic Research Center(STARC).

REFERENCES

[1] Alain J. Martin, “The Limitations to Delay Insensi-
tivity in Asynchronous Circuits”, 6th MIT Confer-
ence on Advanced Research in VLSI Processes, pp.
263-277, 1990.

[2] Kees van Berkel, “Beware the Isochronic Fork”, IN-
TEGRATION, The VLSI Journal 13, pp.103-128,
1992.

[3] Kees van Berkel, “Stretching Quasi Delay Insensitiv-
ity By Means of Extended Isochronic Forks”, Sec-
ond Working Conference on Asynchronous Design
Methodologies, 1995, pp. 99-106.

[4] University of California Berkeley, “Berkeley Logic
Interchange Format (BLIF)”, http://kalliope.uni-
trier.de/~wagner/html/bdd_html/docu/blif/index.ht

ml

[5] NEC Corporation, “CB-C10 Family 0.25-pgm CMOS
Cell-Based IC (2.5V) Block Library”, July 1999.

[6] J. Cortadella, M. Kishinevsky, A. Kondratyev, L.
Lavagno and A. Yakovlev, “Petrify: a tool for ma-
nipulating concurrent specifications and synthesis of
asynchronous controllers” , IEICE Transactions on In-
formation and Systems, Vol. E80-D, Number 3, pp.
315-325, March 1997.

	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

