
A Computer Aided Engineering System for Memory BIST

Chauchin Su, Shih-Ching Hsiao, Hau-Zen Zhau, and Chung-Len Lee*

Dept. of Electrical Engr., National Central University
Chung-Li, Taiwan 320, R.O.C. ccsu@ee.ncu.edu.tw

Dept. of Electronic Engr., National Chiao-Tung University*
Hsin-Chu, Taiwan 300, R.O.C.

Abstract
Abstract - An integrated memory test system is presented. It
includes a reconfigurable memory test module, a test algorithm
editor, a memory fault simulator, and a test code generator. For
a given memory organization, fault list, and test algorithm, the
system automatically reports the fault coverage, generates
control assembly codes, and produces circuit net list for test
pattern generation. The system has been implemented in 9000
lines of C++ program based on the Microsoft Windows graphic
user interface. It has been verified on different test algorithms
and memory chips.

1. Introduction
For System on Chip (SoC), the integration of memory

and logic on a chip is a significant challenge not only for
design and manufacture but also for test as well. Due to its
smaller feature size than logic circuit, embedded memories
are more likely to be be affected by process imperfection.
Unlike stand-alone memory chips, embedded memories have
practical no control from the chip boundary. Hence, the test
methodology is one of the major issues in SoC testing. With
limited I/O access, Built-in Self-Test (BIST) is an effective
and natural solution. In this paper, we would like to propose
a BIST architecture and it Computer-aided Engineering (CAE)
environment.

An SoC IC has many embedded memories of different
sizes and organization. Here, we would like to focus on
large memories. Large embedded memories are mostly
DRAMs. Their characteristics include small feature size,
large area percentage, and incompatible process technology.
These characteristics make them more likely to be faulty.
Hence, their test is critical for function verification. In
addition, diagnosis is also crucial for yield improvement.
Therefore, the memory BIST in an SoC environment must
also provided with diagnosis capability.

In the rest of this paper, following topics will be
discussed, (2) BIST architecture (3) CAE architecture (3)
memory organization, (4) fault model, (5) Forth Engine, (6)
march sequence generator, (7) memory fault simulator, (8)
automatic code generator, and (9) hardware emulation
experiments.

2. BIST Architecture
For diagnosis purposes the fault type and fault location

are important information. In addition, it must provide test
engineers a way to execute specialized test algorithm solely
for the diagnosis. The conventional hard wired BIST
architectures which have the dedicated test pattern generators
for specific test algorithms will not meet the diagnosis
requirement. Hence, in this paper a processor based BIST
architecture is proposed to satisfy the diagnosis needs.

The proposed BIST architecture is shown in Figure 1. It

is composed of (1) a simple processor core (MPU) for test
flow control and external interface, (2) a programmable test
pattern generators, and (3) a memory interface circuitry for
the control signal mapping. The processor under
consideration is a very simple Forth Engine. It can be
replaced by any processor core in SoC. Hence, there is
practical no overhead on this part. The programmable test
pattern generator is counter based. It is responsible for
generating the March algorithm. The interface circuitry is
responsible for mapping the functional test sequence into
suitable signals for that particular memory. In this architecture,
only the interface circuitry is CUT dependent. MPU and Prog.
TPG can be shared by different memories to minimize the
overhead.

Figure 1 Memory BIST CAE System.

3. Memory BIST CAE System Architecture
The memory BIST CAE system archtiecture is also

shown in Figure 1. It is composed of a test algorithm editor,
a memory fault simulator, a test algorithm compiler, a
Forth code generator, programmable TGP generator, and a
interface circuitry net list generator. The whole system is
accomplished in 9000 lines of C++ code. In TG Editor,
memory organization and I/O specification and test
algorithm are input. The system generates the codes and
netlist for MPU, Prog. TPG, and Intf. Ckt automatically. It
will also report the fault coverage for the given fault list
for users to check the algorithm. This is especially useful
for diagnosis because users are able to change algorithm
easily to see if the target faults are covered or not.

4. Memory Organization
Figure 2 shows a functional model of a DRAM module

[1,3]. It consists a command decoder (block A), an address
buffer (block B), a memory cell array (block C), a data
control circuit (block D), and a refresh logic (block E).
Block C is word-oriented. It has 2 banks. Each bank has 2048
rows and 512 columns of 8-bit words.

5. Memory Fault Model
The faults being considered are mostly conventional

MPU Prog.
TPG

Intf.
CKT

Mem
CUT

Memory BIST Architecture

TG
Editor

TG
Parser

MPU
Code
Gen

TG
Code
Gen

Intf
Code
Gen

Mem

FS

Memory BIST CAE System

faults [3,4]. The notations being used are <S/F> for single cell
faults and <S;F> for multiple cell faults. Here, S is the
condition for sensitizing the fault and F describes the value of
the faulty cell.
Single Cell Fault:

Stuck-at fault (SAF): SA0, SA1.
Transition fault (TF): <↑/0>, <↓/1>.
Read disturb fault (RDF) : <r0/↑>, <r1/↓>.

Multiple Cell Fault:
Inversion coupling fault (CFin): <↑;inv>, <↓;inv>.
Idempotent coupling fault (CFid):

<↑;0>, <↑;1>, <↓ ;0>, <↓;1>.
Bridging fault (BF): ABF, OBF.
State coupling fault (SCF):

<0;0/1>, <0;1/0>, <1;0/1>, and <1;1/0>.
Disturb fault (CFds): <r0;↑>, <r0;↓>, <r1;↑>,

<r1;↓> ,<w0;↑>, <w0;↓>, <w1;↑>, <w1;↓>.
Address Decoder Fault: Address decoder faults include no
access, no accessed, multiple access, and multiple accessed.
Their combinations are shown in Figure 3.

6. Forth Engine
Forrth Engine [4,5] is a very simple stack based

microprocessor. An 20-bit Forth Engine MPU-21 [4] can be
implemented by only 7,000 transistors using 1.2mm CMOS
processor. The block diagram of MPU-21 is shown in Figure
4. MuP21 uses an RISC-like instruction set with only 25
machine instructions. It has two stacks. Data Stack is 5-levels
deep and Return Stack has 4. There are 31 primitive words
created from 25 machine instructions. Pograms are built by
creating sub-units, which are called words, rather than by
writing down a series of statements.

One of the major advantages of Forth is that it can be
extended easily. One can effectively create new words to

Figure 4. Forth Engine Architecture

One of the major advantages of Forth is that it can be
extended easily. One can effectively create new words to
suit the particular needs. For different algorithm, we can
create different words to control the tester. For example, we
are able to build march elements as words, such as c(w0),
⇑(r0,w1), and ⇑(r1,w0). Then, we can compiles these words
into a March C algorithm such as:

c(w0); ⇑(r0,w1); ⇑(r1,w0); ⇓(r0,w1); ⇓(r1,w0); c(r0).

Other march algorithms can be built by similar elements.

7. Memory Test Editor and Parser
A graphic user interface is provided for users to enter the

memory organization, memory fault list, and test algorithm. It
then stores the information into separate files. After the test
files are built, parser are called to analyze the syntax and
build necessary data structure for Forth code, Programmable
TPG, and Interface Circuitry generation. The tokens and
grammars being used are as follows.
Tokens

Page Burst U D w r () = , ; data \
Grammars
<page size> ::= Page = <data>;
<burst length> ::= Burst = <data>;
<element-list>::=<element>|<element-list>;<element>
<element>::= U (<operation-list>)| D(<operation-list>)
<operation-list>::=<operation>|<operation-list>
<operation>::= w<data>|r<data>
<data>::= 0 | 1 | 2 | 3 | ……| 7 | 8 | 9

Graphic user interface is used to guide users to edit the
required information. The GUI of test algorithm and fault list
editor is shown in Figure 5.

Figure 5. Test algorithm and fault list editor.

2048 x 512 x 8
Cell Array

Bank #0

Column Decoder

R
o

w
 D

e
c
o

d
e

r

Sense Amplifier

Data Control
Circuit

DQ0

DQ7

~

2048 x 512 x 8
Cell Array

Bank #1

Column Decoder

R
o

w
 D

e
c
o

d
e

r

Sense Amplifier

Command

Decoder

Address
Buffer

Refresh
Logic

C
o
m

m
a
n
d

A
d
d
re

s
s

A

B

C

DE

Refresh

Figure 2: DRAM functional model

xA xC
xA xC

yA yC

xA xC

yA yC

xA xC

yA yC

fault (i) + (ii) fault (i) + (iii) fault (ii) + (iv) fault (iii) + (iv)

Figure 3: Combinations of address decoder faults.

Data stack

Address BusData Bus

Address RegisterProgram Counter

Return Stack

Data Bus

T

A

S S
1

P

RR
1

S
2

R
2

ALU

8. Test Algorithm Compiler
In addition to 15 pre stored test algorithms, shown in

Figure 5, for users to chose from, users are able to edit their
own test algorithm. Due to its simple syntax and grammar
structure, a one-pass compiler is sufficient for compiling the
test algorithms. There are three steps in compilation process –
scanning, parsing, and code generation.

Scanner
The task of the scanner is to recognize keywords, operators,
and data backgrounds. It will ignore the comments after the
symbol "\". For efficiency and simplicity of later usage, we
assign each token a certain integer code.
Parser

After the token scan, test algorithms must be recognized
as some construct described by the grammar. A parser
performed in this process is called syntactic analysis or
parsing. For example, Figure 6 shows a parse tree of
statement U(r0, w1, r1).
Code Generator

We use the uniform notation [2,3] for memory tests as
the syntax. A march test consists of a sequence of march
elements, which are separated by semicolons ’;’.

<march test> ::= <march element>{;<march element>} Each
march element consists of a symbol to denote the addressing
order and a sequence of operations, which are delimited by
parentheses ‘()’ and separated by commas.

<march element> ::= <addr order> (<op> {,<op>})
<addr order> ::= ↑ | ↓ | b
<op> :: = r0 | r1 | w0 | w1

An example of well-known test algorithm, March B, will be
written as follows.

b(w0); ↑(r0, w1, r1, w0, r0, w1); ↑(r1, w0, w1); ↓(r1,
w0, w1, w0); ↓(r0, w1, w0)

9. Memory Simulator
Memory Organization File

The memory organization files have to be stored in
advance. The information includes the following items.

1. memory chip code,
2. the number of banks,
3. the row address bit length,
4. the column address bit length,
5. the word length,

6. the shrinking ratio
Fault Files

In a write or read operation, the fault list will be
accessed to determine whether the faulty cells are activated.
If so, proper actions will be taken according to the fault type.
Hashing of 64 entries is used to speed up the fault search. For
each fault, the recorded information is

1. the address of the aggressor,
2. the faulty aggressor bit,
3. the fault type,
4. the address of the victim cell,
5. the fault victim bit.

Since there can be more than one victim cells, a linked
list is used to record the victim cells. The graphic
representation is shown in Figure 7. When a fault is detected,
we have to trace back the fault file and mark the fault. In the
previous hash table, the searching keys of hash table are the
address of aggressor cells. Here, we have to create another
hash table using the victim cells as the searching keys to
record the test result. This new hash table is similar to the
previous one. However, the search key is reversed.

addr. of
aggressor

bit address

fault type

addr. of
victim

bit address

addr. of
victim

bit address

addr. of
aggressor

bit address

fault type

addr. of
victim

bit address

fault model 1 fault model 2

Figure 7. Fault list data structure.

10. Hardware Emulation Experiment
To verify the proposed memory BIST architecture and

the associated CAE system, we use discrete components to
built a BIST system. The test environment is shown in Figure
8. It is composed of a memory test board, a Forth Engine
demo board, and a personal computer for the user interface
and code generation. On the memory test board, there are
multiple memory under test and a FPGA for the
implementation of Programmable TPG and Interface
Circuitry. Users are able to use PC for algorithm and
technology file editing. After the compilation, the PC will
transfer the test flow control codes to MPU-21 and down load
the circuit netlist to the FPGA.

Synchronous DRAMs have more complicated operations
as compared to other memories. The simplified state diagram

nchronous DRAM

MATS
|

Hyper

Terminal
Forth Engine MuP21
& Decoder (FPGA)Memory Tester

Figure 8 Memory BIST environment.

<element>

<operation-list>

<operation>

<operation-list>

<operation>

<operation-list>

<operation><data>

<data>

U (r 0 , w 1 , r 1)

<data>

Figure 6: Parse tree of statement U(r0, w1, r1)

Mode
Register

Set

Idle
Row

Active

Read

Write WriteA

ReadA

Pre-
charge

Auto
Refresh

ACT PRE

READ

READA

WRITEMRS

WRITEA

WRITEA

READA

READ

WRITE

Power
On

PRE

Power
Down

CKEL

CKEH

REFA

WRITEA

READA

Automatic Sequence Command Sequence

READ

WRITE

Figure 9. Simplified state diagram of SDRAM.

is shown in Figure 9. The most significant advantage of the
proposed BIST architecture is that we are able to use the
processor (MPU-21) to deal with the different state diagrams
of different memory types. Hence, the hardware complexity
of the subsequent circuits can be reduced significantly.

The block diagram of the BIST hardware structure is
shown in Figure 10. The high level control commands are
sourced from MPU21 board. Test patterns and interface
protocals are generated from the FPGA (the lower part). The
circuit diagram of the TPG and interface circuits is shwon in
Figure 11.

Figure 10 Memory BIST emulator circuit structure

Figure 11. Programmable TPG and Interface Circuitry.

With such a flexible architecture, we are able to test multiple
SDRAM with different algorithms. The picture of the MPU-
21 board and the memory test board is shown in Figure 12
and 13. The system has been verified on 64M SDRAM [1].
Due to the space limited, the test waveforms are not shown.

11. Conclusion
In this paper, we have presented a flexible memory BIST

architecture. It is composed of a simple processor for test flow
control and a programmable logic for test pattern and
interface signal generation. With such a flexible architecture,
it is able to target different types of memories with ease. In
addition, we have implemented a computer aided engineering
system for automatic test code and test hardware netlist
generation. The system has been implemented and verified.
The capability in testing multiple memories simultaneously
reasserts the flexibility of the architecture.

References
[1] TC59S1616AFT-8,-10,-12A,-12,TC59S1608AFT-8,-1,-

12A,-12,TC59S164AFT-8,-10,-12A,-12 Synchro-nous
Dynamic RAM Datasheet, Toshiba

[2] R. Dekker, F. Beenker, L. Thijssen, “A Realistic Fault
Model and Test Algorithms for Static Random Access
Memories”, IEEE Trans. Comp. (USA), C-9, (6), pp. 567-
572, 1990

[3] A. J. van de Goor, Aad Offerman, “Toward a Uniform
Notation for Memory Tests”,IEEE, pp. 420-427, 1996

[4] P.H.W. Leong, P.K. Tsang, and T.K.Lee, "A FPGA
Based Forth Microprocessor," IEEE Design and Test of
Computers, pp. 245-255, May 1998.

[5] C.H. Ting and C.H. Moore, "MPU21 - A High
Performance MISC Processor," Forth Dimensions, Jan.
1995.

Figure 12 Picture of MPU-21 processor board

Figure 13. Picture of Memory test boar

D9-D0
DA9-DA0

A9-A0
/CAS
/RAS
/WE

SRAM
IO

D9-D0
D19-D10
A9-A0
/CAS
/RAS
/WE

D7-D0
A19-A10
A9-A0

/CS
/OE

D7-D0
TxD
RxDA1-A0
/CS
RxC/WE
TxCCLK

RS232
Driver/

Receiver

Rippl
eCounter

OSC
2.54MHz

To/From
Host PC

Serial Port

9600

D9-D0
D19-D10
A9,A1,A0
/WE
RESET
IO

51_IO
CLK

DQM4-1
/CS

/RAS
/CAS
/WE

DQ[7:0]
BS

A[10:0]
LED4-1

FPGA
XC4010XL-PC84

MuP21
SIMM
1Mx20

PROM
1Mx8

UART
82C51

MAX
-232

MPU-21 Board

Memory Test Board

Indicators

 CL
K DQM4-

1 /C
S /RA
S /CA
S /W
E DQ[7:0

] B
S A[10:0

]

SDRAMs

DEVICES
UNDER
TEST

OSC4

IO
Address
Decode

r&
Control

Uni
t

Row
BiasRegiste

r

Address
Generato

r

Data
Generator

Dat
aBackground

Registe
r

Dat
aComparato
r

Comman
dDecode
r

F8MHz

/W
E
IO

A9,A1-0

51_IO

RESE
T

D9-0

DA19-10

Comman
d

Address

Dat
a

S
D
R
A
M

Indicator
s

Refresh
Counte

r
Column

BiasRegiste
r

	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

