Coordinating Interaction Patterns

Andrea Bracciali
Computer Science Dept.
corso ltalia, 40
56100-I Pisa, Italy

braccia@di.unipi.it

ABSTRACT

The ability to describe and verify the concurrent behaviour
of interacting components is a key aspect in the development
of large component-based software systems. We propose a
simple interface description language which allows software
designers to easily specify the interaction pattern of a com-
ponent that will have to interact with other components. A
set of interaction patterns forms a context which may evolve
either because of interactions occurring within the context,
or because a new component joins the context. The main
interest of the overall setting is that it supports the efficient
verification — both statically and dynamically — of inter-
esting properties of open interacting systems.

Keywords

Interaction, interface description languages, open systems

1. INTRODUCTION

The development of large software systems currently fo-
cuses on the issue of composing autonomous (existing) com-
ponents into open distributed architectures. Modularity and
composition, which have always been successfully employed
in software development, now assume an even broader mean-
ing and importance. Integration is pursued even among d-
ifferent architectures, models and languages.

Many industrial attempts aim at providing the necessary
infrastructure technology. The paradigm “write once, run
forever” is currently supported by several component-orien-
ted platforms like CORBA [4], DCOM [10], JavaBeans [2],
and the recent integrated framework Visual Studio .NET [3].
The reference model generally consists of an open distribut-
ed architecture, where components behave in a client/server
style. The term open refers to systems where components
can join and leave the computation at run time, without
having to recompile or link the whole application.

The main purpose of all these models is integration. D-
ifferent autonomous objects/components are composed to-
gether, often in spite of the fact that they can be written

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2001 Las Vegas, NV

Copyright 2001 ACM 1-58113-324-3/01/02 ..$5.00

Antonio Brogi
Computer Science Dept.
corso ltalia, 40
56100-I Pisa, Italy

brogi@di.unipi.it

Franco Turini
Computer Science Dept.
corso ltalia, 40
56100-I Pisa, Italy

turini@di.unipi.it

in different languages or can reside in different locations.
Many platforms provide abstraction mechanisms to provide
a uniform representation of the interesting features of the
different components, like interfaces in most of the OO-like
architectures. All these proposals are competing on the mar-
ket to become a standard, and they witness the success of
modular decomposition in reducing the inherent complexity
of building large software systems.

A major limitation of available component-oriented plat-
forms is that they do not provide suitable means for describ-
ing and reasoning on the concurrent behaviour of interact-
ing component-based systems. Indeed while these platforms
provide convenient ways to describe the typed signatures of
components, e.g. like CORBA’s IDL [14], they offer a quite
low-level support to describe the concurrent behaviour of
components. The Concurrency Control CORBAservice [1],
for instance, features a lock mechanism which is based on dif-
ferent access capabilities (read, write and update) over shared
resources. The concurrent constructs of JavaBeans rely on
the synchronized methods of Java (together with events and
wait and notify primitives) for serializing concurrent threads
during critical sections [2].

These mechanisms do not seem to match those require-
ments that are widely considered as an index of quality for
distributed software. In particular, they seem to force soft-
ware designers to take into account too many low-level de-
tails, and they do not permit a clear separation of coordi-
nation from computation concerns, being the coordination
“policies generally hard-wired into application” code [13].
Indeed such a separation is understood as the first step to-
wards (automatic) reasoning about the behaviour of the sys-
tems and (formally) proving properties about it, [9, 20, 22].

Several proposals have been put forward in order to enhance
component interfaces with a description of their concurrent
behaviour. Most of them are based on process algebras lan-
guages, such as w-calculus [17], and extend interfaces with
behavioural descriptions, such as behavioural types [18] or
role-based representation of behaviours [7].

On the one hand, these proposals allow one to prove cor-
rectness properties, such as absence of deadlocks, as well as
to define compatibility relations, such as “the components
can properly interact with one another” or “this component
can be substituted with that one”. The techniques for rea-
soning on and verifying the resulting systems are typically
co-inductive [16], based on the (stepwise) observation of the
evolution of potentially non-terminating systems, and rely
on the bisimulation relation or on the modal (temporal) log-
ics [21, 12, 11]

On the other hand, the major limit of these approaches
is the computational cost of proving such properties which
in most cases falls into the class of NP problems, hence pre-
venting their practical usability.

The ultimate objective of this paper is to contribute to
stretching the applicability of component-oriented program-
ming for the development of large interactive systems. In
contrast with the above mentioned proposals, we will adopt
a radically different approach to facing the complexity of de-
scribing the interactions occurring in a distributed system.

We argue that trying to describe all the aspects of a dis-
tributed system in one shot unavoidably leads to complex
formulations of low practical usability. We will instead focus
on descriptions of the finite concurrent behaviours of com-
ponents, that we will call interaction patterns. Intuitively
speaking, an interaction pattern describes only the essential
aspects of the interactive behaviour that a component may
(repeatedly) show to the external environment. To help in-
tuition, consider a simple client which sends a request to
some server on a communication channel (s say) and then
waits to receive an answer from the same channel. We will
express the external behaviour of this component by means
of the interaction pattern:

[out(_s,query).in(_s,answer).0]

A more sophisticated client may wish to avoid the risk of
indefinitely waiting for an answer, and to be able to choose
to send a break message to cancel her request. Such a be-
haviour will be expressed by the interaction pattern:

[out(_s,query).
(in(_s,answer) .0 + 7.out(_s, break).0) 1]

where the (silent) action 7 is used (along with the choice
operator +) to express a local choice of the component (e.g.,
detecting an internal timeout in this case). The above pat-
tern describes the fragment of interactive behaviour that a
component will (possibly repeatedly) exhibit to the external
environment.

We will show that the choice of considering simple, non-
recursive interaction patterns will make the verification of
several interesting properties tractable. In some sense, the
introduction of interaction patterns in concurrent system-
s resembles the introduction of types in conventional pro-
gramming languages. While type checking cannot in gener-
al guarantee the correctness of a program, it does eliminate
the vast majority of programming errors [8]. Similarly we
will argue that while the compatibility of a set of interaction
patterns does not guarantee the correctness of a concurrent
system, it can eliminate many system design errors.

In the rest of the paper we will first propose a simple inter-
face description language which allows software designers to
easily specify the dynamic behaviour of a component that
will have to interact with other components. Syntactically s-
peaking, the proposed language is a subset of w-calculus [17]
with the addition of a (derived) event-handling operator.

We will then introduce the notion of context of interacting
components. Simply stated, a context is a set of coordinated
components that interact with one another concurrently. A
context may evolve either because of the interactions occur-
ring among the participating components, or because a new
component joins the context. The formal semantics of con-
text evolution will be given by means of standard transition
systems.

The main interest of the overall setting is that it sup-
ports the efficient verification of open interacting systems,
both statically and dynamically. Indeed the correctness of a
closed context can be efficiently checked thanks to the finite-
ness of the interaction patterns of the participating compo-
nents. The feasibility of an open context can also be dy-
namically checked when a new component wants to join a
context.

The rest of the paper is organized as follows. Section 2
introduces interaction patterns, as an extension of classical
interface description languages. Section 3 presents contezts,
where components interact accordingly with what stated by
their interaction patterns, and the context constructor op-
erator join. A formal semantics for our framework will be
outlined in Section 4, while a practically verifiable definition
of correctness for closed contexts is presented in Section 5.
Section 6 addresses the problem of the notion of correctness
for the case of open systems. It introduces the correspondent
notion of feasibility and, consequently, extends the seman-
tics of contexts to the case of feasibility-preserving accesses
of new components in a running context. Several exam-
ples, one of which has already appeared in the literature
as a paradigmatic example about the subject, will support
the intuition in understanding the formal presentation out-
lined in these sections. Section 7 contains some concluding
remarks.

2. INTERACTION PATTERNS

We now introduce the syntax of the interface description
language for specifying the dynamic behaviour of compo-
nents. The interactive behaviour of a component is ex-
pressed by means of a behavioural expression which is a com-
position of synchronous communication actions and of silent
actions 7.

Two communication operations — in(x, d) and out(z,d) —
are introduced to express input and output actions, respec-
tively, where x is a communication channel name.

The second argument d can be either a channel name or
application data, like 2, break, W or any typed expression.
Application data may also contain channel names, like x in
query (W,)L

Actions can be composed by means of the standard prefix
(.), parallel (||), and nondeterministic choice (+) operators,
while 0 denotes the empty behaviour. A behavioural expres-
sion can be also prefixed by the silent action 7. Intuitive-
ly speaking, a 7 action denotes some internal computation
step that the component can perform independently of the
external environment, i.e. without interacting with other
patterns. As we already mentioned in the Introduction, 7
actions are introduced to explicitly describe the local choices
of an interaction pattern.

A derived event-handling operator (>) is also introduced
to model the possibility of a component to react to an ex-
ternal event. Intuitively, the expression E > (in(z,d).F)
will behave as E unless it receives event d on channel z, in
which case the expression will react to the event by behav-
ing as F. As we will discuss further later on, this event-
handling mechanism features a form of “may preemption”
[5] as the semantics of a set of communicating processes does
not depend on their relative timings, as it is usual in time

!When necessary, channel names will be preceded by the
underscore to distinguish them from application data.

independent formalisms such as w-calculus, CCS, or CSP.

DEFINITION 1. [The language of expressions] The set of
behavioural expressions s defined as follows:

E == 0| AE | 1.E |
E||IE | E4+E | E> (in(z,d).E)
A == in(z,d) | out(z,d)

Syntactically speaking, behaviour expressions are defined by
a subset of w-calculus. Indeed behaviour expressions do not
contain recursion as they are intended to specify fragments
of the component interaction. Moreover, as we will discuss
further in the next section, communication actions are in-
tended to express communications between expressions be-
longing to different components.

An interaction pattern consists of a behavioural expression
together with the explicit declaration of its open names, that
is, the channels that are visible by the external environment.
The set of open names of a behavioural expression E will be
written as Xz.

DEFINITION 2. [Interaction pattern] An interaction pat-
tern is a formula of the form (Xg)[E], where E is a be-
havioural expression, and Xg is its set of open names. The
open names of an expression are a subset of the free names?
of the expression.

Let us now discuss two simple examples to illustrate the
use of interaction patterns for describing the interactive be-
haviour of components.

ExAMPLE 1. (Client/server) Following the Introduction,
the interaction pattern of a client can be expressed as:

CLIENT = (_s)
[out(_s,query).
(in(_s,answer).0 + T.out(_s, break).0)]

where _s 1s the only open name of the pattern. (As a con-
vention, all channel names in the examples will begin with
the underscore.) Similarly the interaction pattern:

SERVER = (_c)
[in(_c,query).
(out(_c,answer).0 > in(_c, break).0)]

describes the behaviour of a server which is ready to receive
a query on a channel (c), and then sends an answer on the
same channel unless it receives a break. Although simple,
the example illustrates the use of T and + to model internal
(local) choices, and the use of > to model a mechanism of
event handling. The example also highlights the very idea
of interaction patterns as a means to express recurrent frag-
ments of interactions: Each time a server will interact with
a client, it will do it following the same scheme, a sort of
behavioural fingerprint. 3

ExAMPLE 2. (The gas station example) Let us consider
the Gas Station example, firstly presented in [15]. A gas s-
tation consists of p pumps and m cashiers. Each driver has

2The free names of an expression E are those names which
occur in E not bound by an input operation [17]. For in-
stance the name y is bound by the input operation in(z, y)
as well as by in(x, m(d,y)) where m(d,y) is a method invo-
cation.

to pay an amount of money to an available cashier, she re-
ceives a receipt and then takes fuel from an available pump.
As stated in [18], from where it has been taken, this ezam-
ple illustrates different coordination problems: information
transfer among components (e.g., the amount paid by the
driver and transferred from the cashier to the pump), multi-
action concurrent synchronization (e.g., first pay then take
fuel), shared resources access (e.g., the pumps), open system
(drivers join in and leave dynamically). The typical inter-
action pattern of a pump is:

PUMP = (_c)
[in(_c, serve(_w,amnt)). out(_w, fuel). O]

Namely, the pump can receive a request from a cashier on
channel _c. The request must be of the form serve (_w,amnt),
where serve is the name of the service offered by the compo-
nent which requires data (amnt) and a channel name (_w) via
which the pump will “communicate” fuel to a driver. Notice
that _c is the only free and open name of the pattern. The
pattern of a cashier is:

CASH = (_d, _p)
[in(_d, payment(amnt)).
(out(_d, rcpt(_p)). 0 |I
out(_p, serve(_p,amnt)) .0)]

A cashier offers two channels (-d and _p) to the external
environment. The cashier first waits to receive a payment
from a driver on channel _d. Then it sends back (on the
same channel) a receipt to the driver along with the name
p of the channel on which she can communicate with the
assigned pump. The cashier also sends on channel _p a serve
request to a pump. Finally, let us consider the interaction
pattern of a generic driver:

DRIVER = (_s)
[out(_s, payment(amnt)).
in(_s, rcpt(_w)). in(_u, fuel). 0]

The driver sends her payment to a cashier on channel _s,
and she waits on the same channel for her receipt and for
the name of the channel (-u) via which to communicate with
the assigned pump. She then waits to receive her fuel on
channel _u. o

3. CONTEXTS

Interaction patterns may interact with one another within
conterts. Simply stated, a context is a set of interaction
patterns as stated by the next definition.

DEFINITION 3. [Contest] A context is a set of interac-
tion patterns with disjoint open names.

Contexts can be constructed by inserting interaction pat-
terns into existing contexts, starting from the empty con-
text. Syntactically, this is performed by a join operator:
given a pattern, a name assignment, and an existing con-
text, it yields a new context. The name assignment is used
to bind together open names of the new pattern and of the
patterns already present in the context. As a consequence of
the assignment, the names that are bound by the assignment
are not open in the new context.

DEFINITION 4. [Join operation] Let C be a context
{(Xp)[P1],...,(XpP,)[Pxr]} and let Xc = (Xp, U...UXp,)

be the set of open names of (the patterns of) C. Let (Xg)[E]
be an interaction pattern whose names are disjoint from the
names of C. Let v be a mapping from D C (Xg U Xc) to a
set of fresh names. The context

C'=]Ozn((XE)[E]a Ys C)
is defined as follows:

{(Xp \ D)[EA]} U {(Xp, \ D)[P1]),... , (Xp, \ D)[Pnr]}

where Py denotes the expression obtained by applying the
substitution vy to P;.

A context with an empty set of open names is called
closed, otherwise it is called open.

EXAMPLE 3. Let us now consider again the gas station
ezample to show how contexts can be incrementally con-
structed. Let us build a context consisting of a cashier, a
pump, and a driver, starting from the empty context Co = {}.
If we insert the cashier pattern in the empty context, we 0b-
tain:

C: = jOi’n(CASH, [],Co)
where C1 1s:

{

/* CASH */

(_d, _p) [in(_d, payment(amnt)).
(out(_d, rcpt(_p)). O ||
out(_p, serve(_p,amnt)). 0)]

}

Let us now insert the pump pattern in the resulting contert,
by binding the open names _p (of the cashier pattern) and _c
(of the pump pattern) to the same name _clpl:

Cy = join(PUMP, [_c1p1/_p, c1p1/_c],C1)
where Cay 1is:

{
/% CASH */
(_d) [in(_d, payment(amnt)).
(out(_d, rcpt(_cip1)). 0 ||
out(_clpl, serve(_clpl, amnt)). 0) 1],
/* PUMP */
O [in(_c1lpl, serve(_w, amnt)). out(_w, fuel). O]
}

Let us finally insert the driver pattern into the new context
Ca, this time binding the open names _s (of the driver) and
-4 (of the cashier) to the same name _dicl:

Cs = join(DRIVER, [.d1cl/_s, dlc1/.d], C2)

where Cs s the following closed context:

{
/* CASH */
(O [in(_dilcl, payment(amnt)).
(out(_dicl, rcpt(_cipl)). 0 ||
out(_clpl, serve(_clpl, amnt)). 0) 1],
/* PUMP */
(O [in(_c1pl, serve(_w, amnt)). out(_w, fuel). 0],
/* DRIVER */
(O [out(_dicl, payment(amount)).
in(_dicl, recp(_u)). in(_u, fuel). 0]
}

4. SEMANTICS

Once a context has been constructed, it may evolve be-
cause of the interactions between the participating patterns.
The way in which such an interaction takes place can be for-
mally described by means of two transition systems.

We first model the intensional behaviour of an interac-
tion pattern, independently of the context in which it will
operate. Intuitively, the intensional behaviour describes the
communications that a pattern may perform. Such a be-
haviour can be naturally expressed by means of a transition
system —, defined by a set of inference rules. Most of the
rules correspond to the classical rules for w—calculus, the
main difference being the absence of communications at this
level of abstraction, since communication is not allowed be-
tween (parallel) processes of the same interaction pattern.
The relation — is defined up to structural congruence for
the operators + and || as usually defined [17].

- (1) — (act)
7T.E -5 FE A.E S5 E
EA R mn EA R)
E||F 4 B ||F E+F3 F
E A F (>1)
E > (in(X,d).F) 3 E > (in(X,d).F)

FAFR

7> —
E>F£>F’(2) (>3)

T

0>F — 0

Rules (1), (act), (||), (+) are the standard rules for the pre-
fix, parallel and the choice composition. The need for keep-
ing two distinct rules (7) and (act) will be clear when we will
model the evolution of an entire context. Rules (>1), (>2),
and (>3) describe the > operator. Rule (>1) states that the
expression E > (in(X,d).F) may behave like E and evolve
to E' > (in(X, d).F) without reacting to the (possible) event
d. Rule (>2) instead models the event reactive behaviour of
an expression E > F which will behave as its event handling
part F. Rule (>3) states that an event-handling expression
that has terminated its non-reactive part can autonomous-
ly reduce to 0. The above rules describe the possible be-
haviours of an interaction pattern independently of the con-
text in which it will operate. We now introduce a second
transition system = to describe the evolution of contexts.
As one may expect, the transition system = is defined in
terms of the previous transition system — and it models the
way in which separate patterns interact.

More precisely, a context may evolve either because two
separate patterns synchronize or because a single pattern

autonomously performs a silent 7 action. The first situation
is described by the following rule:

"% g F F'in(X,d) ~o out(X,d)

{(O[E], MIF}uCc = {(X)[E" o], (Y)[F']}uC

out(X,d
(_>)

(comm)

Rule (comm) states that a context may evolve because t-
wo of its patterns perform two compatible communication
actions. Two actions are compatible if they are complemen-
tary (one is an in() and the other is an out() operation on
the same channel), and if the types of data exchanged are

compatible. (In this sense our proposal conservatively ex-
tends the signature compatibility of standard component in-
terfaces.) The compatibility relation is denoted by ~, where
o is a name assignment which preserves the free names of
the context. Notice that, after the communication has tak-
en place, the receiver suitably stores the data received by
means of the substitution o.

A context may also evolve because a single pattern au-
tonomously performs a silent 7 action, as formalized by the
following rule:

ES B
{X[E}UC = {(X)[E'}ucC

(silent)

Rules (comm) and (silent) define the transition relation =
which models all possible evolutions of a context. Some
remarks are worth making here:

1. The patterns in a context can exchange data, method
invocations as well as channel names. Initially, each
pattern knows the open names of the other patterns
which have been bound to (some of) its open names.
Then, as the context evolves, other channel names can
be shared as in standard w-calculus.

2. In contrast with standard w-calculus, communication
between parallel terms of the same pattern is not al-
lowed. The only type of communication allowed in a
context is between expressions belonging to separate
patterns.

3. Global and local choices are explicitly distinguished.
For instance, a server willing to offer two services (sl
and s2 say) can be described by a pattern of the form:
(x) [in(x,s1).P + in(x,s2).Q 1,
where the choice of which service has to be actually
offered is global as it depends on the interaction with
other patterns in the context. On the other hand, in
the client example:

(s) [out(_s,query).

(in(_s,answer) + 7T.out(_s,break))]

the choice of sending a break is local as it depends on
an internal action of the client.

4. It is worth observing that the event-handling operator
> is a derived operator, in the sense that any expres-
sion containing > can be rewritten into an equivalen-
t expression not containing >. For instance the ex-
pression (A.B) > I can be viewed as a shorthand for
(A.(B+ 1))+ 1, as well as (A||B) > I is a convenient
shorthand for (A.(B+ 1))+ (B.(A+1I))+1
The > operator features a “may preemption” mech-
anism, since formalisms based on time independence
(like CCS or m—calculus) cannot express instantaneous
reactions to external events [5]. The > resembles the
LOTOS disable operator [6], as an expression E > I
“specifies the non-deterministic set of behaviours that
could be observed in an instantly reactive system ac-
cording to the relative timings of the communications
in FE and in I, without having to specify these timings”
[5]. For instance, the context:

{ Olin(x, &1, Qlout(x, d) > in(y, e)],
O [out(_y,)] }

may nondeterministically evolve either into

{ 00, 00, Olout(y, 1 }
or into

{ Olin(=x, &1, O, OO0 } .

ExAMPLE 4. Consider again the CLIENT and SERVER pat-
terns of example 1, and consider the context:

Co = join(CLIENT,[n/_s, _n/_c], join(SERVER, [], {})),
that 4s:

{ O [out(n,query).
(in(_n,answer).0 + 7.out(_n,break).0)] ,
O [in(.n,query).
(out(n,answer).0 > in(.n, break).0)] }

According to the definition of the = relation, the above
context may first evolve into the new context C1:

{ O [in(_n,answer).0 + 7.out(m,break).0] ,
() [out(.n,answer).0 > in(.n, break).0] }

Then the context may evolve in two different ways, because
of the possible local choice of the first pattern. If the first
pattern (viz, the client) receives the message sent from the
server, then the context will evolve into:

{ OL01, O L[O>in(n, break).0]}

and finally into: { O L 01, O L0011}

If instead the client decides to send a break to the server,
then context C1 will evolve (because of a silent move) into:

{ O [out(n,break).0] ,
() [out(_n,answer).0 > in(_n,break).0] }

and then into: { O L 01, O L[LO01]}. o

ExXAMPLE 5. Consider again the gas station ezample. The
context C3 (as defined at the end of example 3) may evolve
because of the communications taking place among the par-
ticipating patterns. The CASH pattern can indeed perform all
its communication actions and, after the corresponding three
applications of the rule (comm), context C3 evolves into the
new context Cy:

{ /* CASH */
O 0,
/* PUMP */
(O [out(_clipl, fuel). 0],
/* DRIVER */
() [in(_cipl, fuel). 0] }

It 1s worth observing how, in the style of m— calculus, channel
names have been communicated among different patterns.
(viz., the name _c1pl used to link the driver to the assigned
pump). More generally, such a mechanism can be used to
model an object request broker in a distributed component-
based system. We can also observe that in context Csa the
cashier pattern successfully accomplished its task, while the
other two patterns are ready to complete their tasks too. ¢

5. VERIFICATION OF CORRECTNESS

A crucial issue in the development of a complex software
system is the verification of the correctness of the system.
In our setting this corresponds to verifying whether a con-
structed context is correct or not.

In order to formally define the notion of correct context,
we first introduce the notion of successful contert. Namely a
context is successful if all its patterns have been successfully
reduced to the empty behaviour 0.

DEFINITION 5. [Successful context] Given a context
C ={(X1)[P1],-.. ,(Xn)[Pn]}, it is successful if and only
ifViel,...,n]: P,=0.

We now define the notion of correctness for a (closed) con-
text.

DEFINITION 6. [Totally correct context] Given a closed
context C, it is totally correct if and only if either:

(a) C is successful or
(b) VC': ¢ = C', (' is totally correct.

Intuitively speaking, a context is totally correct if it is suc-
cessfull, or if all its possible evolutions lead to a successfull
context.

EXAMPLE 6. It is worth reconsidering the client/server
example introduced in example 1. The example describes the
interactive behaviour of a client which sends a request to a
server and waits for a reply, and a server which waits for
a request from a client and sends an answer. Moreover the
client may choose to send a break to the server and the server
has the capability of reacting to such a break event. It is easy
to see (cfr. example 4) that the context obtained by the first
inserting one server, and then inserting one client, is totally
correct. Indeed such a contert may evolve in two different
ways, both leading to a successfull context.

It is worth considering the situation in which a client not
capable of generating break events is put together with a serv-
er capable of handling break events. The resulting context
will be:

{ O [out(n,query). in(.n,answer).0] ,
O [in(n,query).

(out(mn,answer).0 > in(.n, break).0) 1 }

which is still a totally correct context. (Indeed the context
may perform only one sequence of steps and reach a success-
full contexzt.)

On the other hand, let us consider the dual situation in
which a client capable of generating break events is put to-
gether with a server not capable of handling break events.
The resulting context will be:

{ O [out(n,query).
(in(_n,answer).0 + 7.out(_n,break).0)] ,
() [in(n,query). out(.n,answer).0)] }

Following the intuition, the above context is not totally cor-
rect since there is a derivation leading to the non-successfull
context:

() [out(.n,break).0], () [out(_n,answer).0]} o

As already stated in the Introduction, the main interest of
our proposal is the possibility of efficiently verifying proper-
ties of interactive systems. Indeed the fact that interaction
patterns (and hence contexts) express only finite fragments
of interaction supports the efficient analysis of contexts. The
total correctnes of a context can be verified by simply run-
ning the context itself and by analysing all its possible evo-
lutions, thanks to the following property.

PROPOSITION 1. Let C be a context. The set {C'|C ="
C'} is finite.?
3Notice that the absence of recursion in the patterns plays
a fundamental role here. Notice also that structural congru-

ence, as usually defined, respects the structural complexity
w.r.t. the number of actions of each expression.

By Proposition 1, the verification of the correctness of a
closed context amounts to exploring a finite set of states.

6. DYNAMIC CONTEXTS

In the previous sections we have introduced the notions
of interaction pattern and context in order to describe and
reason on interacting systems. The operational semantics
given in Section 4 formally describes all possible evolutions
of a closed context composed of a statically fixed number of
patterns.

In fact, in open systems, components may dynamically
join the system. In other words, a context may evolve ei-
ther because of the interactions between the participating
patterns, or because a new pattern joins the system. Intu-
itively speaking, this would corresponding to extending the
transition relation = with a rule of the form:

¢ = join((Y)[E], 7, C)
cC=/C

The verification of the correctness of a system is obviously
a crucial question also in the case of open systems. On
the other hand, when considering open systems, the notion
of correctness has to be suitably refined to cope with the
incompleteness of dynamically evolving contexts.

We hence introduce a weaker notion of correctness, and
we call it feastbility. Intuitively speaking, an open context is
feasible if there exists an interaction pattern whose insertion
in the context makes it closed and totally correct.

DEFINITION 7. [Feasible context] A contest C, with a set
of open names Xc, is feasible if and only if there exist a
pattern (Yg)[E], name disjoint from C, and a mapping v
from (Xc UYE) to a set of fresh names such that:

C' = join((Yr)|E],7,C)
s a totally correct context.

Notice that the condition that dom(y) = (X¢ UYx) implies
that C' is a closed context: All the open names have been
bound. The above definition reduces the feasibility of open
contexts to the correctness of closed ones. In this sense, the
interaction pattern (Yz)[E] represents, informally speaking,
all the interaction necessary to the patterns already in the
context for completing their coordinated tasks. Usually, this
kind of contribution will be given by more components join-
ing in the context at different instants and, possibly, intro-
ducing new interactions and new communication channels
that do not appear in (Yz)[E].

Having introduced the definition of feasibility for open
context, it is now possible to extend the semantics of the
context with a feasibility preserving access operation for a
component in a context.

DEFINITION 8. f[in-rule] LetC be a feasible contezt with a
set of open names Xc, let (Yi)[E] be an interaction pattern,
and let v be a mapping from D C (XcUYr) to a set of fresh
names. The following rule (in) extends the semantics of the
contexts:

' = join((Y)[E],v,C) C('is feasible
c=C tin

Note that by this rule the Proposition 1 does not hold any-
more: the correctness of closed systems can be investigated
by means of a finite amount of information, while in open

systems, by means of a finite process, we can only check
for feasibility. The feasibility of a (open) context can be
checked by a nondeterministic generation of the appropriate
complementary interaction pattern.

7. CONCLUDING REMARKS

Our proposal relates to coordination and composition. We
investigated the possibility of including in the interface of a
generic component a description of its interactive behaviour.
Hence, we have defined a formal framework suitable for de-
scribing systems composed of such components and verifying
the correctness of the construction.

The main novelty of our proposal consists, at the best
of our knowledge, in the original approach to the represen-
tation of interaction via finite fragments of behaviour, i.e.
interaction patterns. Thanks to this perspective, we have
been able to use a subset of the m—calculus, exploiting many
of its nice features as a tool for concurrency, without pay-
ing the price of the high computational costs of many of its
applications. On the other hand, we gained in ease of prac-
tical usage by having introduced a (derived) event-handling
operator.

The developed framework applies uniformly to both closed
and open systems, the latter being characterized by the dy-
namical participation of the components and hence by an
incomplete information about their state and correctness.
An interesting notion of correctness for open systems as pos-
sibility of reaching a successful state has been defined. An
effective verification of such a property reduces to exploring
a finite structure, namely the patterns in the context.

Future work will be devoted to extend the framework.
Exploiting further the coordination features of the model,
along the line of other similar approaches, e.g. [19], it is
easy to imagine to model other situations, besides join, by
new operations, like, e.g. leave, test, ..., in analogy with the
tuple space operators out, read ..., with interaction patterns
as tuples. The relationships between behavioural interfaces,
in terms of their compatibility, need further studies, which
might hopefully result in the definition of a hierarchy and
an associate notion of subtyping.

Applications to model specific architectures seem worth-
while of further studies, too. As said, contexts and their dy-
namic access can be used to model mobile code for distribut-
ed applications as well as (visual) component-based devel-
opment tools. For instance the JavaBeans model of events,
properties and methods, could be extended with behaviours
providing the ground to prove behavioural correctness, as
well as the expressiveness of broker-based frameworks, like
CORBA, could be enhanced by behavioural descriptions.

8. ACKNOWLEDGMENTS
This work was partly supported by the M.U.R.S.T. project

“Theory of Concurrency, Higher Order and Types (TOSCA)”.

9. REFERENCES

[1] Concurrency Control CORBAservice.
http://www.omg.org/techonology/
documents/formal/concurrency-service .htm.

[2] JavaBeans Documentation.
http://java.sun.com/beans/docs/.

[3] .NET Programming the Web.
http://msdn.microsoft.com.

[4] The Object Management Group. http://www.omg.org.

[6] G. Berry. Preemption in concurrent systems. In
Foundations of Software Technology and Theoretical
Computer Science, volume 761 of LNCS, Bombay, India,
1993. Springer-Verlag.

[6] E. Brinksma. A Formal Description Tecnique based on
the Tempotal Ordering of Observable Behaviours.
Information Processing Systems - Open Systems
Interconnection, 1988. ISO8807.

[7] C. Canal, L. Fuentes, J. Troya, and A. Vallecillo.
Adding semantic information to IDLs. Is it really
practical? In Proceedings of the OOPSLA’99 Workshop
on Behavioral Semantics, Denver, Colorado, 1999.

[8] L. Cardelli. Type systems. Handbook of Computer
Science and Engineering, Chapter 103, CRC Press, 1997.

[9] N. Carriero and D. Gelernter. Coordination languages
and their significance. CACM, 35(2):97-107, 1992.

[10] D. Chappell. Understanding ActiveX and OLE.
Microsoft Press, Redmond, WA, 1996.

[11] E. Clarke, J. Wing, et al. Formal methods: State of
the art and future directions. ACM Compitung Surveys,
28(4):626-643, Dec. 1996.

[12] R. Cleaveland, J. Parrow, and B. Steffen. The
concurrency workbench: a semantics-based tool for the
verification of concurrent systems. ACM Trans. Program
Lang. Syst., 15(1):36-72, Jan. 1993.

[13] J. Cruz and S. Ducasse. A group based approach for
coordinating active objects. In Coordination Languages
and Models - COORDINATION’99, volume 1594 of
LNCS. Springer-Verlag, 1999.

[14] M. Dolgicer. Inside CORBA services. Application
Development Trends, pages 63—71, June 1997.

[15] D. Helmbold and D. Luckman. Debugging ada tasking
programs. IEEE Software, 2(2):47-57, March 1985.

[16] B. Jacobs and J. Rutten. A Tutorial on (Co)Algebras
and (Co)Induction. EATCS Bull., 62:222-259, 1997.

[17] R. Milner, J. Parrow, and D. Walker. A calculus of
mobile processes. Journal of Information and
Computation, 100:1-77, 1992.

[18] E. Najm, A. Nimour, and J. Stefani. Infinite types for
distributed objects interfaces. In Proceedings of
FMOODS’99. Kluwer, 1999.

[19] A. Omicini and F. Zambonelli. Coordination for
Internet application development. Journal of
Autonomous Agents and Multi-Agent Systems,
2(3):251-269, September 1999.

[20] G. Papadopoulos and F. Arbab. Coordination models
and languages. Advances in Computers, 46, 1998.

[21] A. Pnueli. A temporal logic of concurrent programs.
Theor. Comput. Sci., 13:45-60, 1981.

[22] N. Sample, D. Beringer, L. Melloul, and
G. Widerhold. Clam: Composition language for
autonomous megamodules. In Coordination Languages
and Models (COORDINATION’99), volume 1594 of
LNCS. Springer-Verlag, 1999.

