
A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 12 no 4 Oct 1987 Page 19

Software Engineering Education:
A S u r v e y of C u r r e n t C o u r s e s

Laurie Honour Werth
University of Texas at Austin

Austin, Texas 78712

Abstract

This study summarizes the software engineering course offerings of nearly one hundred
universities responding to a recent survey. Information to determine the current state of software
engineeering education is tabulated and analyzed in order to support curriculum development and to
determine deficiencies and future needs.

Characteristics of the institutions are used to compare relative numbers, types and academic
levels of course offerings. A history of course startups provides insight into the growth and
direction of new classes. Instructor background is examined to determine current and future faculty
support needs. Similarly, the use and availability of textbooks, automated tools, and other teaching
materials are investigated for course support requirements. Information on course format and
project organization provides additional understanding of the structure of current software
engineering courses.

Summary

Sixty-nine percent of the ninety-five schools responding to this survey offer one or more
software engineering courses. One third of the remaining schools integrate software engineering
into other courses. Three quarters of the courses are general in nature, with at least one half of
them offered at the undergraduate level. While one third of the respondents offer more than one
course, only ten percent are able to offer courses specialized to one phase or aspect of software
development.

Eighty percent of the larger institutions offer software engineering, but only half of the
smaller schools have courses. Similarly, institutions offering the PhD are far more likely to offer
software engineering than other schools. At least one third of the undergraduate courses are
required.

Only twenty percent indicate neither industry experience nor formal training in software
engineering as instructor background. Multiple text and reprint titles demonstrate a need for
additional teaching materials. Speaker videotapes, case studies, and automated tools would be other
helpful improvements.

writers, and others to keep abreast of
educational developments. The speed of the

I. INTRODUCTION replies, together with the strong interest
reflected in the comments from the schools

The field of Software Engineering has involved in the study, demonstrates the
grown rapidly since the term was first importance which the responding departments
introduced in the late sixties. Several attempts place on learning more about software

have been made to assess the current state of engineering education efforts.
software engineering education efforts [1,2].

The current survey builds on these earlier I1. THE SURVEY
results to determine the current state of

university level Software engineering course Software Engineering has become an
offerings, to find out what progress is being accepted part of many university computer
made, and to help in planning for future needs, science department offerings, but little is known
Because of the diverse nature of software about the status of these newly developed
engineering and its rapid growth, it is vital for courses. To gain insight into the nature of these
instructors, curriculum developers, textbook courses, a survey was mailed recently to about

http://crossmark.crossref.org/dialog/?doi=10.1145%2F37537.37539&domain=pdf&date_stamp=1987-10-01

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 12 no 4 Oc t 1987 Page 20

200 universities which were considered to be Nearly half of the schools offering
likely candidates to be offering software software engineering courses have enrollments
engineering classes, of more than 10,000 fulltime students. Only

The survey questions covered institutional twenty percent of these large schools do not
characteristics, types of computer programs offer such a course, while approximately half of
offered by 'the respondents, software engineering the smaller schools do not offer software
courses offerings, and efforts to integrate engineering. Similarly, while the respondents
software engineering into other computer were fairly equally divided between being
science courses. Software engineering course primarily undergraduate, masters degree and
information included course title, date first doctorate granting institutions, eighty-five
offered, number of students, course level and percent of the Ph.D. granting institutions, two
prerequisites, instructor background, textbook thirds of the masters granting institutions and
and other teaching materials used, project one half of the primarily undergraduate
activities, organization, and phases completed, institutions offer software engineering.
and use of automated tools. The length and
complexity of the survey undoubtedly reduced the The Courses
number of responses, but this depth of coverage Informat ion on current sof tware
was considered essential to gain an adequate engineering course offerings is summarized in
understanding of the organization of the courses Tables Ila and lib, with courses listed in order by
and how they fit into the overall offerings, the year in which they were first offered.
Ninety-five responses have been received to Courses are separated into general courses,
date. Not all items were completed by each which cover most or all of the phases of the
respondent, so some partial results are reported, software life cycle, and specialized courses,

The Insti'tutiQn$
Information about the kinds of programs

offered by the responding institutions is

which concentrate on one phase such as testing
or project mangagement. The number of students
is calculated by multiplying the number of
offerings per year times the average number of

summarized in Table I. Sixty-nine percent of the students per year (not including classes which
schools offer one or more software engineering are part of a sequence). Within years, courses
courses. One third of the schools which do not are separated into undergraduate and graduate
offer separate courses, integrate software level courses, if necessary.
engineering topics into other courses.

Fulltime
Enrollment

< 2,000 7
2,000- 5;,000 21
5,000-10,000 20

>10,000 49
Unspecified 4

Table I. The Institutions
(in percentages)

Highest Degree
Offered

Undergrad 30
Masters 26
Doctoral 39
Unspecified 5

Name of College Name of Department

Engineering 23 Computer Sci 60
Arts & Sci 23 Math & CS 5
Science 26 Mathematics 17
Liberal Arts 20 Engineer & CS 6
Math & CS 4 Other 5
Unspecified 5 Unspecified 7

Highest CS Degree
Offered

Bachelor 33
Master 37
PhD 28
Unspecified 2

Computer Engineering
Programs Offered

At Institution 38
In Department 17
Unspecified 1

Information Systems
Programs Offered

At Institution 48
In Department 15
Unspecified 5

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vo l 12 no 4 O c t 1987 P a g e 21

Sixty-six general software engineering Table Ila. Software Engineering Course History
courses and three systems analysis courses are
described in Table Ila. At least ten of these
represent full year sequences. Incomplete
information was also collected on another
twenty-eight courses. Two thirds of the courses 1960 1 60
that specified level are undergraduate courses 1972 2 180
and one third are graduate courses. Twenty- 1973 1 70

1975 2 105
three courses in specia l ized software 1977 1 70
engineering topics are offered as shown in Table 1978 1 120
lib. One fourth of these are undergraduate, three 2 15+
fourths are graduate, and two do not have a level 1979 1 70

1 3O
specified. <1980 5 240

Two thirds of the schools offer only one 1 10

course, and it is generally called Software 1980 5 305
Engineering. The next most popular names 3 105
include Software Design and Development/ 1981 3 125

4 75
Implementation, Software Development Methods/ 1982 5 250+

Techn iques , or Large Scale Software 1983 7 100
Development. Project Management, Topics in 2 130
Software Engineering, Software Engineering 1984 3 290
Economics, or Testing and Quality Assurance are 2 130
the specialized courses most often offered. Ten 1985 2 23

1 8
percent of the schools which had software 1986 3 44
engineering courses, offered all the specialized 3 105+
courses listed in Table lib. 1987 2 60+

Thirty-f ive percent of the respondents 1 15
no year 2 offer more than one software engineering course,

so multiple offerings do not necessarily imply given 3

specialized courses. Only twenty percent of 44% Undergrad
those offering more than one course report a full 3% Sys Analy.
year sequence. Another twenty percent combine
one or more graduate courses with an
undergraduate course. The rest represent other

combinations.

The Prereauisites
Data structures is the prerequisi te

mentioned by about three quarters of the schools
which included this information. Other schools
require data structures together with some
combinat ion of programming languages,
operating systems, and/or file systems. A few
schools limit enrollments to seniors or those
who have met the bachelor 's degree
requirements. Most of the specialized courses

General SE and Systems Analysis
Year
First Num. of Students Number Course
Offered Courses Per Year Required Level

90

0 U
1 U
1 U

4M
1 4M
1 U

0 4M,MP
1 U
1 M
2 U

M
1 U
1 4M
0 4,2U
2 4M,MP
2 U
2,Y/N U
1 ,Y/N 4M
2 U
1 M
1 U

M
1 U
0 4M
1 U

M
- 4
1 M

24% Graduate 31% Unspecified
66% General 30% Unspecified

Table lib. Software Engineering Course History
Specialized Courses

1980 2 170 - U
1981 1 10 0 MP
1982 1 20 - MP
1983 4 67 - 2M,2MP
1 g84 1 20 0 U

3 60 1 2M,MP
1985 3 23 - M,2MP
1986 2 42 -, Y/N M
1987 1 - 0 4
no year 5 - 1M,4MP

21% Undergraduate 70% Graduate 9% Unspecified

required an undergraduate software engineering Y/N = Required for some +/- = Unspecified
course. U = Undergraduate (Upper Division)

4 = Seniors 4M = Seniors + Masters
M = Masters MP = Masters + PhD

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 12 no 4 Oc t 1087 Page $=

Course Materials The Course Format
Information on the textbook(s) and teaching Approximately half of the respondents

materials was requested as this is often cited as offer the course as a lecture course with the
a problem area [2]. The wide range of texts in other half combining lecture and laboratory
use is compiled in Appendix I. The two texts components. Very few schools mention a
most often mentioned were Fairley [12] and seminar format, and those are almost always the
Pressman [28]. Other texts freqently cited specialized, graduate courses. Even courses
include Brooks [5], DeMarco [9], Sommerville [33],
and Zelkowitz, Shaw and Gannon [41].

Several of the IEEE tutorials are also
ment ioned, especial ly for the advanced,
specialized courses. A few instructors include
various IEEE and DOD standards descriptions in
their lists. Many cite more than one text, but do
not state the reason. They may not be satisfied
with the coverage in a single text, or the text
may vary by instructor, or perhaps some of the
additional texts are supplements. Most provide
copies of their slides, notes, or other .handouts,
as class material.

Many instructors indicate the use of
reprints, ranging from "a few" to as many as
thirty. Several respondents included their
reprint titles or complete reading lists. These
titles were combined and are included as
Appendix II. A general collection of papers

cal led Software Engineer ing Projects or
Workshop contain a lecture component. Nearly
all courses appear to be typical three semester
hour or four quarter hour courses, with only a
handful adding an extra credit for the lab
component.

Only half a dozen mention the use of
invited speakers and then usually only one,
though as many as three speakers were reported.
Speaker source is generally given as industry,
though one respondent complained of a lack of

local industry from which to draw.
Three responses indicate the use of case

studies. While the case study is a common
technique in many business and information
systems courses, there seems to be a serious
lack of such material readily available for
software engineering. One mentioned the need
for examples of good size projects, preferably

seems to be needed, as an IEEE tutorial for documented to DOD standards.
example, to reduce the time requirements for
faculty and students to acquire an up-to-date set The Projects
of software engineering reprints. The current
tutorials are excellent, but they are often too
specialized for the typical general introductory
course. Two instructors use the historical
papers included in [40].

.The Instr~Jctors
Finding qualified instructors is another

problem area in software engineering education
[2]. Interestingly, only four schools indicated
the use of adjunct instructors from industry, and
they also use regular instructors for some of
their courses. Half indicated that faculty had
industry experience and almost half marked
"formal training" in Software Engineering, with
twenty percent indicat ing both industry
experience and formal training. Only about
twenty percent indicated neither industry
experience nor formal training as instructor
background. About twenty percent of the
respondents did not mark the instructor
information.

All but two of the courses reported include
a project. Several of the advanced courses
involve only an individual project, but almost all
of the remaining courses use teams. Project
sizes range from 500 to 5000 lines of code.
Projects run the gamut from various industry and
university systems to tools such as editors,
plagiarism detectors, and prerequisite checkers.
Only a very few mention more specific software
engineering tools such as test harnesses,
diagramming tools, or program quality/style
measurement systems, which would seem to be
natural projects for this type of class.

Projects account for 20 to 100 percent of
the course grade, with most in the range from 40
to 70 percent. Team sizes range from small, two
or three members, to large, around 15 members,
with the vast majority being three to five
members.

About half the projects are organized so
that each team works on a different project,
especially where teams work on projects in
conjunction with local industry. About one third

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 12 no 4 Oc t 1987 Page 23

use teams to duplicate the same project, while the importance of requiring the student teams to
the remaining classes have several teams use and evaluate each other's software tools for
cooperating on a single project. Some vary the quality of user documentation and ease of use.
organization depending on the instructor or This provides a more authentic "acceptance
project. One school is considering "involving testing" with strong motivation for repairing
graduate students as group managers, technical errors discovered by their peers.
writers from their expository writing program, Several respondents brought up the use of
etc." reviews or walkthroughs, because they feel that

Approximately three quarters of the they are particularly beneficial for the students.
projects are developed by the instructors, while Other project activities added by respondents
most of the remainder are done in conjunction include system integration, installation, and
with local industry. A few projects involve training. One incorporates some discussion of
other departments or organizations within the Software Psychology topics, especially
university. Several mention allowing students to computer-human interface concerns. Several
develop projects themselves or to select from a
list of projects. There were no complaints of
difficulty with finding projects reported, unlike
the earlier survey [2].

Most of the projects for the general
courses include the requirements, design, coding
and testing phases of the software life cycle.
Two of the courses did not include implementing
the project, citing a lack of time on the quarter
system. Approximately half of the projects
include some project management aspect(s), but
less than ten percent include maintenance
activities. This is not too surprising, given the
brisk pace of the courses. The programs which
integrate software engineering topics indicate
more of an emphasis on software maintenance.

Several respondents comment on the
importance of the team project. They feel that

mention using reviews of papers from the
reading list as an activity.

The Tools
In response to the question on the use of

tools, most indicate no use, though some mention
editors, debuggers, compilers, hierarchical tree
diagrams, Warnier diagrams, PDL, and the like.
One respondent each uses of the following:
Verdix Ada compiler and design documentation
tools; Tektronix's SA system and WICOMO (the
Wang Institute's implementation COCOMO); RCS;
and USE.IT. No other application of automated,
commercially available tools is indicated. A few
report implementing software engineering tools
as class projects. Another avenue would be to
use and expand upon the UNIX environment which
is often available, but this was only mentioned

the combination of working in teams, and/or once.
working on realistic projects (if not actual
projects for local industry) is extremely
important and provides considerable motivation
for their students. This enthusiasm extends to
the instructor as well, and seems to help reduce
the burden of the extra work required for
supervising projects (at least for the first few
times the class is taught).

Other Activities
Quite a few of the respondents emphasize

Intearatino Software Enoineerina
Efforts to integrate software engineering

into other computer science courses were not
widely reported by the survey respondents.
Those mostly likely to complete that part of the
survey were schools which did not offer separate
software engineering courses.

The courses most often mentioned as
integrating software engineering topics are CS1
and CS2 from the ACM curriculum [3], a two

the effort devoted to documentation. Several semester introductory programming sequence,
mention the inclusion of users manuals, the second semester of which introduces basic
technical documentation, daily journals and/or concepts of data structures, program
program unit development folders. Others stress verification, and algorithm analysis. A recent
the emphasis on general writing and speaking report from the CS2 curriculum committee [4]
skills. Two describe small group exercises strongly recommends the inclusion of software
designed to emphasize the difficulty of engineering topics under the categories of
communication between teams. One mentions specification, design, coding, and program

ACM S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 12 no 4 Oct 1987 PaTe I!4

correctness, but does not specify further details, projects. Several new textbooks have appeared
Of schools that responded to the question, about and more are under development. However, from
one half reply that they integrate software the multiple titles listed as texts, one might
engineering into CS1 and/or CS2. They typically conclude that some instructors do not find any
indicate about five to ten class hours spent on one text adequate. Collections of reprints, case
the various phases of the project life cycle, with studies and examples are virtually nonexistent
another five hours spent on general subjects and would also be helpful. Because invited
such as tlne software development cycle, speakers are rarely used, low cost videotapes of
walkthroughs, teams, documentation and knowledgeable speakers is a possible solution 1:o
software maintenance, encourage more class input from practicing

Some of the new introductory textbooks software engineers. Projects do not seem to be
have added a short chapter on software in short supply, although one might expect more
engineering and a few introduce the use of instructors to develop tools for the use of the
hierarchy (structure) charts, but none mention sof tware engineering classes themselves,
other methodology. Testing and/or program setting a good example for current students and
verif ication usually receive some general providing needed software for future classes.
discussion in these texts, but there is little Petricig and Freeman [2] described the
material on specific techniques or formal problem of acquiring qualified instructors as
terminology. There are many software being largely overcome by the use of part-time
engineering topics and techniques which could be instructors from industry. The schools
presented at this level, but this is not yet represented here generally use regular faculty,
happening. The general lack of software most of whom have either industry experience or
engineering expertise and the demands of formal training in software engineering. The
teaching the advanced software engineering
courses, will likely slow efforts in integrating
software engineering into other courses. Given
that many first year courses are taught by part-
time instructors and/or teaching assistants, it
could be even longer before software engineering
enters the curriculum at this level.

Other courses, listed more than once as
integrating software engineering topics, are data
structures and programming languages courses.
The project life cycle and software tools are the

earlier report described the problem of the large
amount of instructor time required as largely
unrecognized by their department, and this
complaint is echoed in the current survey.
Similarly, the lack of acceptance by other
faculty is still prevalent. Still, one third of the
undergraduate courses are required for
graduation, which indicates considerable
importance has been placed on the course by
those departments. The courses offered at the
graduate level are less likely to be required, but

topics most often selected, though some say that this is to be expected.
they cover specif ication (specif ication
languages), design (abstract data types), coding,
testing and documentation in these courses.

III. CONCLUSIONS

One of the more noticeable features of the
survey is the pride taken in the software
engineering courses. The most frequent comment

Several respondents comment on the
diff iculty of trying to cover software
engineering theory, together with applying the
ideas on a realistic project in a single semester.
At the same time, they do not have the resources
to offer multiple courses, much less a complete
program in software engineering. Only ten
percent of the schools can include entire
specialized courses on requirements and/or

is one noting the positive feedback from design, maintenance, documentation, testing or
students and/or local industry concerning the project management, and none offer software
course, engineering degrees at this point. There are at

The problems described by Petricig and least three schools offering a Master of
Freeman [2] seem to have improved to a degree. Software Engineering degree, and several more
The first obstacle they reported was a shortage will begin programs shortly.
of books and teaching materials, together with Recently, considerable effort has been
the difficulty of finding realistic software expended on determining what a software

ACM SIGSOFT S O F T W A R E E N G I N E E R I N G N O T E S vol 12 no 4 Oct lg87 Page 25

engineering curriculum [5], though most of the
work has been directed at developing a masters
degree program and expanding the current
masters programs into doctoral programs. Both
the new Software Engineering Institute
established by DOD at Carnegie-Mellon and the
Rocky Mountain Institute of Software
Engineering established in Boulder, Colorado
include improved software engineering education
in their goals. The curriculum development,
training institutes, and teaching materials under
development are all vitally needed to develop
advanced courses and to strengthen existing
undergraduate courses such as those described
here.

In summary, we see that software
engineering courses are alive and well and their
numbers are increasing rapidly. Software
engineering is exciting, if somewhat demanding
to teach, and somehow, experienced instructors
are being found and pressed into service. While
additional instructor training, teaching
materials, and classroom-oriented automated
tools are still needed, the project oriented
software engineering course appears to be a
viable and successful technique for imparting
improved software design and development
concepts.

REFERENCES

[1] A.A.J. Hoffman, "A Survey of Software
Engineering Courses," I ~ , vol.
10, no. 3, 1978.

[2] M. Petricig and P. Freeman, "Software
Engineering Education: A Survey,"
Bulletin, Vol. 16, No. 4, 1984.

[3] R.H. Austing, B.H. Barnes, D.T. Bonnette, G.
Engel and G. Stokes (Eds.), "ACM Curriculum
Committee on Computer Science Curriculum
'78 Recommendations for the Undergraduate
Program in Computer Science,"
(~ommvnk;ations of the ACM, Vol. 22. No. 3,
Mar. 1978.

[4] E.B. Koffman, D. Stemple, and C.E. Wardle,
"Recommended Curriculum for CS2, 1984: A
Report of the ACM Curriculum Committee
Task Force for CS2," Communications of the
ACM. Vol. 28. No. 8, Aug. 1985.

[5] Proeeedinos of the Software Enoineerina
Education Workshoo. Sponsored by the
Software Engineering Institute, Carnegie-
Mellon University, Pittsburgh, PN, Feb, 1986

Appendix I
Software Engineenng Textbooks

[1] LJ. Arthur, Measuring Programmer Productivity and Soft'ware Quality,
New York: John Wiley and Sons, 1985.

[2] B. Beizer, Software Testing and Quality Assurance, New York: Van
Nos~'a.nd Reinhold, 1984.

[3] BW. Boehm, Software Engineering Economics, Englewexxl Cliffs, NJ:
Prentice Hall, 1981.

[4] G. Beech, Software Engineering with Ads, Benjamin-Cumtmngs
Publishing Co., 1983.

[5] P.P. B~oks, The Mythical Man.Month, Read.ing, MA: Addison-Wesley,
1975.

[6] C. Browning, Guide to Effective Soft'ware Techm'cal Writing, Englewood
Cliffs, N J: Prentice Hall, 1984.

[7] P. Bruce and S.M. Pedcrson, The Software Development Project:
Planm'ng and Managernem, New York: John Wiley and Sons, 1982.

[8] S.D. Con~, Software Engineering Metrics and Models, Benjarrun-
Cumrtungs Publishing Co.

[9] T. DeMarco, Structured Analysis and System Specification, New York:
Yourdon Pn~ss, 1978.

[10] T. DcMarco, Concise Notes on Software Engineering, New York:
Yourclon Pn~ss, 1979.

[I I] M.W. Evans, P. Piazza. and J.B. Dollcas, Principles of Productive
Software Managemem. New York: John Wiley and Sons, 1983.

[12] R. Fasrley, Software Engineering Concepts, New York: McGraw H.i.lL
1985.

[13] R.E. Film.an and D.P. Friedman, Coordinated Computing--Tools and
Techniques for Distribuled Software, New York: McGraw H.i.ll, 1984.

[14] C. Gone and T. Sarson, Structured Systems Analysis: Tools and
Techmqaes, New York: Improved System T~hnologies Lnc, 1977.

[15] R.L Glass, Real-Time Software, Englewood Cliffs, NJ: Prentice Hall,
1984.

[16] P. Heckel, The Elemems of Ftiendly Sofrware Design, Warner, 1982.
[17] M. Jackson, System Developmem, Englewood Cliffs, NJ: Pl'~n~ce Hall,

1983.
[I 8] Rw. Jenson and C.C. Tomes, Software Engineering. Englewood Cliffs,

NJ: Prentice Hall, 1979.
[19] B. Kcrnighan and PJ. Plagcr, So#ware Tools, Addison-Wesley, 1976.
[20] C.P. L¢cht, The Management of Compuzer Prograranung Projects.

American Management Associauon.
[21] L.iskov and Gutlag, Abstraction and Specifu:azion in Program

Development.
[22] P.W. Me~ger, Managing a Programming Project, Englewcxx:l Cliffs,

NJ: Prentice HaLl, 1981.
[23] G. Meyers, Software Reliability: Principles and Practices, New York:

John Wiley and Sons, 1976.
[24] G. Meyers, Composite/Structured Design, New York: Van Nostrand,

1978.
[25] G. Meyert. The An of.~ofrv~e Tedting, New York: John Wiley and

Sons, 1979.
[26] K. On', Swucrured Systems Development, New York: Yourdon Press,

1977.
[27] M. Page-Jones, A Practical Guide to Structural Systems Design, New

York: Yourdon Press. 1980.
[28] R.S. Pressman, Software Engineering: A Practitioner's Approach, New

York: McGraw Hill, 1982.
[29] P.C. Semprevivo, Systems Analysis. 2rid Edition. SPA, 1982.
[30] B. Shneiderraa.n, Software Prycholofy, Winthrop Publishers, 1980.
[31] M.L. Shonma.n, Software Engineering, Design, Reliability, and

Managen~ent, New York: McGraw Hill, 1983.
[32] Skces, Writing Handbook for Computer Professionals, Lifetime Learn,

1982.
[33] I. Somrnervill¢, Software Engineering, Addison Wesley, 1982.
[34] R. Turner, Software Engineering Methodology, Reston, 1984.
[351 U.S. Government, Delete System Software Development, Washington,

D.C.: Department of Defense, DOD-STD-2167, June 4, 1985.
[36] C.R. Vick and C.V. Ramamoorthy, Handbook o/Software Engineering,

New York: Van Nosy'and Reinhold, 1984.
[37] G.M. Weinberg. The Psychology of Computer Programming, New

York: Van Nosffand Reinhold, 197 I.
[38] R. Wiener and R. Sincere, Software Engineering with MoclMa.2 and

Aria, New York: John Wiley and Sons, 1984.
[39] E. Yourdon and L. Constantine, StrucrureM Design, New York: Yourdon

Press, 1975.
[40] E.N. Yourdon, Classics in Software Engineering, New York: Yourdon

Press, 1979.
[41] M.V. Zcl.kowitz, A.C. Shaw, J.D. Gannon, Principles of Software

Engineering andDeai&n, Engl¢wood Cliffs, NJ: Prentice Ha.ll, 1979.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 12 no 4 Oct 1087 Page :ZB

[42] M. Shaw, Abstraction Techniques in Modern Programming Languages,
1EEE Software 1, 4, 10.26, October 1984.

[43] B. Shneiderman, Human Factors Experiments ia Designing Interactive
Systems, Computer 12, 12, 9-19, December 1979.

[4.4] K. Tai, Program Testing Complexity and Test Criteria. IEEE
Transactions on Software Engineering SE.6, 6, 531-538,
November 1980.

[45] D. Teichroew and E.A.H. ffl, PSL/PSA: A Computer-aided Technique
for Slxucmred Documentation and Analysis of Information ProFessing
Systems, IEEE Transactions on Software Engineering, January ~1977.

[,46] W. Teitlman, A Tour Ttu'ough Cedar, lEEE Transactions on software
Engineering SE-II, 3, 285-302, March 1985.

[47] W.F. Tichy, Design, Implementation, and Evaluation of a Revision
Control System, IEEE Proceedz'ngs of the 6th Imernational Conference
on Software Engineering, Tokyo, Japan, 58-67, September- 1982.

[48] I. Vessey and R. Weber, Some Factors Affecting Program Repair
Maintenance: An Empirical Study, Communicmions of the ACM 26, 2,
128-134, Februa D, 1983.

[49] R.C. Waters, The Programmer's Apprentice: A Session with KBEmacs,
IEEE Tranzactions on Software Engineering SE-11, 11, 1296-1320,
November 1985.

[50] S.N. Wood.fild, An Experiment on Unit Increase in Problem Complexity,
1EEE Transactions on Software Engineering Sg-,5, 2, 76-79,
March 1979.

[51] W.A. Waif, Trends in the Design and Implementation of Programming
Languages, Computer 13, I, January 1980.

Appendix H
Software Engineenng Reading List

[1] W.R. Adrian, M.A.]3ranstad and J.C. Cherniavsky, Validation,
Verification, and Testing of Computer Software, ACM Computing
$urv~'s 14, 2, 159-192, June 1982.

[2] A. Avizienis, "]"he N..Version Approach to Fault-Tolerant Softwa~t'~,
IEEE Transactions on Software Engineering 5E-II, 12, 1491-1501,
December I985.

[3] F.T. Baker, Chief Programmer Team Management of Production
Program.rmng, IBM 5ystem.~ Journal l I, 56-73, 1972.

[4] L.L Beck and T.E. Perk.ins, A Survey of Software Engineering Practice:
Tools, Methods, and Results, IEEE Transactions on Software
Engineering SE-9, 5,541-561, September 1983.

[5] G.D. Bergland, A Guided Tour of Program Design Methodologies,
Computer 14, 10, 13-37, October 1981.

[6] K. Bo, Human-Computer Interaction, Computer 15, 2, 9-I 1,
November 1982.

[7] B.W. Bach.m, Software and Its Impact: A Quantitative Assessment,
Da:arnntion 19, 5, 48-59, May 1973.

[8] B.W. Boehm, Software Engineering, IEEE Transactions on Computers
C-25, 12, December 1976.

[9] B.W. Boehm, Software Engineering Economics, IEEE Trasacrions on
Software Engineering SE-IO, 1, 4-21, January 1984,

[10] B.W. Bo~hm~ M.H. Penedo, E.D. Stuck.le and A.B. Pyster,
A Software Development Environment for Improving Producuvity,
IEEE Computer 17, 6, 30-44, June 1984.

[11] F.P. Brooks Jr., The Mythical Man-Month, Datarnation, 17-24,
December 1974.

[12] T. Carey, User Differcnces ia lnterface Design, Compater lS, 2, 14-20,
November 1982.

[13] D. Chapman, A Program Testing Assistant, Commwdcations of the
ACM 25, 9, 625-634, September 1982.

[14] B.G. Claybrook, A Specification Method for Specifying Data and
Procedural Abstractions, IEEE Transactions on Software Engineering
SE-8, 5, 4.49-459, September 1982.

[15] B.J. Cox, Message/Object Programming: An Evolutionary Change in
Programming Teclmology, IEEE Software I, 1, 50-61, January 1984.

[16] B. Curtis, Measurement and Experimentation in Software Engineering,
Proceedings of the/EEE 68, 9, 114.4-1157, September 1980.

[17] R.E. Davis, Logic programming and Prolog: A Tutorial, IEEE
Soft-are 2, 5, 53-62, September 1985.

[lg] E. Dijkstra, Go To :Statement Considered Harmful, Communications of
the ACM 11, 3, 147-148, March 1968.

[19] E. Dijkstra, The Humble Programmer, Communications of the ACM 15,
10, 859-866, October 1972.

[20] E. Dijkstn, Structured Programming. Software Engineering. Co~epts
and TechJuques, Bttxton, Naur and Rand, ell (editor), LiRon Ed~ational
PubLishing, Inc., 1976.

[2 I] M.E. Fagan, Design and Code Inspections to Reduce Errors ia Program
Development, IBM System Journal, No. 3, 182-211, 1976.

[22] J.D. Gannon and J.1. Homing, The Impact of Langauge DetAgn on the
Prc~duction of Reli;tble Software, Proceedings of 1975 ln:ernahonat
Conference on Reliable Software, Lot Angeles, CA, April 21-23, 1975.
Reprinted in ACM SIGPLANNoticea 10, 6, 10-22, June 1975.

[23] W.E. Howden, That Theory and Practice of Functional Testing,
1EEE Software 2, 5, 6-17, Sep~mber 1985.

[24] C. Jan:i and G.V. Bochmann, An Approach to Testing SpeciScalions,
ACM Software Engineering Notes 8, 4, 53-59, August, 1983.

[25] J.K. Kearney, et. al., Software Complexity Measurement, tentative'~ly
accepted for publication in: Communications o/the ACM, submitted:
January 1985.

[26] B.W. Kernighan, The UNIX System and Software Reusability,
IEEE Transactions oa Software Engineering SE.]O, 5, 513-518,
,f~-ptem ber 1984.

[27] M. Mantel, The Effect of Programming Team Structu~s on
Programming Tasks, Communications of the ACM 24, 3, 106-113,
March 1981.

[28] R.G. Mays, et. al., PDM: A Requirements Methodology fat Saltwort:
System Enhancements, IBM Systems Journal 24, 2, 134-149, 1985.

[29] B. Meyer, On Formalism in Specifications, IEEE Software 2, 1, 2-26,
January 1985.

[30] J.A. Mills, A Pragmatic View of the System AJ~:hitect, Commumcations
of the ACM 28, 7, 708-717, July 1985.

[31] S.N. Mohanty, Software Cost Estimation: Present and Future,
Software--Practice and E.rperience I I, I03-121, 1981.

[32] J.D. Musa, Software Reliability Measurement, The Journal of Systems
and Software I, 223-241, 1980.

[33] D.L Pumas, On the Criteria Used in Decomposing Systems into
Modules, Communications of the ACM I,5, 12, 1035-1058,
December 1972.

[34] D.L. Pumas, P.C. Claments and D.M. Weiss, The Modular Struetu~ of
Complex Systems, IEEE Transactions on Software Engineering SE-1I ,
3, 259-266, March 1985.

[35] D.L Pumas, Software Aspects of Strategic Defense Systems,
Communications of the ACM 28, 12, 1326-1335, December 1985.

[36] N.H. Petschenik, Practical Priorities in System Testing, IEEE
Software 2, 5, 18-23, September 1985.

[37] C.V. ~ o o n h y and F.B. Bastan/, Software ReliabiLity--Status and
Perspectives, IEEE Traraactions an Software Engineering SE-8, 4,
354-371, July 1982.

[38] C.V. Ramamoorthy eT. al., Software Engineering, Computer 17, 10,
191-209, October 1984.

[39] D.J. Reifer and S. Trarmer, A Glossary of Software Tools and
Techniques, Computer, 6-14, July 1977.

[4.0] G. Roman, A Taxonomy of Current Issues in Requirements Engineering,
Computer 18, 4, 14-23, April 1985.

[41] D.T. Ross., Applications and Extensions of SADT, Computer 18, 4,
25-34, April 1985.

