
A Multi-Agent System for Automated Genomic Annotation

Keith Decker
Dept. of Computer Science

University of Delaware
Newark, DE 19716

decker@cis.udel.edu

Xiaojing Zheng
Dept. of Computer Science

University of Delaware
Newark, DE 19716

zheng@cis.udel.edu

Carl Schmidt
Dept. of Animal & Food

Science
University of Delaware

Newark, DE 19716
schmidt@udel.edu

ABSTRACT
Massive amounts of raw data are currently being generated
by biologists while sequencing organisms. Outside of the
largest, high-pro�le projects such as the Human Genome
Project, most of this raw data must be analyzed through
the piecemeal application of various computer programs and
searches of various public web databases. Due to the inex-
perience and lack of training, both the raw data and any
valuable derived knowledge will remain generally unavail-
able except in published textual forms.
Multi-agent information gathering systems have a lot to

contribute to these e�orts, even at the current state of the
art. We have used DECAF, a multi-agent system toolkit
based on RETSINA and TAEMS, to construct a prototype
multi-agent system for automated annotation and database
storage of sequencing data for herpesviruses. The result-
ing system eliminates tedious and always out-of-date hand
analyses, makes the data and annotations available for other
researchers (or agent systems), and provides a level of query
processing beyond even some high-pro�le web sites.

Keywords
information agents, lessons learned from deployed agents

1. INTRODUCTION
The rapidly accelerating rate at which organisms are being

genomically sequenced has changed the practice of biology.
Most important has been the realization that a tremendous
amount of genetic material is similar from organism to or-
ganism, even when they are as outwardly di�erent as a bud-
ding yeast, fruit
y, or human being. This means that if
biologists studying the yeast can �gure out what a certain
gene does|its function|that others can at least guess that
similar genes in other organisms play similar roles. Thus
huge databases are being populated with sequence data and
functional annotations [3]. All new sequences are routinely
compared to known sequences for clues as to their functions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGENTS’01,May 28-June 1, 2001, Montréal, Quebec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

Furthermore, the methods by which biologists hypothesize
function other than by similarity become other important
clues to the identi�cation of gene function in new organism
sequences. The \function" of a gene can refer to one or all
of concepts such as the molecular/biochemical function of
a gene product, how this is used in some larger biological
process, and also where in the cell the gene product does
its work [24]. For example, biologists can get clues to gene
function by:

� looking for certain patterns of amino acids (called mo-

tifs) that indicate likely molecular/biochemical activ-
ity

� looking for certain patterns of amino acids (especially
at the ends of a protein) that indicate where the gene
product will be used

� looking for information about similar gene products
(proteins), rather than just similar genes

A large amount of work in bioinformatics over the past ten
years has gone into developing algorithms (pattern match-
ing, statistical, and/or heuristic/knowledge-based) to sup-
port the work of hypothesizing gene function. Many of these
are available to biologists in various implementations, and
now many are available over the web. Meta-sites combine
many published algorithms, and sites specialize in informa-
tion about particular topics such as protein motifs.
From a computer science perspective, several problems

have arisen. In this paper, we will focus on the information
gathering problem, one for which appropriate multi-agent
systems tools have already been developed. What we have
is a large set of potentially large, heterogeneous, and dynam-
ically changing databases, all of which have information to
bring to bear on the biological problem of determining ge-
nomic function. We have biologists producing hundreds to
hundreds of thousands of possible genes, for which functions
must be hypothesized and which will lead to experiments for
con�rming gene function, looking for patterns or similarities,
and generally focusing their priorities. For the case of all but
the largest and well-funded sequencing projects, this must
be done by hand by a single researcher.
Several features make a multi-agent approach to this prob-

lem particularly attractive:

� information is available from many distinct locations

� information content is heterogeneous

� information content is constantly changing

� much of the annotation work for each gene can be done
independently

� biologists wish to both make their �ndings widely avail-
able, yet retain control over the data

� new types of analysis and sources of data are appearing
constantly

This paper will describe a prototype multi-agent system
built using the DECAF agent toolkit for the automated an-
notation of herpesvirus sequences, including the newly se-
quenced herpesvirus of turkey1, HVT-1. First we will de-
scribe what we mean by information gathering, then de-
scribe the DECAF agent architecture and toolkit support
for information gathering, then describe the herpesvirus an-
notation problem as an information gathering problem, and
�nally discuss the organization of the resulting system. This
system is now sucessfully in use by biologists at the Univer-
sity of Delaware, replacing the previous system of laborious
hand-annotation, and will be available publically to other bi-
ologists over the web. We conclude with a review of related
work and some of the computer science-oriented problems
that we have not yet addressed.

2. INFORMATION GATHERING
We view information gathering as a catch-all phrase indi-

cating information retrieval, �ltering, integration, analysis,
and display. In particular, information gathering is done in
domains where information (unique, redundant, or partially
redundant) is available at many di�erent locations and is
constantly being changed or updated, with even new infor-
mation sources appearing over time. Centralized access is
not available from the information sources because they are
being produced by di�erent organizational entities, usually
for di�erent purposes than those of the information gath-
ering user. Examples of information gathering domains are
�nancial information (evaluating, tracking, and managing a
stock portfolio)[9, 10], military strategic information (inte-
gration of friendly troop movements, enemy observations,
weather, satellite data, civilian communications)[14], and
annotation of gene sequences (as discussed brie
y in the
introduction).
Solutions to the information gathering problem tend to

draw on two lines of technologies: research on heterogeneous
databases and research on multi-agent systems. Work on
heterogeneous databases in both the database and AI com-
munities brings to bear the concepts of ontologies, wrap-
pers, mediators, materialization, and query planning. Work
on multi-agent systems brings to the table a way to actually
embody wrappers and mediators; ways to do query planning
in real-time domains; ways to deal with the dynamic nature
of the data and the data sources; ways to handle issues of
e�cient distributed computation and robustness; ways to
deal with the organizational issues involved in distributed
information problems.
We promote the use of the RETSINA multi-agent orga-

nization2 for building information gathering systems. The
RETSINA approach consists of three general classes of agents
[23, 10]:
1That's the bird, not the country.
2We will usually use the word organization to indicate the
structure of a collection of agents, and architecture to indi-
cate the structure of the internals of a single agent.

� Information Extraction Agents, which interact directly
with external data sources, i.e. wrapping sensors, da-
tabases, web pages.

� Task Agents, which interact only with other agents to
handle the bulk of the information processing tasks.
These include both domain-dependent agents that take
care of �ltering, integration, and analysis; also domain-
independent \middle agents" that take care of match-
making, service brokering, and complex query plan-
ning.

� Interface Agents, that interact directly with the end
user.

A surprisingly large number of these agents are all or
mostly reusable [9], which contributes to faster and faster
prototyping of information gathering systems. DECAF (de-
scribed in the next section) provides an implementation of
these middle agents, reusable agent classes, and other tools
for building multi-agent information gathering systems.

2.1 Operating Model
Our abstract model of information gathering relies pri-

marily on query processing as its basic action. Interface
agents primarily allow users to make direct queries (e.g.
\should I buy shares in this stock" or \show me the HVT-1
genes that contain a prenylation motif"), or indirect queries
via some materialized data view (e.g. a live web page rep-
resenting a user's stock portfolio or a \clickable plant" repre-
senting all the available information on arabidopsis thaliana).
There are several di�culties that need to be overcome even
with such a simple model, namely:

� How to deal with the fact that the answers to queries
change over time

� How to deal with the fact that typically user queries
cannot be answered by routing to a single source

� How to deal with the heterogeneity of the user's in-
formation model when compared to the models of any
other agent in the system

� How to deal with queries that would typically return
tremendous volume of answers

� How to deal with secondary or meta-expectations of
the user with regards to the speed or resource usage
expected of the query

� How to deal with an open system where the very struc-
ture of the queries that can be created may in fact
change over time

From the information extraction end, then, all sources can
be treated as \databases", but this again brings up similar,
related issues: dealing with change, relating the available
information to some common information model, how new
sources can be added dynamically to a large system. Issues
unique to these agents include how to deal with the fact
that many sources are not actually complete databases, and
attempting to bu�er or otherwise ameliorate robustness and
access issues for web-accessible resources.
Task agents �t in by either providing direct query services

(i.e. access to some indirect information that can only be

derived from analysis of other data) or support mechanisms
that deal with some of the di�culties mentioned earlier. For
example, middle agents such as matchmakers allow new ser-
vices to be advertised dynamically, and then accessed by
interface agents. Brokers or other types of middle agent me-
diators can provide seamless robust, load-balanced access to
services. Query planning itself can often be computationally
expensive enough to be handled by separate task agents.
To summarize, we model an information gathering sys-

tem as an extended distributed query processing system. In
particular, the multi-agent implementation of such a sys-
tem deals with these \extensions" over traditional database
systems:

� Dynamic Information: Data or derived information
that changes over time

� Open Systems: data or derived information sources
come and go over time

� Secondary User Utility: users don't just expect an an-
swer, but they often have expectations about the time
it will take to get that answer or how many resources
(e.g. money) to spend to achieve an answer of some
characterization (quality, certainty, etc.)

The next section will describe our realization of this gen-
eral model using DECAF.

3. DECAF
DECAF (Distributed, Environment Centered Agent Frame-

work) is a Java-based toolkit for creating multi-agent sys-
tems [13]. In particular, several tools have been developed
speci�cally for prototyping information gathering systems.
Also, the internal architecture of each DECAF agent has
been designed much like an operating system|as a set of
services for the \intelligent" (resource-e�cient, adaptively-
scheduled, soft real-time, objective-persistent) execution of
agent actions. DECAF consists of a set of well de�ned con-
trol modules (initialization, dispatching, planning, schedul-
ing, execution, and coordination, each in a separate, con-
current thread) that work in concert to control an agent's
life cycle. There is one core task structure representation
that is shared between all of the control modules. This has
meant that even non-reusable domain-dependent agents can
be developed more quickly than by the API approach where
the programmer has to, in e�ect, create and orchestrate the
agent's architecture as well as its domain-oriented agent ac-
tions. This section will �rst discuss the internal architec-
ture of a generic DECAF agent, and then discuss the tools
(such as middle agents, system debugging aids, and the in-
formation extraction agent shell) we have built to implement
multi-agent information gathering systems.

3.1 The DECAF Internal Architecture
DECAF provides the necessary architectural services of

a large-grained intelligent agent [10, 23]: communication,
planning, scheduling, execution monitoring, and coordina-
tion. This is essentially the internal \operating system" of
a software agent, to which application programmers have
strictly limited access. The overall internal architecture of
DECAF is shown in Figure 1.

3.1.1 Agent Initialization
The execution modules control the
ow of a task through

its life time. After initialization, each module runs contin-
uously and concurrently in its own Java thread. When an
agent is started, the Agent Initialization module will run.
The agent initialization module will read a plan �le that de-
scribes the agent's capabilities as a specially-annotated HTN
(Hierarchical Task Network). Each task reduction speci�ed
in the plan �le will be added to the Task Templates Hash

table (plan library) along with the tree structure that is used
to specify actions that accomplish that objective.

3.1.2 Dispatcher
Agent initialization is done once and then control is passed

to the Dispatcher which waits for an incoming KQML (or
FIPA) message. These messages will then be placed on the
Incoming Message Queue. An incoming message contains
a KQML performative and its associated information. An
incoming message can result in one of two actions by the
dispatcher. First, the message may be a part of an ongoing
conversation. The Dispatcher makes this distinction mostly
by recognizing the KQML :in-reply-to �eld designator,
which indicates the message is part of an existing conversa-
tion. In this case the dispatcher will �nd the corresponding
action in the Pending Action Queue and set up the tasks to
continue the agent action.
Second, a message may indicate that it is part of a new

conversation. This is the case whenever the message does
not use the :in-reply-to �eld. If so a new objective is cre-
ated (similar to the BDI \desires" concept[21]) and placed
on the Objectives Queue for the Planner. An agent typi-
cally has many active objectives, not all of which may be
achievable.

3.1.3 Planner
The Planner monitors the Objectives Queue and matches

new goals to an existing task template as stored in the Plan
Library. A copy of the instantiated plan, in the form of an
HTN corresponding to that goal, is placed in the Task Queue
area, along with a unique identi�er and any provisions that
were passed to the agent via the incoming message. If a
subsequent message comes in requesting the same goal be
accomplished, then another instantiation of the same plan
template will be placed in the task networks with a new
unique identi�er. The Task Queue at any given moment will
contain the instantiated plans/task structures (including all
actions and subgoals) that should be completed in response
to an incoming request.

3.1.4 Scheduler
The Scheduler waits until the Task Queue is non-empty.

The purpose of the Scheduler is to determine which actions
can be executed now, which should be executed now, and in
what order they should be executed. This determination is
currently based on whether all of the provisions for a partic-
ular module are available. Some provisions come from the
incoming message and some provisions come as a result of
other actions being completed. This means the Task Queue
Structures are checked any time a provision becomes avail-
able to see which actions can be executed now.
It is possible to add signi�cant reasoning ability to the

scheduling module. This e�ort involves annotating the task
structure with performance and scheduling information to

Action
Results Queue

Agent
Initialization

Plan File Incoming KQML messages

Domain Facts and Beliefs

KQML Messages
Outgoing Action Modules

Hashtable Action Queue
Pending

Dispatcher Planner Executor

Message Queue
Incoming

Queue
Objectives

Queue
Task

Queue
Agenda

Scheduler

Task Templates

DECAF Task and Control Structures

Figure 1: DECAF Architecture Overview

allow the scheduler to select an \optimal" path for task com-
pletion.3

3.1.5 Executor
The Executor is set into operation when the Agenda Queue

is non-empty. Once an action is placed on the queue the Ex-
ecutor immediately places the task into execution. One of
two things can occur at this point: The action can complete
normally (Note that \normal" completion may be return-
ing an error or any other outcome) and the result is placed
on the Action Result Queue. The framework waits for re-
sults and then distributes the result to downstream actions
that may be waiting in the Task Queue. Once this is ac-
complished the Executor examines the Agenda queue to see
if there is further work to be done. The Executor module
will start each task in its own separate thread improving
throughput and assisting the achievement of the real-time
deadlines. Alternatively, an action may fail and not return,
in which case the framework will indicate failure of the task
to the requester.

3.2 DECAF Task Structures
DECAF's underlying Hierarchical Task network (HTN)

representation ties together two pieces of work: Williamson's
work on information-
ow representations used in RETSINA
[27, 26], and Decker's work on representations of how local
and non-local action executions e�ect those characteristics
over which an agent expresses preferences (via a utility func-
tion) used in T�MS [8, 25].

3Optimal in this case may mean some de�nition of quality
or deadline and real-time goals.

3.2.1 RETSINA Information Flow
The unique contribution of the RETSINA information

ow representation used in DECAF is the declarative de-
scription of the information requirements of actions and the
information producing abilities of actions [26]. This is in
addition to the traditional precondition and e�ect represen-
tations used in planning systems. The information needs
of an action are represented by a set of provisions. Provi-
sions can be thought of as a generalization of plan action
parameters and runtime variables, in which each provision
has an associated queue of values. This information may
be queued statically at plan-generation time or dynamically
during plan execution. An action is enabled when there is at
least one element queued for each of the actions provisions.
Upon execution, the provision is consumed. Parameters are
a subset of action provisions that are not consumed when
an action runs (and thus do not involve a queue of values).
When an action completes it produces both an outcome and
a result. The outcome is one of a �nite set of pre-designated
symbols (e.g. the outcomes of CNLP or the observation la-
bels of C-BURIDAN). The result is an arbitrary piece of
information. Provision Links designate information
ow of
results from the outcomes of actions to the provisions of
other actions.
Actions. A DECAF action represents the smallest unit

of analysis. For the purpose of utility calculation, each ac-
tion has a probabilistic model, called the behavior pro�le,
which speci�es the likelihood of each outcome, and the prob-
ability distribution function for the quality, cost, and dura-
tion associated with each outcome.
Tasks. A DECAF task (or subtask) represents a set of

related subtasks or actions, joined by a common quality ac-

cumulation function. For example, in an AND/OR tree, an

AND task indicates that all subtasks must be accomplished
to accomplish the task, while an OR task indicates that
only one subtask needs to be accomplished. Since T�MS
is about worth-oriented environment modeling, it uses con-
tinuous rather than logical quality accumulation functions
(for example min instead of AND, max instead of OR4).
For example, subtasks may be joined by a SUM quality ac-
cumulation function, indicating that as many subtasks as
possible should be attempted. DECAF allows the explicit
speci�cation of a characteristic accumulation function for
each characteristic (e.g. quality, cost, duration).
Plan Editor. The control or programming of DECAF

agents is provided via an ASCII Plan File written in the DE-
CAF programming language. The plan �le is created using
a GUI interface called the Plan-Editor which allows visual
programming of HTNs and the T�MS annotations. This
provides a software component-style programming interface
with desirable properties such as component reuse and some
design-time error-checking. The chaining of activities can
involve traditional looping and if-then-else constructs.
The DECAF Plan-Editor attaches to each action a perfor-

mance pro�le which is then used and updated internally by
DECAF to provide real-time local scheduling services. The
reuse of common agent behaviors is thus increased because
the execution of these behaviors does not depend only on
the speci�c construction of the task network but also on the
dynamic environment in which the agent is operating.
For example, a particular agent may be \persistent", or

\
exible" [28] meaning the agent will attempt to achieve an
objective, possibly via several approaches, until a result is
achieved. This construction also allows for a certain level
of non-determinism in the use of the agent action building
blocks.

3.3 DECAF Support for Info Gathering
How can DECAF support the construction, maintenance,

and performance of information gathering systems? DE-
CAF provides core architectural support for one feature
of the information gathering problem, that of secondary
user utility. Thus DECAF plans can include alternatives,
and these alternatives can be chosen dynamically at run-
time depending on user constraints on answer timeliness or
other resource constraints. DECAF also supports building
information gathering systems by providing useful middle
agents and a shell for quickly building information extrac-
tion agents for wrapping web sites. Agent name servers,
matchmakers, brokers, and other middle-agents support the
creation of open systems where elements may come and go
over time. Dynamic information change is supported by
reusable Information Extraction Agent behaviors that in-
clude the ability to push data values to the user, or to set up
persistent queries that pull data from providers only when
the answer changes signi�cantly.
In order to support the development of agents, other tools

have also been developed to support agent operations and
software design. Middle Agents have been developed to
support common multi-agent activities. A middle agent is
an agent that facilitates agent operation while not directly
related to completing a speci�c task. The Agent Name
Server (ANS) (\white pages") is an essential component
for agent communication. It works in a fashion similar to

4The full set of quality accumulation functions, including
alternate de�nitions for AND and OR, is discussed in [7].

DNS (Domain Name Service) by resolving agent names to
host and port addresses. The Matchmaker serves as a
\yellow pages" to assist agents in �nding services needed for
task completion. The Broker agent acts as a kind of \mid-
dle manager" to assist an agent with collections of services.
The broker can now provide a larger service than any sin-
gle provider can, and often manage a large group of agents
more e�ectively [11]. A Proxy agent allows web page Java
applets to communicate with DECAF agents that are not
located on the same server as the applet. The Agent Man-
agement Agent (AMA) allows MAS designers a look at
the entire running set of agents spread out across the in-
ternet that share a single agent name server. This allows
designers to query the status of individual agents and watch
or record message passing tra�c.

3.3.1 Information Extraction Agent Shell
The main functions of an information extraction agent

(IEA) are [9]: Ful�lling requests from external sources in
response to a one shot query (e.g. \What is the price of
IBM?"). Monitoring external sources for periodic informa-
tion (e.g. \Give me the price of IBM every 30 minutes.").
Monitoring sources for patterns, called information moni-

toring requests (e.g. \Notify me if the price of IBM goes
below $50.")." These functions can be written in a general
way so that the code can be shared for agents in any domain.
Since our IEA operates on the Web, the information gath-

ered is from external information sources. The agent uses a
set of wrappers and the wrapper induction algorithm STALK-
ER [19], to extract relevant information from the web pages
after being shown several marked-up examples. When the
information is gathered it is stored in the local IEA \in-
fobase" using Java wrappers on a PARKA [15] knowledge-
base. This makes new IEA's fairly easy to create, and forces
the di�cult parts of this problem back on to KB ontology
creation, rather than the production of tools to wrap web
pages and dynamically answer queries.

4. A DECAF MULTI-AGENT SYSTEM FOR
HERPESVIRUS ANNOTATION

These tools can be put to use to create a prototype multi-
agent system for annotating herpesvirus sequences. As a
prototype, we have chosen to simplify several features that
would be in a full system. First, all annotations are mate-
rialized at the local sequence database. Secondly, we treat
some data as strings which really contain more information,
in particular gene function (we'll explain this more in Future
Work, but su�ce to say, this is the way it is treated in almost
all existing databases). With that caveat, the organization
of the system is shown in Figure 2.
Information Extraction Agents. Currently 4 agents

based on the IEA shell wrap public web sites. The Genbank
wrapper primarily supplies \BLAST" services: given the
sequence of a herpesvirus gene, what are the most similar
genes known in the world (called \homologs")? The answer
here can give the biologist a clue as to the possible function
of a gene, and for any gene that the biologist does not know
the function of, a change in the answer to this query might be
signi�cant. The SwissProt wrapper primary provides pro-
tein motif pattern searches. If we view a protein as a one-
dimensional string of amino acids, then a motif is a regular
expression matching part of the string that may indicate a

 Local Knowledgebase
Management AgentsInformation

Extraction
Agents

 Local Knowledgebase
Management Agents

 Local Knowledgebase
Management Agents

 User Query
Applet

 Sequence Addition
Applet

 Local Knowledgebase
Management Agents

 GenBank
Info Extraction Agent

 SwissProt
Info Extraction Agent

 PSort
Info Extraction Agent

 ProDomain
Info Extraction Agent

 Proxy
Agent Query Processing

Agent

 Annotation
Agent

 Sequence Source
Processing Agent

 Matchmaker
Agent

 Agent Name Server
Agent

Interface Agents

Domain-
Independent
Task Agents

Task Agents

Figure 2: DECAF Multi-Agent System for Genomic Annotation

particular kind of function for the protein (i.e. a prenyla-
tion motif indicates a place where the protein may be mod-
i�ed after translation by the addition of another group of
molecules) The PSort wrapper accesses a knowledge-based
system for estimating the likely sub-cellular location that a
sequence's encoded protein will be used. The ProDomain
wrapper allows access to other information about the en-
coded protein.
The local knowledgebase management agent (KBMA) is

a slightly di�erent member of this class because unlike most
IEAs it actually stores data via agent messages rather than
only querying external data sources. It is here that the an-
notations of the genetic information are materialized, and
from which most queries are answered. Each KBMA is up-
dated with raw sequencing data indirectly from a user se-
quence addition interface that is then automatically anno-
tated under the control of an annotation task agent. KB-
MAs can be \owned" by di�erent parties, and queried sepa-
rately or together. In this way, researchers with limited com-
puter knowledge can create shareable annotated sequence
databases using the existing wrappers and other analysis
tools as they are developed, without having to necessarily
download and install them themselves. Using a PARKA-
DB knowledgebase allows e�cient, modern relational data
storage and query as well as limited inferencing [15].
Task Agents. There are two domain task agents; the

rest are generic middle agents described earlier. The An-
notation Agent directs exactly what information should be
annotated for each sequence. It is responsible for storing the
raw sequence data, making queries to the various wrapped
web sites, storing those annotations, and also indicating the
provenance of the data (meta-information regarding where
an annotation came from). The Sequence Source Process-
ing Agent takes almost raw sequence data in ASN.1 format
as output by typical sequence estimation programs. The
main function of this agent is to test this input for internal
consistency, and eventually to aid in ontologically correct
functional annotation (see future work).
Interface Agents. There are two interface applets that

communicate via the proxy agent with other agents in the
system. One is oriented towards adding new sequences to a
local knowledgebase (secured by a password) and the other

allows anyone to query the complete annotated KB (or even
multiple KBs). The public query interface to the herpesvirus
KB is currently available as indicated in the appendix to
this paper. The interface hardly scratches the surface of
the queries that are actually possible, but a big problem is
that most biologists are not comfortable with complex query
languages. Indeed, the simple interface that allows simple
conjunctive and disjunctive queries over dynamic menus of
annotations (constructed by the applet at runtime from the
actual local KB) is quite advanced as compared to most of
the existing public sites that allow textual keyword searches
only.

5. RELATED WORK
There has been signi�cant work on general algorithms for

query planning, selective materialization, and the optimiza-
tion of these from the AI perspective, for example TSIMMIS
[5], Information Manifold [17], Infosleuth [20], HERMES [1],
SIMS [2], etc., and of course on applying agents as the way
to embody these algorithms [18, 23, 10, 16].
In Biology, compared to the work being done to create

the raw data, all the work on how to organize and retrieve
it is relatively small. Most of the work in computer science
directed to biological data has been in the area of hetero-
geneous databases, focusing on the semi-structured nature
of much of the data that makes it very di�cult to store
usefully in commercial relational databases [6]. Some work
has begun in applying the work on wrappers and mediators
to biological databases, for example TAMBIS [22]. These
systems di�er from ours in that they are pure implementa-
tions of wrapper/mediator technology that are centralized,
do not allow for dynamic changes in sources, support persis-
tent queries, or consider secondary user utility in the form
of time or other resource limitations.
Agent technology has been making some inroads in the

area. The word \agent" with the popular connotation of a
single computer program to do a user's bidding is found in
the promotional material for Doubletwist5. Here, an \agent"
stands for a persistent query (e.g. \tell me if a new ho-
molog is found in your database for the following sequence").

5www.doubletwist.com

There is no collaboration or communication between agents.
We know of two truly multi-agent projects in this do-

main. First, InfoSleuth has been used to annotate livestock
genetic samples [12]. The
ow of information is very sim-
ilar to our system. However, the system is not set up for
noticing changes in the public databases, for integrating new
data sources on the
y, or for consideration of secondary
user utility. Secondly, the GeneWeaver project [4] is an-
other true multi-agent system for annotation of genomes.
GeneWeaver has as a primary design criterion the observa-
tion that the source data is always changing, and so anno-
tations need to be constantly updated. They also express
the idea that new sources or analysis tools should be easy
to integrate into the system, which plays to the open sys-
tems requirement, although they do not describe details.
The primary di�erences are the way in which an open sys-
tem is achieved (it is not clear that they use agent-level
matchmaking, but rather possibly CORBA speci�cations)
and that GeneWeaver is not based on a shared architec-
ture that supports reasoning about secondary user utility.
In comparison to the DECAF implementation, GeneWeaver
uses CORBA/RMI rather than TCP/IP communication,
and a simpli�ed KQML-like language called BAL.

6. EVALUATION
The system described here is operational and available on

the web at http://udgenome.ags.udel.edu/herpes/. This
is a real working prototype, and so the interface is strongly
oriented to biologists only. In general, computational sup-
port for the processes that biologists use in analyzing data
is primitive (Perl scripts) or non-existant. In less than 10
min, we were able to annotate the HVT-1 sequence, as
well as store it in a queryable and web-publishable form.
This impressed the biologists we work with, compared to
manual annotation and
at ASCII �les. Furthermore, we
have recently added approximately 25 other publicly avail-
able herpesvirus sequences (e.g. several strains of Human
herpesvirus, African swine fever virus, etc.). The result-
ing knowledgebase almost immediately resulted in queries
by our local biologists that indicated possible interesting re-
lationships that may result in future biological work. This
summer we will begin testing with viral biologists from other
universities.
Other things about the system which have excited our

biologist co-workers are the relative ease by which we can
add new types of annotation or analysis information, and
the fact that the system can be used to build similar systems
for other organisms, such as the chicken (see Future Work).
For example, the use of open system concepts such as a
matchmaker allow the annotation agent to access and use
new annotation services that were not available when it was
initially written. We have not yet evaluated the usefulness of
reasoning about secondary user utility from the standpoint
of the biologist, but it does provide the agent programmer
ways of building robust systems with alternative methods
to achieve goals.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have discussed the very real problem of

making some use of the tremendous amounts of genetic se-
quence information that are being produced. While there is
much information publicly available over the web, accessing

such information is di�erent for each source and the results
can only be used by a single researcher. Furthermore, the
contents of these primary sources are changing all the time,
and new sources and techniques for analysis are constantly
being developed.
We cast this sequence annotation problem as a general

information gathering problem, and proposed the use of
multi-agent systems for implementation. Beyond the ba-
sic heterogeneous database problem that this problem rep-
resents, an MAS solution gives us mechanisms for dealing
with changing data, the appearance of new sources, mind-
ing secondary utility characteristics for users, and of course
the obvious distributed processing achievements of parallel
development, concurrent processing, and the possibility for
handling certain security or other organizational concerns.
We currently are o�ering the system publicly on the web,

and are populating it with the known herpesvirus sequences.
Now that the core functionality is complete, we would like
to broaden the coverage of both annotation and add other,
more complex analyses. For example, we could broaden the
reach of the system by starting with ESTs (Expressed Se-
quence Tags) instead of complete sequences. Agents could
wrap the standard software for creating sequences from this
data, at which point the existing system could be used. An
example of a more complex analysis would be the estimation
of the physical location of the gene as well as its function.
Because biologists have long recorded certain QTLs (Quanti-
tative Trait Loci) that indicate that a certain physical region

is responsible for a trait (such as chickens with resistance to
a certain disease), being able to see what genes are physi-
cally located in the QTL region is a strong indicator as to
their high-level genetic function.
In general, we have not yet designed an interface that al-

lows biologists to take full advantage of the materialized data
|they are uncomfortable with complex query languages.
We believe that it may be possible to build a graphical in-
terface to allow a biologist, after some training, to create
a commonly needed analysis query and to then save this
for use in the future by that scientist, or others sharing the
agent namespace.
A new kind of genomic data is now being produced, that

may swamp even the amount of sequencing data. This is
so-called gene expression data, and indicates quantitatively
how much a gene product is expressed in some location,
under some conditions, at some point in time. This data
needs to be linked with sequence and function data, to allow
more powerful analysis. For example, linked to QTL data,
this allows us to ask questions such as \what chemicals might
prevent club root disease in cabbage?".
Finally, the most di�cult problem is that of annotating

genetic function itself. Unfortunately, the millions of genes
sequenced so far have fairly haphazard (from a computer sci-
entist's perspective) functional annotation: simply textual
descriptions. Recently, a fairly large group representing at
least some of the primary organism databases have created
a consortium dedicated to creating a gene ontology for an-
notating gene function in three basic areas: the biological
process in which a gene plays a part, the molecular function
of the gene product, and the cellular localization [24]. A
main area of our future research is to both support the use
of this ontology by biologists as sequences are added to the
system, and to use it to allow even more powerful analysis
of the resulting databases.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grants IIS-9812764 and
IIS-9733004.

9. REFERENCES
[1] S. Adali and V. Subrahmanian. Amalgamating

knowledge bases, III: Distributed mediators.
International Journal of Intelligent Cooperative

Information Systems, 1994.

[2] Y. Arens and C. Knoblock. Intelligent caching:
Selecting, representing, and reusing data in an
information server. In Proc. 3rd Intl. Conf. on

Information and Knowledge Management, 1994.

[3] D. Benson and et al. Genbank. Nucleic Acids Res.,
28:15{18, 2000. http://www.ncbi.nlm.nih.gov.

[4] K. Bryson, M. Luck, M. Joy, and D. Jones. Applying
agents to bioinformatics in geneweaver. In Proceedings

of the Fourth International Workshop on Collaborative

Information Agents, 2000.

[5] S. Chawathe, H. Garcia-Molina, J. Hammer,
K. Ireland, Y. Papakonstantinou, J. Ullman, and
J. Widom. The TSIMMIS project: integration of
heterogeneous information sources. In Proceedings of

the Tenth Anniversary Meeting of the Information

Processing Society of Japan, Dec. 1994.

[6] S. B. Davidson and et al. Biokleisli:a digital library for
biomedical researchers. Intnl. J. on Digital Libraries,
1(1):36{53, 1997.

[7] K. S. Decker. Environment Centered Analysis and

Design of Coordination Mechanisms. PhD thesis,
University of Massachusetts, 1995.
http://dis.cs.umass.edu/~decker/thesis.html.

[8] K. S. Decker and V. R. Lesser. Quantitative modeling
of complex computational task environments. In
Proceedings of the Eleventh National Conference on

Arti�cial Intelligence, pages 217{224, Washington,
July 1993.

[9] K. S. Decker, A. Pannu, K. Sycara, and
M. Williamson. Designing behaviors for information
agents. In Proceedings of the 1st Intl. Conf. on

Autonomous Agents, pages 404{413, Marina del Rey,
Feb. 1997.

[10] K. S. Decker and K. Sycara. Intelligent adaptive
information agents. Journal of Intelligent Information
Systems, 9(3):239{260, 1997.

[11] K. S. Decker, K. Sycara, and M. Williamson.
Middle-agents for the internet. In Proceedings of the

Fifteenth International Joint Conference on Arti�cial

Intelligence, pages 578{583, Nagoya, Japan, Aug.
1997.

[12] L. Deschaine, R. Brice, and M. Nodine. Use of
infosleuth to coordinate information acquisition,
tracking, and analysis in complex applications.
Technical Report MCC-INSL{008-00, MCC, 2000.

[13] J. Graham and K. Decker. Towards a distributed,
environment-centered agent framework. In N. Jennings
and Y. Lesperance, editors, Intelligent Agents VI,
LNAI-1757, pages 290{304. Springer Verlag, 2000.

[14] T. Harvey, K. Decker, and O. Rambow. Integrating
the communicative plans of multiple, independent

agents. In Workshop on Communicative Agents: The

use of natural language in embodied systems, 1999.
Autonomous Agents 99.

[15] J. Hendler and M. T. Kilian Sto�el. Advances in high
performance knowledge representation. Technical
Report CS-TR-3672, University of Maryland Institute
for Advanced Computer Studies, 1996. Also
cross-referenced as UMIACS-TR-96-56.

[16] L. Kerschberg. Knowledge rovers: cooperative
intelligent agent support for enterprise information
architectures,. In P. Kandzia and M. Klusch, editors,
Cooperative Information Agents, LNAI-1202.
Springer-Verlag, 1997.

[17] T. Kirk, A. Levy, J. Sagiv, and D. Srivastav. The
information manifold. Technical report, AT&T Bell
Labs, 1995.

[18] C. Knoblock, Y. Arens, and C. Hsu. Cooperating
agents for information retrieval. In Proc. 2nd Intl.

Conf. on Cooperative Information Systems. Univ. of
Toronto Press, 1994.

[19] I. Muslea, S. Minton, and C. Knobloch. Stalker:
Learning expectation rules for simistructured
web-based information sources. In Papers from the

1998 Workshop on AI and Information Gathering,
1998. also Technical Report ws-98-14, University of
Southern California.

[20] M. Nodine and A. Unruh. Facilitating open
communication in agent systems: the infosleuth
infrastructure. In M. Singh, A. Rao, and
M. Wooldridge, editors, Intelligent Agents IV, pages
281{295. Springer-Verlag, 1998.

[21] A. Rao and M. George�. BDI agents: From theory to
practice. In Proceedings of the First International

Conference on Multi-Agent Systems, pages 312{319,
San Francisco, June 1995. AAAI Press.

[22] R. Stevens and et al. Tambis: Transparent access to
multiple bioinformatics information sources.
Bioinformatics, 16(2):184{185, 2000.

[23] K. Sycara, K. S. Decker, A. Pannu, M. Williamson,
and D. Zeng. Distributed intelligent agents. IEEE
Expert, 11(6):36{46, Dec. 1996.

[24] The Gene Ontology Consortium. Gene ontolgy: tool
for the uni�cation of biology. Nature Genetics,
25(1):25{29, May 2000.

[25] T. Wagner, A. Garvey, and V. Lesser. Complex goal
criteria and its application in design-to-criteria
scheduling. In Proceedings of the Fourteenth National

Conference on Arti�cial Intelligence, Providence, July
1997.

[26] M. Williamson, K. S. Decker, and K. Sycara.
Executing decision-theoretic plans in multi-agent
environments. In AAAI Fall Symposium on Plan

Execution, Nov. 1996. AAAI Report FS-96-01.

[27] M. Williamson, K. S. Decker, and K. Sycara. Uni�ed
information and control
ow in hierarchical task
networks. In Proceedings of the AAAI-96 workshop on

Theories of Planning, Action, and Control, 1996.

[28] M. Wooldridge and N. Jennings. Intelligent agents:
Theory and practice. The Knowledge Engineering
Review, 10(2):115{152, 1995.

