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ABSTRACT 
Over the last few years, electronic auctions have become an 
increasingly important aspect of e-commerce, both in the business 
to business and business to consumer domains. As a result of this, 
it is often possible to find many auctions selling similar goods on 
the web. However, when an individual is attempting to purchase 
such a good, they will usually bid in one, or a small number, of 
such auctions. This results in two forms of inefficiency. Firstly, 
the individual may pay more for the good than would be expected 
in an ideal market. Secondly, some sellers may fail to make a sale 
that could take place in an ideal market. 
In this paper, we present an agent that is able to participate in 
multiple auctions for a given good, placing bids appropriately to 
secure the cheapest price. We present experiments to show; 
(i) Current auction markets on the web are inefficient, with trades 
taking place away from equilibrium price, and not all benefit from 
trade being extracted. 
(ii) Our agent is able to exploit these inefficiencies, resulting in it 
making higher profits than the simple strategy of bidding in a 
small number of auctions. 
(iii) As more participants use our agent, the market becomes more 
efficient. When all participants use the agent, all trades take place 
close to equilibrium price, and the market approaches ideal 
behaviour. 
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1. INTRODUCTION 
As a result of the explosion in popularity of e-commerce [1], more 
and more companies are providing virtual auction sites. Because 
of this, if you want to purchase a particular good, there are often 
many auction sites that are offering it. Furthermore, even a single 
site such as E-Bay may host many auctions for similar goods. If 
you really want to get the best price, you must monitor all of these 
auctions using your web browser, and place bids appropriately. 

Care must be taken to ensure you don’t make more than one 
purchase. If there are a large number of auctions, this can be quite 
a daunting task, requiring your undivided attention for a period of 
time. Furthermore, if you wish to purchase more than one item, 
(as is often the case in B2B trading,) it becomes almost 
impossible. Because of this, the majority of auction participants 
focus on a single auction. The use of automated bid technology on 
sites such as E-Bay encourages this behaviour. A buyer enters a 
maximum purchase price in a given auction, and the site 
automatically places bids in that auction on their behalf, locking 
the participant into that single auction. 
This results in an inefficient market. In many cases, the winner of 
an auction may have been able to get a better price in a different 
auction, and the losers may have been able to make a purchase 
elsewhere. In other cases, the seller loses out.  If there are few 
participants in a certain auction, and they value the good at a low 
price, the good will sell for below market value or may even fail 
to meet its reservation price.  This is despite the fact that losers of 
other auctions for similar goods would be willing to pay more for 
it. 
In this paper, we describe an agent able to participate in multiple 
auctions on behalf of a trader, leading to optimal or near-optimal 
purchase decisions being made. This agent exploits the 
inefficiencies of the market, locating the auctions that are closing 
at the cheapest prices and purchasing from there. Furthermore, we 
present experiments that assess the impact of such an agent on the 
microeconomic properties of the market. We show firstly that the 
trader using the agent makes increased profits over the usual 
strategy of selecting one auction. We also demonstrate that, as 
more participants adopt the agent-based approach, the market 
becomes more efficient. The paper is structured as follows. In 
section 2, we present the algorithm used by the automated agent 
to participate in multiple auctions. In section 3, we describe 
experiments showing the effectiveness of the agent, and the effect 
of the agent on the microeconomic dynamics of the market made 
up of multiple auctions. In section 4, we describe related work, 
and in section 5, we present conclusions and future work. 

2. THE AGENT ALGORITHM 
The agent aims to purchase one or more identical goods on behalf 
of its user. It can participate in many auctions for this good, and 
coordinates bids across them to hold the lowest bids. As auctions 
progress, and it is outbid, it may bid in the same auction or choose 
to place a bid in a different auction. The algorithm consists of two 
parts. Firstly, it has a coordination component, which ensures it 
has the lowest leading bids possible to purchase the appropriate 
number of goods. Secondly, it has a belief-based learning and 
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utility analysis component to determine if it should deliberately 
‘lose’ an auction in the hope of doing better in another. 

2.1 Definitions 
An auction house may run one or more auctions for a given good. 
Each auction ai offers n(ai) goods for sale. Auctions are assumed 
to be English auctions in format, with bidders placing bids at the 
price they are currently willing to pay for the good. A bidder may 
place more than one bid in a given auction. The n(ai) goods 
offered in the auction are sold to the bidders making the n(ai) 
highest bids, for the price they bid. In case of two equal bids, the 
item goes to the earliest bidder. Hence the auction is 
discriminatory – some buyers will pay more than others for the 
same good. Different auctions impose different rules covering 
how a bid may be entered or retracted. For the purposes of this 
paper, we assume that a buyer may not retract a bid, and a buyer 
may enter a bid provided it is at least a certain minimal increment 
δ above the n(ai)th highest bid. See Wurman et.al. [2] for a 
taxonomy of alternative design decisions in auctions. 
Our agent participates in many auctions selling similar goods, 
spread out between many auction houses. It wishes to purchase m 
goods in these auctions, and is given a valuation of v on each 
good by its user.  To do this, it monitors the set of auctions 
currently progressing. For each auction ai, it observes the n(i) 
highest bids. In other words, it observes the values of the bids 
which, if the auction terminated immediately, would result in a 
successful purchase. We refer to these as the currently active bids. 
An active bid b1 is lower in precedence than b2 if it is lower in 
value, or if it is the same value but was submitted later. To 
represent the reservation price r, we assume that the seller initially 
places n(i) bids of value r-δ, where δ is the minimum bid 
increment.  

2.2 The Coordination Algorithm 
Let L be the number of currently active bids that are held by our 
agent. (Initially, L will be zero.) To ensure it makes m purchases, 
it needs to make new bids that result in it having an additional (m-
L) active bids. As we shall see, this may require it to make more 
than (m-L) bids, as it may need to outbid itself. 
If the agent is to hold j additional active bids in auction ai, it must 
place bids that beat the lowest j of the currently active bids placed 
by competitors. We define the beatable-j list for auction ai to be 
the ordered set of the lowest j active competitor bids {bi

1,..,bi
J} 

(where bi
J has highest precedence), together with all active agent 

bids {bi
1,..,bi

K} with precedence lower than bi
J. To beat the bids in 

this list, the agent must place j+k bids of value bi
J+δ where δ is 

the minimum bidding increment. The incremental cost to the 
agent of placing these bids, if successful, above the cost that it 
would have incurred in auction ai previously, is j*bi

J +δ -
Σ{bi

1,..,bi
K}. The beatable-0 list of any auction is defined to be the 

empty set, and has incremental cost of zero. Obviously, an auction 
for q goods has no beatable-j lists for j>q. 
The agent now constructs potential bid sets. A bid set is a set of 
beatable-j lists that satisfies the following criteria; 
1. The set contains exactly one beatable-j list from each 

auction.  
2. The beatable-j lists contain, in total, exactly (m-L) bids made 

by parties other than our agent.(In other words, the sum of all 
J = m-L) 

In other words, each bid set represents one possible way of 
placing bids to ensure that our agent will gain an additional (m-L) 
active bids, and therefore will hold exactly m active bids.  We 
define the incremental cost of each of these bid sets to be the sum 
of the incremental costs of the beatable-j lists in it.  
The agent must generate the bid set with the lowest incremental 
cost. In addition, it must avoid generating bid sets that contain a 
bid equal to or greater than its valuation of the good, v. Various 
algorithms can be used to do this. We have adopted a depth first 
strategy through the space of possible bid sets, pruning areas of 
the search space which are higher cost than the best solution 
found so far. Full details are presented in [3] 
If there is more than one bid set with identically lowest cost, the 
agent chooses one arbitrarily. If no such bid sets exist, the agent 
relaxes condition 2 and finds the smallest i such that at least one 
bid set exists which contains (m-L-i) bids made by parties other 
than the agent. Given this i, the agent chooses the bid set with the 
lowest incremental cost. 
Having generated the bid set with the lowest cost, the agent places 
bids in each auction. For each beatable-j list in the bid set, the 
agent places j+k bids of value bi

J+δ in the corresponding auction 
ai.  
The agent continues to monitor the auction, and repeats its 
analysis if other parties place new bids. In this way, the agent 
ensures it maintains m active bids at the least possible cost to 
itself, unless doing so requires it to place bids above its valuation 
of the good. Providing all auctions terminate simultaneously, this 
will result in it buying the goods at the best price possible, given 
the competition in each auction. 

2.3 Auctions Terminating at Different Times 
Now, we consider the case where auctions terminate at different 
times. In such a situation, the algorithm above will not necessarily 
behave optimally. Imagine a situation where an auction starts 
every half-hour, and lasts for an hour. The agent would always 
monitor two auctions, one that is nearer closing than the other. 
Inevitably, bids will be higher in the auction that is nearing 
completion. Hence the agent would switch bidding to the newer 
auction, and withdraw from the auction about to close. If this 
continued, the agent would never make a purchase, but would 
simply switch bids to a new auction every half-hour. 
The agent needs a mechanism for determining whether to remain 
in an auction which is about to close, even when there are other 
auctions with lower current bid prices. To do this, it must be able 
to make a trade-off in terms of expected value between the relative 
certainty of remaining in an auction about to close, against the 
risk of participating in a newer auction. The newer auction may 
result in a lower purchase, or may result in a far higher purchase 
price above the agent’s valuation of the good. In this section, we 
propose a mechanism for doing this. 
The mechanism we use combines simple learning with utility 
theory. The agent uses learning to build a model of the spread of 
valuations held by participants in different auction houses. Then, 
based on its beliefs about these valuations, it calculates the utility 
of likely participation in persisting auctions, and compares this 
with the certain outcome in the terminating auction. If the 
terminating auction has a higher utility, it remains a participant 
and makes the purchase. If the remaining auctions have higher 
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expected utility, it withdraws from the terminating auction and 
continues participation elsewhere. 

2.3.1 The Learning Mechanism 
The agent generates a model of the potential outcome of auctions 
by creating a model of each auction house. For a given auction 
house and a given type of good, it creates a belief function B(x,q) 
representing  the probability that x bidders value the good with a 
valuation greater than q in a given auction for that good. It builds 
up this function by monitoring auctions for the good conducted by 
the auction house. Various possible learning techniques can be 
used to generate this function, and are discussed in [3]. The exact 
choice will depend on the underlying dynamics of the demand for 
the good under consideration.  
Using this function, we can estimate the probability that a bid of a 
certain value will be successful in an auction by a given auction 
house. Consider an auction for n goods, in which our agent wishes 
to purchase one. The probability that a bid of q by our agent will 
be successful can be estimated to be 1 – B(n,q); i.e. 1 minus the 
probability that n other bidders are prepared to outbid our agent. 
There is a flaw in this model, which must be taken into account if 
it is to be successful. Unlike a Vickrey or Dutch auction, an 
English auction reveals nothing about the valuations of successful 
bidders. In other words, if a bidder makes a successful bid of x, 
we cannot be sure how much higher they may have been willing 
to bid. To take account of this, it is necessary to add some kind of 
heuristic weighting to the belief function – we must increase the 
value of a successful bid by a certain amount, to reflect this 
possible willingness to bid higher. One possibility is to add a 
small random amount to each successful bid.  In some domains, it 
may be possible to use econometric data to determine accurately 
the range that this should be drawn over, while in other domains it 
may be necessary to use a heuristic estimate. 

2.3.2 Utility analysis of leaving an auction 
We now consider how this belief function can be used to compare 
the expected payoff of an auction that is about to terminate with 
the less certain outcome of other auctions that terminate later. For 
the sake of clarity and brevity, we present the technique assuming 
our agent wishes to purchase a single good. 
The expected payoff from the terminating auction is simple to 
calculate. Assuming our agent is holding an active bid q, or is 
able to place one at the last moment, then the payoff will be (v-q). 
If the agent is unable to place a bid because all active bids are 
beyond its valuation of the good, then payoff will be zero and the 
agent is forced to participate in other auctions.  
The expected payoff of continuing to participate in the non-
terminating auctions is more complex to calculate. To do this, we 
use the belief function to calculate the probability our agent will 
be able to make a purchase at various possible bid prices. Recall 
that, for a given bid price q, the probability our agent will make a 
successful bid in an auction run by a given auction house is 1-
B(n,q), where n is the number of goods being sold. Similarly, the 
probability that our agent will be able to make a successful bid at 
a lower price, q-1, is 1-B(n,q-1). Hence, the probability that our 
agent will succeed with a bid of q and no lower is B(n,q-1)-
B(n,q). The utility of this outcome will be (v-q). Hence, we can 
calculate the expected utility of participating in a given auction as; 

∑
=

−−−
v

0q
q)B(n,q)](v1)[B(n,q  

Of course, as the auction may already be in progress, it is 
necessary to take into account the current active bids in that 
auction. The general belief function B(x,q) for the auction house 
is therefore adapted for this particular auction an to give B-
(an,x,q). If the good being traded is a private value good, and 
hence all buyers have valuations independent of each other, this is 
defined as follows; 
Let p be the value of the xth highest bid in auction an 

Then B(an,x,q) = B(x,q)/B(x,p) for all q ≥p 
               1 for all q < p 
Given an expected utility on the remaining auctions, the agent 
must decide whether to place higher bids in the auction that is 
about to terminate, or withdraw from it. If we assume that the 
agent is risk neutral, then it will be willing to bid up to a value 
where the actual utility of the terminating auction is the same as 
the highest expected utility among the remaining auctions. In 
other words, it is prepared to make a maximum bid bmax of; 

∑
=

−−−−=
v

0q
q)B(n,q)](v1)[B(n,qvbmax  

In this way, the agent is able to make informed decisions about 
whether to continue bidding in an auction or to switch. If it is 
making multiple purchases, it may purchase some in the 
terminating auction, and choose to switch others to continuing 
auctions.  Extensions of the algorithm to handle this case will be 
dealt with in a future paper. 

3. EXPERIMENTAL ANALYSIS 
We now present an analysis of the efficiency of the agents, and 
their effect on the microeconomic properties of the market.  

3.1 Infrastructure 
A custom written simulator was used for all experiments.  The 
simulator was written in Java, and ran entirely on one machine.  A 
separate thread handled each auction’s operation, and hence 
auctions operated asynchronously.  In a given auction, each 
trading period was divided into rounds, in each of which there 
were two steps.  In the first step the auction house asked each 
participating agent for its choice of bids, and accepted those bids 
that met the improvement criterion, which was that a bid shall be 
at least 1 higher than the current lowest bid.  Duplicate bids are 
allowed, with earliest posted being considered higher.  In the 
second step, all successful bids shouted in step 1 were broadcast 
to all participating agents.  A run of an experiment ended when no 
auction received any new bids, at which point goods are awarded 
to the highest bids, at the bid prices. 

3.2 Experimental design 
In each experiment there were 6 simultaneous auctions, with 
reservation prices {10, 20, 30, 40, 50, 60}.  Each auction had 5 
goods available for sale.  There were always 40 buyers, whose 
reservation prices were 2 each of {35, 40, 45, 50, 55, 60, 65, 70} 
and the rest with reservation price 30.  Each buyer’s goal was to 
buy 3 goods.  The utility of a trade to the auction was simply the 
trade price minus the auction’s reservation price.  The utility of a 
trade to the buyer was the buyer’s reservation price minus the 
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trade price, and buyers were constrained to buy as many goods up 
to a maximum of 3, provided the trade had positive utility. 

The resulting supply and demand curves for the market are shown 
in Figure 1. The ascending supply curve shows that, as price 
increases, more sellers are willing to sell. The descending demand 
curve shows that, as prices increase, less buyers are willing to 
buy. At the intersection point, the number of buyers and sellers 
wishing to trade is equal. This is the equilibrium price, P0, and the 
quantity traded at this price is the equilibrium quantity, Q0. In this 
particular setup, the equilibrium price is 50, and the equilibrium 
quantity is 25. In an ideal market, trade takes place at the 
equilibrium price, and according to the first theorem of welfare 
economics, the outcome is pareto optimal. (i.e. all gains from 
trade are realised.) 

The experimental economist Vernon Smith used two measures in 
his comparison of actual markets with the ideal [4]. Allocative 
Efficiency is defined as the total actual profit earned by all the 
traders divided by the maximum total profit that could have been 
earned in an ideal market, expressed as a percentage. This is a 
measure of how much of the potential gain from trade has been 
realised within the market. Smith’s Alpha, α, is a coefficient of 
convergence which measures how close actual trade prices are to 
the equilibrium. This is defined as α = 100σ0/P0, where σ0 is the 
standard deviation of trade prices around P0 rather than around the 
mean price. 

The simulation uses two types of bidding algorithm. We represent 
human bidders with a simple automated strategy. Before the 
auctions open, the buyer randomly chooses three different 
auctions, and attempts to purchase one good from each. It then 
bids against other bidders, up to its reservation price. Automated 
agents use the algorithm described in section 2. We present a 
series of experiments, exploring the effect of adding agents to the 
market. Initially, we run the market with no automated agents, and 
observe its efficiency. We then allow one buyer to use the agent 
strategy, and measure its utility gain in comparison with the naïve 
strategy, for different reservation prices. We then randomly assign 
automated agents to 0, 1 5, 10, 20, 30 and 40 of the buyers. In 
each case we observe the allocative efficiency and Smith’s alpha, 
to identify how close to an ideal market the behaviour is. 

 

3.3 Results 
Figure 2 plots the trading prices for the 6 auctions in a single run 
with no automated agents. Note the spread of trade prices, 
resulting in a high value of alpha (17.1). In auctions 2, 5 and 6, 
buyers have paid more than they would have in an ideal market. 
In auction 4, the seller has failed to make a sale, while in an ideal 
market, buyers would have been willing to trade at this price. 
Hence allocative efficiency is low (92%).  

Table 1. Utility extracted with and without an agent 
Number 
of other 
agents 

No agent, 
reservatio
n = 45 

Agent, 
reservatio
n = 45 

No agent, 
reservatio
n = 55 

Agent, 
reservatio
n = 55 

No agent, 
reservatio
n = 65 

Agent, 
reservatio
n = 65 

0 1.32 1.44 5.85 9.94 14.5 20.0 

9 0.14 0.08 4.89 5.52 13.1 15.8 

19 0 0 3.92 4.67 11.6 14.6 

29 0 0 4.06  4.36 12.85 14.4 

39 0 0 3.25 4.13 12.3 14.2 

 

Table 1 shows the utility gain that can be made by a single buyer 
adopting the agent approach. It compares the utility gain for a 
buyer with different valuations, either using the agent or not. The 
buyer competes against 39 other buyers, with the leftmost column 
specifying how many of these use the automated agent. The 
results are the average utility of the agent over 20 or more runs, 
where the other agents are randomly allocated to buyers. Looking 
at the first row, we see that the agent based approach yields higher 
utility than the standard strategy in all cases (Except in the case of 
9 agents, with our agent having a reservation price of 45. We 
believe this is a statistical blip.) In the case of traders with 
reservation higher than the equilibrium price, the difference is 
substantial. However, looking down each column, we see that as 
more traders adopt the agent-based approach, the utility gained by 
each decreases. When more than half the community adopts the 
agent-based approach, each buyer makes less profit than they did 
when the community as a whole didn’t use agent technology. 

Figure 1. Supply and Demand
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Hence, we have an interesting phenomenon, analogous to a multi-
party form of the prisoner’s dilemma; It is individually rational for 
any one buyer to adopt the automated agent, but this sets in 
motion a trend which is detrimental to each individual buyer, and 
hence to the social welfare of the community of buyers as a 
whole.Figures 3a and 3b show how, as more automated agents are 
added to the market, it becomes more efficient. The curves are the 
average value of alpha and allocative efficiency over 50 runs. It is 
interesting to observe that even a small number of agents can  
result in significant efficiency improvements in the market. This is 
even more pronounced if, rather than allocating agents randomly 
to buyers, the agents are adopted by buyers with high valuations. 

 

In light of the lower utility that can be extracted if all buyers use 
an agent, one must ask where all the utility that this higher 
efficiency corresponds to is going.  The answer in the case of 
English auctions such as the one we study, is to the sellers, as 
figure 4 shows. It plots the average profit made by each 
auctioneer, as more buyers adopt the agent. As can be seen, the 
average profit increases as the market becomes more efficient. The 
submarginal auctioneers (those with reservation prices higher than 
equilibrium price) lose out, failing to trade at all. However, this is 
more than compensated for by the additional profits made by the 
others. Hence, it is in the interests of auctioneers (unless they are 
submarginal) to promote the use of agents in their auction houses, 
as opposed to the simple automated bidding strategies offered 
currently.  

4. Related Work 
Research into automated negotiation has long been an important 
part of distributed AI and multi-agent systems. Initially it focused 
primarily on negotiation in collaborative problem solving, as a 
means towards improving coordination of multiple agents 
working together on a common task. Laasri, Lassri, Lander and 
Lesser [5] provide an overview of the pioneering work in this 
area. As electronic commerce became increasingly important, the 
work expanded to encompass situations with agents representing 
individuals or businesses with potentially conflicting interests. 
The contract net [6] provides an early architecture for the 
distribution of contracts and subcontracts to suppliers. It uses a 
form of distributed request-for-proposals. However, it does not 
discuss algorithms for determining what price to ask in a proposal. 
Jennings et.al. [7] use a more sophisticated negotiation protocol to 
allow the subcontracting of aspects of a business process to third 
parties. This is primarily treated as a one-to-one negotiation 
problem, and various heuristic algorithms for negotiation in this 
context are discussed in [8].  Vulkan and Jennings [9] recast the 
problem as a one-to-many negotiation, and provide an appropriate 
negotiation protocol to handle this. Other relevant work in one-to-
one negotiation includes the game-theoretic approach of [10] and 
the logic-based argumentation approach of [11]. 
As much electronic commerce involves one-to-many or many-to-
many negotiation, the work in the agent community has 
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broadened to explore these cases too. The Michigan AuctionBot 
[12] provides an automated auction house for experimentation 
with bidding algorithms. The Spanish Fishmarket [13] provides a 
sophisticated platform and problem specifications for comparison 
of different bidding strategies in a Dutch auction, where a variety 
of lots are offered sequentially. The Kasbah system [14] featured 
agents involved in many-to-many negotiations to make purchases 
on behalf of their users. However, the algorithm used by the 
agents (a simple version of those in [8]) was more appropriate in 
one-to-one negotiation, and so gave rise to some counter-intuitive 
behaviours by the agents. [15] and [16] present adaptive agents 
able to effectively bid in many-to-many marketplaces, and are the 
first examples of work which borrow techniques from 
experimental economics to analyze the dynamics of agent-based 
systems. [17] demonstrates how these can be used to produce a 
market mechanism with desirable properties.  Park et.al. [18][19] 
present a stochastic-based algorithm for use in the University of 
Michigan Digital Library, another many-to-many market.  
Gjerstad et. al. [20] use a belief-based modeling approach to 
generating appropriate bids in a double auction. Their work is 
close in spirit to ours, in that it combines belief-based learning of 
individual agents bidding strategies with utility analysis. 
However, it is applied to a single double auction marketplace, and 
does not allow agents to bid in a variety of auctions. Vulkan et.al. 
[21] use a more sophisticated learning mechanism that combines 
belief-based learning with reinforcement learning. Again, the 
context for this is a single double auction marketplace. Unlike 
Gjerstad’s approach, this focuses on learning the distribution of 
the equilibrium price. Finally, the work of Garcia et.al. [22] is 
clearly relevant. They consider the development of bidding 
strategies in the context of the Spanish fishmarket tournament. 
Agents compete in a sequence of Dutch auctions, and use a 
combination of utility modeling and fuzzy heuristics to generate 
their bidding strategy.  Their work focuses on Dutch rather than 
English auctions, and on a sequence of auctions run by a single 
auction house rather than parallel auctions run by multiple auction 
houses. However, the insights they have developed may be 
applicable in our domain also. We hope to investigate this further 
in the future. 
In this paper, we have shown how agents operating in multiple 
auctions can create a more efficient market. An alternative 
approach is to attempt to provide the right market mechanism in 
the first place, providing a centralized point of contact for all 
buyers and sellers to trade. Sandholm [23] proposes a 
sophisticated marketplace able to handle combinatorial bidding, 
and able to provide guidance to buyers and sellers as to which 
market mechanism to adopt for a particular negotiation. In the 
long term, as the different auction houses merge or fold and only a 
few remain, this approach will be ideal. In the short term, we 
expect improved market dynamics will occur through autonomous 
agents in multiple auctions.  
It is interesting to contrast our analysis with that of Greenwald 
and Kephart [24]. They demonstrate that the use of dynamic 
price-setting agents by sellers, to adjust their price in response to 
other sellers, can lead to an unstable market with cyclical price 
wars occurring. We, however, show that (in a very different 
context) the use of agents improves the dynamics and stability of 
the market. From this, we can conclude that agent technology is 
not a-priori ‘good’ or ‘bad’ for market dynamics, but that each 
potential role must be studied to determine its appropriateness. 

5. CONCLUSIONS AND FUTURE WORK 
We have presented an agent able to participate simultaneously in 
multiple auctions, and explored its properties. The experimental 
analysis has demonstrated that the agent strategy outperforms the 
standard single auction strategy significantly, and also leads to 
more efficient markets. However, as more participants adopt the 
agent-based approach, the community of buyers lose out, and end 
up making less profit than they made when no-one was using an 
agent. The auctioneers (sellers) are the ones who benefit most 
from the extra efficiency of the market. 
In this paper we have presented experiments using a single, 
specific supply/demand graph. We intend to carry out further 
experiments with different supply/demand curves, and 
mathematical analysis, to determine if the sellers receive the 
additional surplus in all circumstances, or if the buyers may find 
the use of agents to be collectively as well as individually 
beneficial. 
The experiments presented in this paper focus on auctions which 
run in parallel, and hence the automated agent does not need to 
make use of the utility mechanism to select between current and 
future auctions. Additional experiments will be carried out, 
exploring the effect of staggering and randomizing the auction 
start and end times, to explore the effect of this on the market 
dynamics and the capabilities of the agent to handle this. 
In addition, we plan to extend the functionality of the agent. We 
will explore how effective different learning mechanisms are, and 
also adapt the agent to be able to participate simultaneously in a 
variety of different auction environments – eg Dutch, Vickrey, 
Continuous Double Auction, etc. 
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