
Ada 95 as Implementation Language
for Object-Oriented Designs

Stephane Barbey

Swiss Federal Institute of Technology
Software Engineering Laboratory

101s Lausanne Ecubiens
Switzerland

email: stephane.barbey @ di.epJ.ch
phone: +41 (21) 693.52.43 -far: +41(21) 693.50.79

25 August 1995

ABSTRACT In this paper; we show how Ada 95 can be used
as an implementation language for object-oriented designs.
We present a strategy to map Fusion class descriptions into
Ada specifications, considering the various kin& of qua@-

crs that can be applied to attributes, and the various ways
methods can be mapped. We also discuss issues such as
naming conventions, mapping of operations, use of mixins
and of generics. Finally, we show how bidirectional associ-
ations, that usually end up in a mutual dependency, can be
implemented in A& 95.

KEYWORDS. Object-oriented sofiare development,
Fusion, Object-oriented programming, Ada 95, Mixins,
Generic@, Associations.

1. Introduction

The goal of this paper is to describe how Ada 95 [l] can be
used as an implementation language for the designs of sys-
tems developed with an object-oriented method. For this
paper, we have selected the Fusion method [13], which is
currently used both in the industry -in application areas as
various as printers, medical, test instruments, networking
and MIS- and in academia, e.g. for the software engineer-
ing courses at EPFL (Swiss Federal Institute of Technol-
ogy). However, most of the principles and ideas presented
here can be useful in implementing designs developed from
most other object-oriented development methods.

The basic principle of the Fusion method is to develop a
system by detailing various models. Each model gives a
view of an aspect of the system: the interaction with the
agents, the relationships amongst the classes, the decompo-
sition of the functionalities. the inter-object communication,
etc. The ultimate step consists of gathering the information
coming from all those models into class descriptions. which

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial

advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the

A-iation for Computing Machinery. To copy otherwise or republish,

requires P fee and/or specific permission.

can then be mapped to various object-oriented program-
ming languages.

This class description is independent from the implementa-
tion language, and, although the Fusion manual [13] only
considers C++ and Eiffel, we will show how the class
descriptions can easily and in a (semi-)automatic fashion be
translated from the class description language into Ada 95.
When appropriate, we will also make comparisons with
implementation models of those other object-oriented lan-
guages.

However, implementing these class descriptions is not a
simple task, and it goes further than just encapsulating types
into packages. We will see how to implement the different
aspects of an object-oriented system, such as attribute visi-
bility, naming conventions, creation routines, class-wide
generic subprograms, and so on by making the best use of
the features introduced in Ada95, such as tagged types,
class-wide types, controlled types, or the new forms of
generic parameters.

1.1 Plan

This paper is organized to give a systematic overview of the
translation of the class descriptions into Ada 95.

In the second section, we give an overview of the Fusion
method, introducing the various models and concepts that
need to be implemented during the implementation phase.

In the third section, we give a general mapping strategy for
programming classes and the different relationships among
classes (inheritance, aggregation, association). We also con-
sider the naming problems that can arise during the map-
ping of a class.

The fourth section focuses on attributes, with an emphasis
on the different kinds of attributes and the different qualifi-
ers that can be applied to them, giving information on their
visibility or their lifetime.

The lifth section discusses the specification and the imple-
mcntation of methods (operation for classes).

The two last sections deal with Ada-specific facets, showing

01995 ACM 0-89791-705-7/95/0011--0212 3.50
212

http://crossmark.crossref.org/dialog/?doi=10.1145%2F376503.376572&domain=pdf&date_stamp=1995-11-01

how some specific features of Ada can simplify the imple-
mentation of classes (for instance genericity), or how some
problems specific to Ada can be solved (for instance the
implementation of bidirectional associations).

1.2 Terminology

When using the word class in this paper, we refer to the
notion of class used in the Fusion method. When speaking
of classes in the Ada sense, we use the term derivation
class.

The word method is used with two different meanings:
either as an operation of a class, in the Fusion (and Small-
talk) terminology, or as a term to define the way in which
some actions are carried out (e.g. the Fusion method, a
method to map attributes). The use of this word should be
clear from the context.

2. Fusion
Fusion [13] is a second-generation object-oriented develop-
ment method, which covers all aspects of the software con-
struction life cycle and includes strategies for verification
and validation. II is called Fusion because it synthesizes the
best features of the prominent object-oriented development
methods: OMT/Rumbaugh [21], the Booth method [lo],
Objectory [16], and CRC [24]. Also, it includes some
aspects coming from formal specification methods. The
development of a system is based on a waterfall life cycle,
but it could also be used for iterative development without
much modification.

Throughout the whole development, a data dictionary is
maintained to collect and check the consistency of the items
introduced in the various models, together with some addi-
tional information, such as assertions on parts of the models
or the initial values of the attributes.

2.1 Analysis

Fusion development starts with a phase of analysis, in
which the developer elaborates the object model, the system
interface and the interface model. The object model
describes the different classes of the system, their attributes
and their associations in a fashion similar to entity-relation-
ship diagrams [12]. Among the relationships, one can find
the traditional relationships found in other methods such as
inheritance (subtyping), aggregation, and association.

For example, the banking system in figure 1 is composed of
a class Bank, which manages several Accounts (thus the star
in front of this class box). There are three kinds of accounts:
simple accounts, checking accounts and saving accounts.
Each account is owned by one Customer (which can in turn
own several accounts). The bank keeps track of all transac-
tions carried for each account (a transaction can involve one
or several accounts), so that reports can be sent to the cus-
tomer at the end of each month. Relationships can have
attributes too. (Here, the relationship Owns holds the date
when the Account was created and attributed to the Cus-

tomer.)

I Bank I

* Transaction
I

* Account
Number
BaIattce

I

Fig. 1. Part of an object model for a banking system

The system interface consists of a full description of the set
of operations to which the system can respond, of the events
that it can output, and of the list of agents that can interact
with the system. The interface model consists of the
description of a life cycle model and an operation model.
The life cycle model defines the possible sequences of inter-
action in which a system can participate. It lists the various
events they can send to and receive from the system,
together with their arguments. The operation model defines
the effect of each system operation. This description
includes some formal semantics under the form of pre- and
postconditions. However, the semantics of those conditions
are not very rigorous, since their definition is not completely
formalized.

2.2 Design

After analysis comes design. During design, the developer
transforms the abstract models produced during analysis
into software structures. In this phase, the developer must
provide object interaction graphs, visibility graphs, inherit-
ance graphs, and finally class descriptions. The object inter-
action graphs attribute each system operation described in
the operation model to a class and describe a decomposition
of their behaviour by distributing their functionality among
the various classes of the system. The visibility graphs show
how the system is structured to enable inter-object commu-
nication. The inheritance graphs complete the inheritance
relationships already found during analysis by adding infor-
mation on inheritance of implementation. In other words,
during analysis, the supertype/subtype relationships are
modeled, whereas in design the superclass/subclass rela-
tionships are found.

For example, the interaction graph of the operation Credit is
given in figure 2. This operation withdraws an amount of
money from one account and deposits it in another account,
assuming that both accounts exist and that the withdrawal is
authorized. (This authorization can depend on the type of
account.) The operation is completed by keeping track of
the transaction and notifying the owners of the account that
the transaction was carried out.

It is decomposed in sending messages to either a particular

213

object (Notify a customer, Create a transaction, etc.), or to
the objects of a collection that fulfil a condition (find the
account in the collection of accounts managed by the bank,
the account number of which is From, etc.). The sequence in
which methods are invoked is shown on top of the arrow
describing the method invocation and summarized in text
below the interaction graph:

Credit (Fmm. To: Account-Numbec Amount Money)

, c, .(I) , F = Lookup (AN. AccounLNumkr I From): Account

Bank

(2)
T = Lookup (AN: Account-Number = To): Account

,-----

[AccountNumber - AN1 -----A

(9)
Notify (1: Transaction)

4-l
c2: Customer

Deseripcm:
operation Bank: Credit (From. To : Account~Numbe~. Amount: Money)
Lookup wo bank accounts whose numbus are From and To (I) (2).
If dtose two accounts exist

Withdraw Amount fmm Ihe accotuu WIKSG number is From (3)
If the wilhdmwal was sucassful. then

Deposit the amount Amount in the account To (4)
Crutc P tmnsrdon. and odd it to the collccdons of tnnsactions can&d
by the bank. (5)

AndIhccutlomnoftheuan~clion(6,7),ydNotigerhofthem~t~~tnnrrrion
wxscmied od(8.9)

method l3mk Lookup (AN: AccountJWnbcr): Account
Lookup in Ihe bank accounts ofthe banktheaccount whose numbcris AN (1.1.2.1).

Fig. 2. Interaction graph for the operation Credit

Finally, the developer has to gather information coming
from all these models and from the data dictionary to write a
description of each class in the system. This description is
the first step in coding the application. All information
regarding the specification of each class is given: its various
attributes, including their type and visibility information, its
operations, including their various parameters and their
result type.

For instance, the class Account, inspired by the example of
Seidewitz [22] would look like the following:

typo Money: dolta 0.01 digits 15
typo Account-Number: natural

cla8r Account
rttributo Number:

bound exclusive Account-Number
attribute Balance: bound l xclusiva Money
attribute Owner: unbound 8huod Customer
attribute Transactions:

exclusive bound co1 Transaction

wthod Create (Initial-Amount: Money)
mthod Deposit (Amount: Money)
mrthod Withdraw (Amount: Money): Boo1
method Balance (1: Money
method Owner-of 0: Customer
method AccountJbnber-Of 0: AccountJbnber
// other methods

l lblCl~S~
Fig. 3. Class description of Account

The subclass Checking would be defined as:

class Checking i8r Account
attribute conmtent Overdraft-Fee:

bound exclumivb Money

m&hod Set-Fee (To-Fee: Money)
method Withdraw (Amount: Money): Boo1

l ndclars
Fig. 4. Class description of Checking

During the implementation phase, the programmer’s job is
to implement the class descriptions ,in the target language
and code the behaviour of each method according to the
descriptions of the interface model, the operation model,
and the interaction graphs.

3. Mapping classes

3.1 General mapping strategy

The general strategy to map a class description into Ada 95
is to code it as an ADT, i.e. as the aggregation of

l a private tagged type (or a private type extension),

l possibly an access type (a general access-to-class-wide
type) denoting its derivation class, so that access values
designating objects of that derivation class can be cre-
ated in a systematic way. The presence of this access
type anticipates possible subtyping of this class in subse-
quent iterations, or when reusing the class, and allows
for easy heterogeneous data structure handling,

l a set of (primitive) operations, and

l a package, to provide encapsulation.

The attributes are defined in the full type declaration, which
appears in the private part of the package.

The operations defined in the class description are usually
primitive operations, i.e. inherited by derivatives of the
type. It they must be visible from any client of the class,
they must be declared in the public part of the specification
package. If some primitive operations must be visible only
by the descendants of the class, they must be declared in the

214

private part of the specification package (assuming the
descendant is coded in a child package). Non-primitive
operations can be declared in the package body, in which
case they will only be usable by the class (and not inher-
ited). In the interaction graphs, these private operations
appear as method invocation whose client and server are
objects of the same class. For example, on figure2, the
operation Lookup is an operation private to the class Bank:
no other class is involved in this operation (neither as client
nor as server).

Those three levels of encapsulation correspond respectively
to’the public, protected, and private encapsulation levels of
C++. However, Ada allows the introduction of (C++-like)
private operations without modification of the specification
package. Thus, it avoids the recompilation of the specifica-
tion of the class and of its clients, which can be a costly
operation.

This strategy has been used extensively with Ada 83 (except
for the ability to extend types). However, this strategy is not
detailed enough to handle more complex descriptions, like
the Fusion class descriptions. Furthermore, it does not take
into account all the possibilities of Ada, such as generics.
Generics do not appear in the standard Fusion notation, but
some work has been carried out on extensions of the Fusion
notation, for example the ION notation [2].

There can be exceptions to this general mapping strategy.
For instance, closely related classes can be coded in the
same package because they are related, or because they rep-
resent different aspects of the same class. For example, the
two types used to implement sibling inheritance can be
coded in the same.package. (Sibling inheritance is the way
multiple inheritance can be implemented in Ada 95 by bind-
ing two types using an access discriminant to the current
instance of a type -see [6], $4.6.3). On the other hand,
very big classes will probably be divided into several pack-
ages. For example, a plane in an air traffic control system
may be an object too big to be programmed in a single pack-
age. However, in this case, the resulting class cannot easily
be inherited from, because the operations not declared in the
same package as the type are not primitive operations (and
therefore are not inherited when deriving from the type).

3.2 Mapping aggregation

In the object model, aggregate classes appear inside their
enclosing class. This notation is purely pragmatic -to
avoid the unnecessary introduction of “has” associations. It
has no consequence on the architecture of the implementa-
tion: aggregate classes can be coded in separate packages.
These aggregate classes can also appear at different places
in the object model, and be referenced by other classes than
their enclosing class. Coding them inside the package of the
enclosing class would not be practical, because their import
would then require the import of the whole set of classes
defined in the package.

3.3 Mapping associations

Associations are used to connect objects that have semantic

relationships which do not influence their internal structure.
The links of an association reflect the responsibilities of the
associated objects. For example, the association called
Owns represents the connection between a Customer and an
Account. This connection reflects the semantics defined
between an account and the customer who owns it.

Associations do not appear in the design because they are
replaced by visibility links on the interaction graphs. That
is, they only appear as messages (e.g. on figure 2,
Owner-Of), which can be used to find an object associated
with another object. Thus, they do not constitute a software
structure. However, in specific cases we shall examine in
section 7, they must be coded as classes.

3.4 Mapping inheritance

During analysis, Fusion introduces inheritance as a means
for subtyping, i.e. an object of the subtype can appear every-
where an object of the supertype is allowed. Fusion supports
partitioned and non-partitioned subtyping, respectively indi-
cated in the object model by a full and an empty triangle. In
partitioned inheritance, the domain of the subtypes must
cover all the derivation class, i.e. no object belongs to the
parent type. In Ada, this can be enforced by making the par-
ent type an abstract type. For example, on figure 1, a check-
ing and a saving account can appear everywhere a simple
account is allowed.

During the last phase of design, Fusion allows inheritance
for implementation, to enhance reuse. This is mainly a case
of non-partitioned inheritance.

Subtyping inheritance should be made visible to the clients
of the class, and performed in the visible part of a child
package of the parent type’s package. That way, the Ada
code reflects the inheritance relationship directly in the soft-
ware, and all information regarding the representation of the
class are available to implement the subtype. Implementa-
tion inheritance should be performed in the private part of
the package (possibly in a child unit too), to disallow mean-
ingless (and dangerous) subtyping (see figure 5).

package Parent.Derived ia psckage ExMlples is

type Derived-Type in type E%mQle~Type im
ImY Parent-Type taggad privat*:

with privat..; -- the type is extended and
-- the operations of -- cdn be extended. but
-- Parent-Type are -- its parentis not visible
-- visible from here . . .
. . .

privatm private

type Derived-Type ie
new Parent-Type

with record

tnm ExxamplezType ie
new Implementation-Type

with r-cord

and record;
-- the iprivacel structure
-- of Parent-We is
-- visible from here

end r*catd:
-- the operations of
-- Implementation-Type
-- are visible from here

end Parent.Derived; oxad Examples;

subtyping inheritance implementation inheritance

Fig. 5. Subtyping inheritance vs. implementation inheritance

215

Multiple inheritance is allowed in Fusion. We will not give
a strategy to map multiple inheritance, which is only needed
in sporadic cases of multiple classification, since this topic
is extensively discussed in the rationale ([6], $4.6). How-
ever, we will show some cases where multiple inheritance is
used in the design, but can be avoided during the implemen-
tation. Also, we have been working on the design patterns
of Gamma’s er al. catalogue [14], and found it interesting
that amongst the 23 patterns described in this catalogue,
only two use multiple inheritance. In both cases, the authors
note that there a more elegant solution exist, that does not
require multiple inheritance.

3.5 Naming conventions

Several naming problems arise when converting a class
description into Ada 95. These problems must be solved
with practical and systematic naming conventions, that
allow for (semi-)automatic code generation from the class
descriptions.

Since two implementation entities -a package and a
type- stand for a single design entity -a class-, a nam-
ing problem arises: the identifier of the class cannot name
both the package and the type. This problem is of course not
new to Ada95, and it has already been discussed several
places in the literature. Two main approaches have been
proposed:

. keeping the name of the class for the package and using
a generic identifier for the type, and

l using a Polish-inspired notation, by prefixing or suffix-
ing the name of the class with an indication that distin-
guishes the identifier as a type name or a package name.

For Ada95 specifically, two similar naming conventions
have already been proposed for the first approach, e.g. the
Roman-9X [l 1 J and the Rosen [20] convention. Both con-
ventions use the name of the class to identify the package,
and use the identifier “Object” (respectively “Instance”) to
name the type. This naming convention is also used in the
Ada to CORBA IDL mapping [15]. However, we disagree
with this convention for several reasons:

l A name should describe a thing and not a property, so
entities should be named as accurately as possible.
Emphasis should be put on the type rather than on the
package [7].

l This convention makes it difficult to put several tagged
types in one package, whereas this may be a convenient
thing to do, as mentioned in section 3.1.

l It is relatively absurd to name a type “Object” or
“Instance”. It makes the program harder to read, because
the name of the package has to appear with each use of
the type outside the package.

l This convention makes it harder to take advantage of use
clauses, or can be confusing in type conversions, which
arise more often in object-oriented programming than in
traditional structured programming.

Consequently, we propose to use the second approach. Sev-
eral conventions are possible. The most common is to name
the type after the name of the class and add the suffix -Type.
The package is named after the class, or, if possible, after a
plural form of the name of the class. If the translation is
automated, the singular form can be more suitable, espe-
cially if, in the developer’s language, the plural form of a
name is not systematically found from the singular form, as
is the case in English (e.g., mouse becomes mice, or worse,
sheep remains sheep). This convention has been used for
years in the Ada community for example for the Ada 83
Booth components [9] or for the LGL free software
components [23].

The second problem arises from the lack of a name for the
controlling operand in the Fusion class descriptions. In the
class descriptions, the controlling parameter (i.e. the object
on which the operation is invoked) is anonymous and does
not appear in a method description, a name must be chosen
for it. Three alternatives exist to solve this naming issue:

l to use a generic identifier, like “Self’, ‘Target”, or “Con-
troller”,

l to prefix the name of the class (for example with
“The-“, e.g. The-Account)

l to use a more meaningful name with a semantic content.

This last option is of course more sound, but the two first
conventions may be better options if the translation is auto-
mated.

Finally, programmers should be aware that the Fusion class
descriptions are case sensitive, whereas Ada programs,
applying sound readability principles, are not. This problem
can often arise since Fusion encourages the use of mixed
case for class names and the use of the same name in lower
case to designate objects of that type. When using the
Polish-like convention mentioned above to name the pack-
age and the type, this last problem can be easily solved.

However, we are aware that those naming problems are
mostly a question of taste, and no ultimate solution is likely
to be found.

4. Mapping attributes

4.1 Kinds of attributes

Two kinds of attributes appear in the class descriptions: data
attributes and object attributes.

4.1.1 Data attributes

Data attributes are attributes of the standard data types (like
Character, Integer, String, Float, user-defined enumeration
types, etc.) or of any user-defined data type (in our example
Money or Account-Number). The data attributes are varia-
bles and have a name, but no identity, i.e. it is impossible to
distinguish two data attributes holding the same value. In
the class Account, Balance is a data attribute of the user-
defined type Money. Data attributes are represented as com-

216

ponents of the record representing the class.

4.1.2 Object Attributes

An object attribute holds a reference to an object, for exam-
ple to an enclosed object (in the case of aggregation), or
more generally to any associated object. In the class
Account, the owner of the account is an object attribute: it
references an object of the class Customer. instead of hold-
ing a reference to one specific object, Fusion also allows an
object attribute to hold a collection of references, for exam-
ple the transactions carried out on one account in the
Account class description.

The object attributes are at the heart of communications in
an object-oriented system. Such a system is basically a set
of connected objects that work by passing messages to each
other (i.e. by invoking operations): a client object sends a
message to a server object, which can in turn return a result
message (e.g. a function result, an out parameter, an excep-
tion, etc.). References to server objects exist in one of two
forms, according to their “reference lifetime”:

l A reference is dynamic if it only exists during the execu-
tion of an operation, and can be forgotten at the end of
this operation.

A dynamic reference can be coded either as a reference
local to the operation, or as a parameter of the message,
according to its lifetime (i.e. whether its lifetime is con-
tained in the execution of the operation or not). For
examples, the references T, F, Cl and C2 in figure 2 are
dynamic references and are not coded as attributes of the
class Bank, but as references local to the operation
Credit.

. A reference is permanent if it must persist between dif-
ferent calls.

A permanent reference must be held by the client object
as an object attribute, or possibly as a reference local to
the package in which the client is declared, depending
on whether the reference is shared between all the
instances of the class or not. (This is the same difference
as between static and non-static members in C++.) For
example, the bank must hold a reference to the collec-
tion of its accounts and its transactions, an account must
keep track of who its owner is, etc.

From the designer’s point of view, the information held by
an object attribute is the identity of the referenced object.
From an implementer’s point of view, an object attribute
can be coded in any way that enables access to the refer-
enced object (for example by holding an identifier that
allows looking up the referenced object in a table). How-
ever, an object attribute is usually coded as a component of
the tagged record representing the class, i.e. either the refer-
enced object itself or an access value to that object. The rep-
resentation of object attributes can be more complex, for
example if the developed system is a distributed application.

4.2 Attribute qualifiers

The Fusion method qualifies attributes with several “visibil-

ity” qualifiers that explain how the attributes (and the
objects they can reference) are related to the enclosing
object or the potential clients of the object.

attribute ::= [attribute] mutability Name :
sharing binding type

mutability ::= constant I variable

sharing ::= shared I exclusive

binding ::= bound I unbound

type ::= [col] Name class I Name oataiWk

Fig. 6. Syntax of an attribute definition and of the attribute
qualifiers (reserved words appear in bold: the Name is
the identifier of the reference)

l Server visibility (sharing qualifier)

The server visibility relationship establishes whether,
when invoking an operation, a server object is exclu-
sively referenced by one client, or if it can be shared
among many clients. At different times, the server object
can be referenced by different clients, which means that
during an invocation, the exclusivity of a reference need
not hold. (Sharing has not the same sense as in concur-
rent programming: it only specifies whether an object
can be designated by several references at the same time
or not. Since Fusion is aimed at sequential programs, the
protection of the object is implicit.)

l Server binding (binding qualifier)

The server binding relationship deals with the lifetime of
referenced objects. A referenced object is bound when
the referenced object does not outlive its client, and
unbound if it does.

l Reference mutability (mutability qualifier)

Reference mutability specifies whether or not a refer-
ence can designate different objects or if it will con-
stantly designate the same object. Thus, a reference is
variable if modification is allowed, and constant other-
wise. Fusion does not make a distinction between muta-
bility within a derivation class and mutability within a
type. This last issue is important in Ada, because Fusion
assumes no difference between a specific and a class-
wide type, whereas in Ada, the user has the possibility of
choosing between those two options. Thus, we will aug-
ment the Fusion syntax of the mutability qualifier by
adding class-wide.

mutability ::= [class-wide] constant I variable

Fig. 7. Modified mutability qualifier

The presence of class-wide means that the reference can
designate any object in the whole derivation class rooted
at the type. For a class-wide constant attribute, this refer-
ence cannot change during the lifetime of the object.
The absence of the class-wide qualifier means that the
attribute is of the specific type only. The mutability qual-
ifier is a property of the reference, whereas the sharing
and binding qualifiers are properties of the referenced
object. It is possible for a designer who does not want to
modifiy the design language, to consider that all refer-

217

ences are class-wide. However, as we will see below,
this idea restricts the use of object values to map refer-
ences.

No default values for attributes appear in the class descrip-
tion. Such values can appear in the data dictionary. The
developer will possibly have to seek them there to complete
the Ada specification.

4.3 Mapping the attributes according to their
qualifiers

Attributes can be coded as object values (i.e. directly
embedded into the object), as access values (a pointer to the
object), or as functions.

The Fusion method recommends all object attributes to be
coded as access values. Besides the arguments of bounding
and sharing, which are valid in Ada and that we will see
below, Coleman ef al. [13] give this advice for efficiency
reasons: to avoid the overhead of passing object values as
parameters (implying a copy of the whole object on the
stack). This reason is not valid in Ada, since tagged types
are by-reference types.

However, Coleman et al. [131 also give reasons to map the
object attributes as object values rather than access values:

l to access the data or the referenced object directly rather
than through an indirection,

l to avoid extra free store allocation, and guarantee the
synchronization of the lifetime,

l tc avoid dynamic binding (dispatching), when invoking
operations on the object attribute, in the case where the
specific type of the component is known.

This last argument is not valid in Ada 95, because it is based
on the assumption that in object-oriented programming lan-
guages, access values are dispatching and objects values are
not, while in Ada 95, this distinction is made on the basis of
whether the type is class-wide, regardless of its representa-
tion.

In some cases an attribute can also be coded as a function, if
it is a calculated attribute, for example if its value is
deduced from the values of other attributes.

4.3.1 Binding

There are basically two ways to implement a bounded
attribute:

l as an object value of the enclosing object; this is the eas-
iest and most convenient strategy,

l as a controlled access value, in which case the attribute
(not the referenced object) must be controlled’ and its
lifetime terminated when finalizing the enclosing object.
The attribute being controlled does not imply that the
enclosing object itself is controlled: objects of a control-
led type are initialized, adjusted and finalized even if
they are components of a non-controlled composite
type. For example, in the example on figure 8, the type

Example-Type is ‘not controlled. However the compo-
nent Controlled-Component, which holds the object
attribute is controlled. The initialize operation can be
implemented to create and bind the object referenced by
the access value, and the Finalize operation is imple-
mented so as to deallocate the memory (e.g. an
unchecked deallocation), so that the attribute Compo-
nent lifetime ends at the same time as the object to
which it is bound.

class Example is8 Base-Example
attribute Component:

axclusiva bound Component-Type
l ndcla8s

with US.
package Examples i8

typo Example-Type i8
now BaseJxampleJype

with private;

DriV8tO

typo Controlle~Component ia
naw Controlled rith

rmcord
Component: Access-to_ComponentJypType;

and record;
procodura Initialize

(C: in out Controlle~Component):
procoduraAdjust (C: inoutControlled-Component);
procmduro Finalize

(C: in out Controlled_Component):

typa Example-Type is
naw BaseJxampleJype with

record
Component: Controlled-Component:

end racordr
-- the attribute is controlled, but neither
-- its type, nor the enclosing type are.

and Examples:
Fig. 8. Component of a controlled type

This is a typical case where multiple inheritance is needed
in other languages (to combine Controlled and
Example-Type), but is not required in Ada 95.

References to unbound objects must be mapped as access
values. An object attribute cannot be bound to more than
one enclosing object..

4.3.2 Sharing

There are also two ways to share an attribute. If the attribute
is implemented as an access value, it is automatically shara-
ble. If it is an object value or a data attribute, it .must be
coded as an aliased component. However, while an access
value can be either bound or unbound, an object value is
inherently bound. Thus, it is not possible to have unbound
shared components implemented as object values. Access

‘.A controlled type is n type derived from Adn.Finalii-
tion.[LimiredJControIled. Three user-definable primitive operations
are defined for such P type: Initialize. which is invoked immediately af-
ter Ihe normal default initialization of a controlled object, Finalize.
which is invoked immediately before finalization of any of its compo-
nents, and -for non-limited types- Adjust. which is automatically in-
voked as the last step of an assignment (see. (11, $7.6).

218

values must be used for that purpose.

An attribute is made (bound) exclusive by making it a non-
aliased (private) component of the object. (It then becomes
possible to make copies of the attribute, but the copies will
have distinct identities, and the object will not be shared.)
Unbound exclusive attributes are mapped as access values.

Shared attributes must be visible to the clients of the class,
while the exclusive components must not be visible. At the
same time, shared and exclusive attributes can coexist in a
class description. This causes a problem in Ada 95, since
the components of a root type declaration or added by a
given type extension are all either public or private. There
are three solutions to this problem:

l separate the type in a private part type and a public part
type9

l use discriminants,

l provide access and update operations for the shared
attributes.

The first solution involves decomposing the class descrip-
tion into two types, the first being a public abstract type
(from which no object can be created), that holds the shared
components, and the second a private type, that hides the
exclusive components.

For example:

with Customers, Finance;
us0 Customers, Finance;
package Accounts is

-- the public part type:
type AccountlPublic-Type is abstract tagged

record
Owner: Customer-Ref;
-- a shared unbound attribute

and racord;
-- (no primitive operations)

-- the private part type:
typo Account-Type is

POW Account-Public-Type with
private;

type Account-Ref ia
accom all Account-Type'Class:

function Create (Initial-Amount: Money-Type)
roturn AccountJ'ype'C1as.s;

procedure Deposit
(The-Account: in out Account-Type;
Amount: in Money-Type);

procedure Withdraw
(The-Account: in out Account-Type;
Amount: in Money-Type;
Successful: out Boolean):

function Balance (The-Account: Account-Type)
roturn Money-Type;

. . . -- other operations

2,An aliased object (or component) is one that can be designated
by an access value. This can he done by using the reserved word
aliased in its declaration. The attribute Access, when applied to
an object, returns an access value that designates that object (see
Ill, 43.9).

private

typa Account-Type is
now Account-Public-Type with

tacord
Number: Account-Number;
Balance: Money-Type;
-- exclusive bound attributes

and racord;

end Accounts;
Fig. 9. Public and private attributes of a class

All methods appearing in the class description are coded as
primitive operations of the private part type, which is really
the type that implements the class and that clients should
use.

There are several reasons why making attributes public is
usually not a good idea:

l the representation of the class may change, and
attributes could be mapped differently in different itera-
tions over the Fusion models;

+ the semantics of the class may change, for example to
become a protected class (in the Ada 95 sense, see the
rationale [6], 9 9.6.1 on how protected and tagged types
can be combined), in which case the direct reference to
attributes would become forbidden.

The second solution is to declare any shared components
discriminants of the type, as in the following:

with Customers, Finance;
use Customers, Finance;
packago Accounts is

typo Account-Type (Owner: Customer-Ref) is
tagged privatat

typa Account-Ref is
access all AccountJype'Class;

-- various operations as on figure 9

private

type Account-Type (Owner: Customer-Ref) is
naw Account-Public-Type with

record
Number: Account-Number:
Balance: Money-Type;

end record;

end Accounts;

Fig. 10. Shared attributes as discriminants

This strategy can only be applied when the mutability quah-
fier of the shared attributes is constant (because discrimi-
nants cannot be modified). Also the discriminant values
must be known when declaring objects.

This is why we recommend using the third solution to get
visibility on the shared components: the traditional method
of providing access and update operations. These operations
can potentially be inlined, so that no run-time overhead is
added to the execution of the system when accessing the
attribute.

219

4.3.3 Mutability

The mutability qualifier is not perfectly mappable in
Ada 95, because there is no way to declare a component as a
constant, unless it is a shared attribute, in which case it can
be coded as a discriminant (see above). For attributes non
modelled as discriminants, it is therefore the responsibility
of the programmer to check that no changes are made to a
constant reference after. its initialization. (The constant
mutability qualifier is not applied to the object, but to the
reference itself.)

Variable and class-wide references are implemented by
using specific types and class-wide types respectively.
Class-wide attributes are always mapped using access val-
ues, because record components of a class-wide type are not
allowed (because such a type has no fixed, nor known maxi-
mal length.).

4.3.4 Summary

Here is a summary (in pseudo-Ada) of the strategies
exposed above. (Naturally, anonymous access types are not
allowed as written below.)

I bound

exclusive
Attribute: Type;

(in the private part)

Attribute:
am**. al1 Type;

(in the private part)

Attribute:
.CE.‘S all Type:

(in a public part or
with an access and an
update operation)

Fig. 11. Attribute qualifiers for non class-wide mutability

exclusive

bound unbound
Attribute: Attribute:

accessa11Type'Class: aocessa11Type'Class;
(in the private part) (in the private part)

Attribute: Attribute:
accessa11Type'Class: l ccessal1Type'Class:

(in a public part or (in a public part or
with an access and an with an access and an
update operation) update operation)

Fig. 12. Attribute qualifiers for class-wide mutability

4.4 A strategy for collections

In addition to being a predefined type or an object type, the
type that appears in a attribute delinition can also be a col-
lection of either data or object attributes. In this case, the
developer will have to check through the object interactions
graphs to see which of the available library component sup-
porting collection abstractions (e.g. heap, stack, queue, list,
tree, table) is suitabic for implementing the attribute.

4.5 Mutual dependencies

Although this issue is not raised in the Fusion method, an
Ada programmer should think of checking for mutual
dependencies: mutual dependencies are allowed among

classes in Fusion, whereas Ada does not allow mutual

dependencies among specification packages. Many mutual

dependencies can usually be avoided during the design
phase.

. . .

A- (‘) Create (Accounts: cd Account)
I I m

Customer

Fig. 13. Mutual dependencies between
MonthlyReport

Customer and

For example, in figure 13, there is a mutual dependency
between Customer and MonthlyReport. because, when cre-
ating a monthly report, the class MonthlyReport must get a
piece of information -Address- back from the Customer
(and needs a reference to customer for that purpose). This
mutual dependency can be avoided by giving the address of
the customer directly as an argument to the method Create.
Thus MonthlyReport need not hold a reference to the class
Customer3

Some solutions also exist if the design cannot be changed.
In figure 14, we show another example: each city knows of
the country to which its belong, and each country has a cap-
ital city. Here, Ada allows mUNd dependencies by decom-
posing the structure of one of the two classes in two
interrelated types: one in the package specification (plus an
incomplete type to hold the dependency), and one in the
package body.

with Cities; us. Cities:
package Cities ie oackew Countries ir

CYL)* City-me is tme Country3ype ir
taggod prfvata: taogod privet*:

typm CityJ7ef is ICC.,, all tma Countryaef is ACE.~*
City-Type'Class: all CountryJ!ypa'Class:

-- operations on City-Type -- operations 0nCountzy~Type

priratm privet*
type DependencyJYype:
type Dependency-Ref is

sccess Dependency-~-s:

typo City-Type ia tagged typa Country~Type i8 tagpa
r~c0s-d record

Name: String (1..20) Name: String (1..20);
Dependency: Capital: City-Ref:

Dependency-Fief; l ad rrord:
ad record;

end Cities; uxd Countries;

with Countries;
2s. Countries;
prckrga body Cities i

type Dependency is
rmcord r

Country: Country-Ref:
and rmcord:

end Cities:

Fig. 14. Mutual dependency between City and Country

“.While this solution seems obvious, it was the main source of mutual
dependencies in some student projects, because this design style is en-
couraged by certain examples of the Fusion manual [131.

220

However, this solution is not completely satisfying, because
the primitive operations of the one class partly modelled in
the package body cannot include parameters of the other
type.

Another solution is shown in figure 15. It is very similar to
the previous solution, in the sense that it also consists in
modelling a class with two types: an abstract type, that the
mutually dependent class can reference, and a concrete type
in a child unit. This time, it is also possible for operations to
include references to the mutually dependent type.

with Cities; use Cities;
package Cities is package Countries is

type City-Type is ebstract type country_Type is
tagged null record: tagged privrta;

type City-Ref is excess type Country-Ref is .cc.ss
rll CityJype'Class; l ll Country3ype'Class:

end Cities: function Capital-Of
(C:Country~lype)

rithCountries;useCountries; return City-Ref;
peckageCities.Real-Cities is

type Real-City-Type is private
new City-Type with

ptirrt.: type country_Type is tagged
halctioo Country_Of record

(C: RcalXity_Type) Name: String (l..ZOl;
return Country-Ref:

\I:

Capital: City-Ref;
end record;

private end Countries;

type Concrete-City-TyDe is
new City-Type with

rVCOrd

Name: String (1..20);
Country: Country-Ref.

end record:

sntl Cities.RealSities;

Fig. 15. Mutual dependency between City and Country

Since the abstract type City-Type cannot have instances, the
attribute Capital will of course only designate objects of
Real-City-Type.

In section 7 we give another solution to this problem for the
case of bidirectional associations.

5. Mapping methods

Mapping methods into primitive operations is quite straight-
forward, because the syntax and the semantics of the
method definition is very close to the Ada syntax for sub-
programs, except for the controlling operand, which in Ada
must be named.

method ::= method Name ArgList [: Type = expression]

Fig. 16. syntax of method declarations

Fusion specifies that expressions must be given to specify
the behaviour of each method with a.result type. However, it
does not precise whether side effects are allowed in expres-

The only other issues the programmer must be aware of are
that:

l a mode (in, out, in out) must bc selected for each
parameter of an operation, including the controlling

221

operand. This issue can be solved by examining the
semantics of each defined operation.

l the mapping of methods with a result type does not auto-
matically lead to an Ada function. If the controlling
operand or any parameter is modified by the method,
then the method can be mapped as a procedure with an
out parameter for holding the result of the method. As
long as no change of identity is required from one of the
in out parameters, it can also remain a function by using
access parameters instead of in out parameters.

For example, the method Withdraw on figyre 3 cannot
be implemented as a function, because the anonymous
parameter of type Account is modified by the method.
Thus, in figure 9, it is coded as a procedure, with two
additional parameters: the controlling operand -the in
out parameter The-Account- and the out parameter
Successful that holds the result of the function.

l the type of a parameter must be the related class-wide
type and not the specific type if the parameter can
belong to the derivation class rooted at the specific type
instead of just the specific type.

For example, every parameter of type Account in the
class descriptions (except for the controlling operand, of
course) should be mapped to the class-wide type
Account-Type’Class, so that checking and saving
accounts can be freely substituted for the simple
account.

This third rule also holds for coding some cases of dynamic
references. For example, the references F and T in figure 2
can reference any type of account and must be coded as
being of type Account_Type’Class instead of just
Account-Type. Failing to do so has dramatic consequences
for the validity of the code, because the methods called for
these references would be the methods defined for the root
type Account, and would not dispatch to the possibly over-
ridden operations of the reference. In this specific case,
withdrawing money from a checking account with an insuf-
ficient balance would be rejected even if the overdraft is
allowed, because the implemtintation of Withdraw for the
class Account would always be invoked instead of the over-
ridden implementation provided in the class Checking.

5.1 Creation methods

Although the operation model of Fusion defines how to cre-
ate objects (for example, the creation of an object Transac-
tion is explicit on figure 2.), it does not define the creation
methods in a systematic way. It is therefore the responsibil-
ity of the programmer to make sure that all objects of the
system can properly be created and initialized by providing
the adequate creation routine(s) in the form of functions that
take the initial values of the attributes of a created object
and return the object. While performing this work, the
developer should make sure that:

l the creation routines are not inherited, because they usu-
ally have no semantics in the context of a descendant.
Strategies to avoid inheriting an operation include the

use of a class-wide return type instead of a specific
return type, as explained in [3], and declare creators sep-
arately, for example in a subunit or a child package of
the package that contains the definition of the class.

l if the creation routine must absolutely be invoked in
order to create an object, the type should be an indefinite
type4, which will force all objects to be created by a call
to a creation method, or by the copying of a preexisting
object. However, records are not allowed to have com-
ponents of an indefinite type. Thus, using indefinite
types compels the use of object values to code the object
attributes of those types. More details on indefinite types
are given in [181.

If some attributes cannot be initialized with a default
expression, then those components should be controlled one
way or another (see section 3.3.2) and initialized during the
implicit invocation of the Initialize operation.

6. Using generics

Although generic units are not part of the description lan-
guage, they remain an important building block in the con-
struction of Ada specifications. They can be of great help in
better modularizing systems and in building better abstrac-
tions.

6.1 Using generics to suppress coupling

The foremost use of generics in the translation of object-ori-
ented designs into implementation is to enhance modulari-
zation, and thus reuse. Instead of coupling a class to another
class, and introducing a strong coupling between the entities
of the system, it is possible to abstract the properties needed
by a class in its generic parameters, so that classes can be
developed and tested individually. Such generic subsystems
have the properties of reusable frameworks.

6.2 Using generics to suppress inheritance

Genericity can also be used as a substitute for inheritance,
as long as no heterogeneous collections are involved [19].

6.3 Using generics to suppress protocol classes

Generics can be used to suppress protocol classes, i.e.
abstract classes that only define the set of properties that an
object should have to be used in a certain context. One
example of this is a protocol class Sortable (see figure 17),
that only defines the property of having the “less-than”
operator, and a class Sorted-List that stores only objects of
the class Sortable.

Classes like Sortable are sometimes called functionoid,
because they do not constitute objects, but functions to be
considered as objects, and are of great use in “pure” object-
oriented languages, where all entities must be coded as

‘.An indefinite type is a type whose objects cannot be declared without
nn explicit initial value. Indefinite types include types with unknown
discriminants (type T (0) is . ..). unconstrained array types, etc.

222

classes. However, in Ada, this design can easily and ele-
gantly be replaced with a generic package, by integrating
the protocol Sortable into the generic parameters of the
package Sorted-List.

Sorted-List

*

Sortable

Fig. 17. Object model showing the protocol class Sortable

In this case too, while multiple inheritance would be used in
other programming languages (this specific example being
taken out of the Eiffel class library), Ada 95 can do the same
thing with its own building blocks.

6.4 Specifying and implementing “inherited”
generic subprograms

A problem that developers can have when implementing
some operations or classes as generic units is that the
generic subprograms are not defined to be inheritable opera-
tions, and thus are not inherited by the descendants of a for-
mal type.

To circumvent that problem, it is necessary to consider
generic methods as being operations of a derivation class
rather than of the specific type, and to implement them in
terms of possibly new (private) operations that the sub-
classes will have to override.

For example, in the following Stack example, the iterator
Traverse takes a class-wide parameter, to show that it
belongs to the whole type hierarchy rooted at Stack-Type,
and it is implemented in terms of the (abstract) operation
Item, that must be overridden by the concrete descendants
of Stack-Type (Bounded-Stack-Type, Managed-Stack-n-
pe, etc.).

genaric
type Item-Type i8 private;

package Stacks i8
type Stack-Type is ab8tract taggod priv8te;

9rocsdure Push (Stack: in out Stack-Type;
Item: in Item-Type) is abstr8ct;

procedure Pop (Stack: in out Stack-type:
Item: out Item-Type) is abstract:

functionsize (Stack: Stack-Type) returnNatural;

function Item (Stack: in Stack-Type:
Number: in Natural)

rsturn Item-Type is abstract;

generic
with procedure Action (Item: in Item-Type);

Drocsdura Traverse (Stack: in Stack-Type'class);

private

type Stack-Type 1s abstract tagged
rword

Size: Natural := 0;
ad t8cord:

oat3 Stacks:

package body Stacks is

function Size (Stack: Stack-Type)
return Natural i8 . . .

procaduraTraverse (Stack: inStack,Type'Class) is
h8qin

for Cursor in l..Size (Stack) loop
Action (Item (Stack, Cursor));

l ndlccp:
and Traverse;

l ad Stacks;

Fig. 18. A generic class-wide program with a (private) utility
subprogram Item

For the sake of the example, the implementation of this iter-
ator is not the most efficient one. Furthermore, the primitive
operation Item should be a private operation of the type
Stack-Type (i.e. declared in the private part of Stacks).
However, Ada 95 prevents us from declaring abstract opera-
tions in the private part of a package.

6.5 Using generics to program mixins

Finally, generics are also useful to create mixins [5]. Mixin
classes do not appear explicitly in the various models of
Fusion. The developer will have to find them by himself, by
exploring the object model. All classes that are inherited by
more than one class, but are not referenced by any other
class in the object model can be designed as mixins.

A good hint to find mixins is to look for classes whose name
is an adjective or a past participle. For example, in
figure 17. which models the management of a pet shop,
some dogs and some cats can be raced. In the object model,
this property can appear as either a superclass for raced cats
and dogs, as an association (a cat has zero or one race), or as
a property common to non-related classes (a common
attribute Race).

SupercLass Associalion Common attribute

Fig. 19. Three object models leading to a mixin class Raced

In the thtee cases, “raced” can be coded as a mixin class, as
long as it is not referenced directly by a class other than its

descendants. That is, there are no object attributes holding a
reference to Race (but there are attributes that reference
Raced-Cat or to Raced-Dog).

wita us.
ganaric

type Animal is now Pet with private;
packag8 Raced is

typo Race&Animal is
new Animal with private:

function Description (R: Raced-Animal)
return String;

-- gives information on the animal,
-- including its race

privata
type Raced-Animal i8

new Animal with
record

R: Race:
and record:

and Raced:

Fig. 20. A mixin package for the class Raced

Programmers should be aware that the fact that mixin
classes do not exist if not connected to an ancestor type does
not mean that there is no way they can used as building
blocks. For example, it is possible to build utility packages
that go on top of mixins using the Ada 95 feature of formal
package parameters.

with Raced;
gonoric

with package Raced-Pet is new Raced (<>I:
package Utility-for-Raced-Pet is

. . . -- makes use of the operation
-- Description defined in Raced.

and Utility-for-Raced-Pets

Fig. 21. A utility package for a mixin class

7. Implementing bidirectional
associations

The most obvious way to model associations is to translate
the links into references. This is how we have translated
unidirectional associations (in which only a member of the
association is interested in knowing its associate(s)). How-
ever, this way of translating associations is not satisfying for
all purposes:

If the association is bidirectional (both members of the
association are interested in knowing their associate(s),
for example, a customer needs to know the accounts he
has opened at the bank, while the bank must trace the
owners of all its accounts, to send them reports) it
implies mutual references between objects, which can-
not be fully achieved in Ada.
It is not appropriate for associations relating one object
to many others, or for optional associations. (In the
optional case, a possible strategy consists of creating a
subclass for the associated object and adding the refer-
ence in that subclass.)

It violates the principle of independence between objects
of a system. We wish to maintain this independence of
the objects in order to increase the modularity of the sys-

223

tern and the reusability of the objects and their classes.
When the links are part of the class, reusing this class
implies reusing all the classes it is associated with, even
those which are not part of the problem domain to be
developed.

To handle bidirectional associations, we propose to model
the bidirectional associations as a class. The type exported
by the package is a record type whose components are the
attributes of the association and the links to the associated
objects. The identity of the associated objects will serve as
links, generally access discriminants designating the associ-
ated objects. Of course, we cannot use the objects them-
selves as links, to preserve the integrity of the system. In the
example below, the package Ownership-G is made genetic
to satisfy the independence principle, on the class Account
and Customer, although this is not necessary, but it could be
replaced by a with clause.

with Calendar;
gWlarit2

typo Account-Type i8 tamed private:
typa Customer-Type ia tagged privata:

p8cksge Ownerships-G is
typo Ownership-Type

(Account: acces8 AccountJ'ype'Class;
Customer: accos8 Customer-Type'Class) is

1imLtsd private;
-- theconstant componentsAccountandCustomerare
-- directly accessible (using the selector
-- notation)
function Opening-Date

(Ownership: GwnershipJype)
return Calendar.Time:

-- returns date of election of the Account
-- as head of Customer

-- other operations on type Ownership-Type
private

typa Ownership-Type
(Account: accasn Account-Type:
Cus tamer : access Customer-Type) is

limited
record

Creation: Calendar.Time;
and sword:

and Ownerships-G:

with Accounts, Customers, Ownerships-G;
package Ownerships i8 new Ownerships-G

(Accounts.Account-Type,
Customers.Customer-Type):

with Ownerships, Customers, Accounts:
use Ownerships, Customers, Accounts:
procaduro Usage i8

a-Account: aliased Account-Type := . . .

a-Customer: aliased Customer-Type :=
a-tiership: Ownership-Type

(A-ACCOUnt'ACCSSS,

A-Customer'Access);
begin

. . .
and Usage:
Fig. 22. Bidirectional association modelled as a class

The instances of the type Ownership-Type can then be
stored in a collection, with selector functions to find an
associated object when given the other one. More details on
that topic can be found in [171.

8. Summary and conclusion

A good test of an object-oriented programming language is
to see whether it can easily implement an object model
defined by a popular object-oriented development method,
such as Objectory, OMT or Fusion. This paper has shown
that the building blocks that Ada 95 provides are usable and
allow the programmer to create classes in an elegant fash-
ion: packages for encapsulation, tagged types and type deti-
vation for inheritance, class-wide types for mutability,
access values, aliased objects and controlled types for other
attribute qualifiers.

We have also shown that features such as generics can add
reusability to object-oriented programming by helping sup-
press unnecessary coupling and providing mixin inherit-
ance. We have also shown that multiple inheritance is not
necessary in most cases where it would be needed in other
object-oriented programming languages.

Of course, this work is not complete: it does only cover the
translation of class descriptions. It does not deal with the
coding of the bodies of the operations, nor error handling or
the global behaviour of the system (described in the life-
cycle model.) These issues are however rather straightfor-
ward in Ada, given the strategies for mapping class descrip
tions described above.

In the future, we plan to implement a tool, written in
Ada 95, that handles the data dictionary and from which we
will be able to generate Ada specifications of class descrip-
tions in a (semi-)automatic fashion. Simultaneously, we will
work on the test of those class descriptions, by first intro-
ducing more formalism in the definition of the semantics
(for example using the object-oriented specification lan-
guage CO-OPN/2 [S]). We aim to generate to generate auto-
matic test sets and an oracle for the Fusion classes coded to
Ada [4].

9. Acknowledgements

Gary Dismukes, Robert Duff, and Gabriel Eckert own my
gratitude for their careful reading of earlier versions of this
paper and their thoughtful suggestions.

Also, I would like to thank the anonymous referees for their
helpful comments, and Dorothea Beringer for her advice on
interaction graphs. The section on the implementation of
associations is directly derived from work performed with
Catherine Jean-Pousin, to whom I am also grateful.

The work reported in this paper is supported by the Swiss
National Science Foundation (Nationalfonds), grant
number 21-36038.92.

10. References

[II Ada 9X Mapping/Revision Team. Ada 95 Reference
Manual. Inter-metrics, Inc., Feb. I5 1995. IS0
8652: 1995 (E).

[2] C. Atkinson and M. Izygon. ION - a notation for the

224

[31

141

PI

El

s71

@I

PI

DOI

Pll

[I21

II131

[I41

graphical depictions of object-oriented programs. RI-
CIS Report RB.02a. 1, Research Institute for Co’mput-
ing and Information Systems, University of Houston,
Clear Lake, USA, 1995.

S. Barbey. Working with Ada 9X classes. In C. B.
Engle, Jr., editor, TRI-Ada I994 Conference, pages
129-140, Baltimore, Maryland, USA, Nov. 6-11
1994. Also available as Technical Report (EPFL-DI-
LGL No 94t65).

S. Barbey. Testing Ada 95 object-oriented programs.
In Proceedings of Ada Europe ‘95, Oct. 1995. (to ap-
p-d.

S. Barbey, M. Ammann, and A. Strohmeier. Open is-
sues in testing object-oriented software. In
K. Frilhauf, editor, ECSQ ‘94 (European Conference
on Sofiare Quality), pages 257- 267, Basel, Swit-
zerland, Oct. 17-20 1994. vdf Hochschulverlag AG
an der ETH Zurich. Also available as Technical Re-
port (EPFL-DI-LGL No 94/45).

J. Barnes, B. Brosgol, K. Dritz, 0. Pazy, and
B. Wichmann. Ada 95 Rationale. Intermetrics, Inc.,
Cambridge, MA, USA, Feb. 1995.

S. Berner. Semantic naming convention and software
quality. In K. Frtlhauf, editor, ECSQ ‘94 (European
Conference on Software Quality). pages 56-65, Ba-
sel, Switzerland, 1994. vdf Hochschulverlag AC an
der ETH Ziitich.

0. Biberstein and D, Buchs. CO-OPN/2, an object-
oriented specification language based on hierachical
algebraic nets. In R. Wieringa and R. Fenstra, editors,
Proceedings of ISCORE ‘94, pages 47-62, Sept.
1994. Also available as technical report (EPFL-DI-
LGL No 94/76).

G. Booth. Software components with Ada : struc-
tures, tools and subsystems. (Benjamin/Cummings
series in Ada and software engineering). Benjamin/
Cummings, 1987.

G. Booth. Object-Oriented Analysis and Design with
Applications. Benjamin-Cummings, second edition,
1994.

G. J. Cemosek. Roman-9X: a technique for repre-
senting object models in Ada 9X notation. In C. B.
Engle, Jr., editor, TRI-Ada ‘93 Conference Proceed-
ings, pages 385-406, Seattle, Washington, Sept. 18-
23 1993.

P. P. Chen. The entity-relationship model: towards a
unified view of data. ACM TODS, I(I), 1976.

D. Coleman, P. Arnold, S. Bodoff, C. Dotlin,
H. Gilchrist, F. Hayes, and P. Jeremaes. Object-Ori-
ented Development The Fusion Method. Object-Ori-
ented Series. Prentice Hall, 1994.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns, Elements of Reusable Object-Ori-
ented Software. Professional Computing Series. Ad-
disson-Wesley, 1994.

1151

[I61

u71

iI81

PO1

1211

WI

WI

[241

V. Giddings, editor. IDL => Ada language mapping
specification. OMG request for comment submission,
June 27 1995. OMG Document rY95.5.16 (available at
URL http://conf4.darpa.millcorba-adai).

I. Jacobson, M. Christerson, P. Jonsson, and
G. Gvergaard. Object-Oriented Software Engineer-
ing, A Use Case Driven Approach. Addisson Wesley,
1994. Revised printing.

C. Jean-Pousin and S. Barbey. Implementing associ-
ations with Ada. In Sofhuare Engineering & its Appli-
cations 1993, pages 149-158, Paris, France, Nov. 15-
19 1993. EC2. Also available as Technical Report
(EPFL-DI-LGL No 9313 1).

M. Kempe. Abstract data types are under full control
with Ada 9X. In C. B. Engle, Jr., editor, TRI-Ado’94,
pages 141-152, Baltimore, Maryland, USA, Nov. 6-
11 1994. Also available as Technical Report (EPFL-
DI-LGL No 94166).

J.-P. Rosen. What orientation should Ada objects
take? Communications of the ACM. 35(11):71-76,
Nov. 1992.

J.-P. Rosen. A naming convention for classes in Ada
9X. ACM Ada Letters, XV(2):54-58, Mar.-Apr.
1995.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen. Object-Oriented Modeling and
Design. Prentice Hall, 1991.

E. Seidewitz. Object-oriented programming with
mixins in Ada. ACM Ada Letters, XII(2):7&90,
Mar.-Apr. 1992.

A. Strohmeier. Use of a software component library
in student projects. In A. Finkelstein and
B. Nuseibeh, editors, ACM/IEEE International
Workshop on Sofiware Education (ICSE), pages 319-
326, Sorrento, Italia, 1994.

R. Wirfs-Brock, B. Wilkerson, and R. Wiener. De-
signing object-oriented sofhuare. Prentice-Hall Inter-
national, 1990.

Biography
StCphane Barbey graduated from the C.S. Dept. of EPFL in
1992. He is a research assistant at the Software Engineering
Laboratory of EPFL since 1992. His domains of research
include object-oriented technology, especially the coding
and testing phases of the software life cycle. He is a member
of the Swiss delegation to the Ada working group of IS0
(WG9), and takes part in the translation of the Ada 95 refer-
ence manual into French.

His home page is located at http://lglwww.epR.ch/Team/SB.

225

