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ABSTRACT In this paper; we show how Ada 95 can be used 
as an implementation language for object-oriented designs. 
We present a strategy to map Fusion class descriptions into 
Ada specifications, considering the various kin& of qua@- 

crs that can be applied to attributes, and the various ways 
methods can be mapped. We also discuss issues such as 
naming conventions, mapping of operations, use of mixins 
and of generics. Finally, we show how bidirectional associ- 
ations, that usually end up in a mutual dependency, can be 
implemented in A& 95. 

KEYWORDS. Object-oriented sofiare development, 
Fusion, Object-oriented programming, Ada 95, Mixins, 
Generic@, Associations. 

1. Introduction 

The goal of this paper is to describe how Ada 95 [l] can be 
used as an implementation language for the designs of sys- 
tems developed with an object-oriented method. For this 
paper, we have selected the Fusion method [13], which is 
currently used both in the industry -in application areas as 
various as printers, medical, test instruments, networking 
and MIS- and in academia, e.g. for the software engineer- 
ing courses at EPFL (Swiss Federal Institute of Technol- 
ogy). However, most of the principles and ideas presented 
here can be useful in implementing designs developed from 
most other object-oriented development methods. 

The basic principle of the Fusion method is to develop a 
system by detailing various models. Each model gives a 
view of an aspect of the system: the interaction with the 
agents, the relationships amongst the classes, the decompo- 
sition of the functionalities. the inter-object communication, 
etc. The ultimate step consists of gathering the information 
coming from all those models into class descriptions. which 
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can then be mapped to various object-oriented program- 
ming languages. 

This class description is independent from the implementa- 
tion language, and, although the Fusion manual [13] only 
considers C++ and Eiffel, we will show how the class 
descriptions can easily and in a (semi-)automatic fashion be 
translated from the class description language into Ada 95. 
When appropriate, we will also make comparisons with 
implementation models of those other object-oriented lan- 
guages. 

However, implementing these class descriptions is not a 
simple task, and it goes further than just encapsulating types 
into packages. We will see how to implement the different 
aspects of an object-oriented system, such as attribute visi- 
bility, naming conventions, creation routines, class-wide 
generic subprograms, and so on by making the best use of 
the features introduced in Ada95, such as tagged types, 
class-wide types, controlled types, or the new forms of 
generic parameters. 

1.1 Plan 

This paper is organized to give a systematic overview of the 
translation of the class descriptions into Ada 95. 

In the second section, we give an overview of the Fusion 
method, introducing the various models and concepts that 
need to be implemented during the implementation phase. 

In the third section, we give a general mapping strategy for 
programming classes and the different relationships among 
classes (inheritance, aggregation, association). We also con- 
sider the naming problems that can arise during the map- 
ping of a class. 

The fourth section focuses on attributes, with an emphasis 
on the different kinds of attributes and the different qualifi- 
ers that can be applied to them, giving information on their 
visibility or their lifetime. 

The lifth section discusses the specification and the imple- 
mcntation of methods (operation for classes). 

The two last sections deal with Ada-specific facets, showing 
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how some specific features of Ada can simplify the imple- 
mentation of classes (for instance genericity), or how some 
problems specific to Ada can be solved (for instance the 
implementation of bidirectional associations). 

1.2 Terminology 

When using the word class in this paper, we refer to the 
notion of class used in the Fusion method. When speaking 
of classes in the Ada sense, we use the term derivation 
class. 

The word method is used with two different meanings: 
either as an operation of a class, in the Fusion (and Small- 
talk) terminology, or as a term to define the way in which 
some actions are carried out (e.g. the Fusion method, a 
method to map attributes). The use of this word should be 
clear from the context. 

2. Fusion 
Fusion [13] is a second-generation object-oriented develop- 
ment method, which covers all aspects of the software con- 
struction life cycle and includes strategies for verification 
and validation. II is called Fusion because it synthesizes the 
best features of the prominent object-oriented development 
methods: OMT/Rumbaugh [21], the Booth method [lo], 
Objectory [16], and CRC [24]. Also, it includes some 
aspects coming from formal specification methods. The 
development of a system is based on a waterfall life cycle, 
but it could also be used for iterative development without 
much modification. 

Throughout the whole development, a data dictionary is 
maintained to collect and check the consistency of the items 
introduced in the various models, together with some addi- 
tional information, such as assertions on parts of the models 
or the initial values of the attributes. 

2.1 Analysis 

Fusion development starts with a phase of analysis, in 
which the developer elaborates the object model, the system 
interface and the interface model. The object model 
describes the different classes of the system, their attributes 
and their associations in a fashion similar to entity-relation- 
ship diagrams [12]. Among the relationships, one can find 
the traditional relationships found in other methods such as 
inheritance (subtyping), aggregation, and association. 

For example, the banking system in figure 1 is composed of 
a class Bank, which manages several Accounts (thus the star 
in front of this class box). There are three kinds of accounts: 
simple accounts, checking accounts and saving accounts. 
Each account is owned by one Customer (which can in turn 
own several accounts). The bank keeps track of all transac- 
tions carried for each account (a transaction can involve one 
or several accounts), so that reports can be sent to the cus- 
tomer at the end of each month. Relationships can have 
attributes too. (Here, the relationship Owns holds the date 
when the Account was created and attributed to the Cus- 

tomer.) 

I Bank I 

* Transaction 
I 

* Account 
Number 
BaIattce 

I 

Fig. 1. Part of an object model for a banking system 

The system interface consists of a full description of the set 
of operations to which the system can respond, of the events 
that it can output, and of the list of agents that can interact 
with the system. The interface model consists of the 
description of a life cycle model and an operation model. 
The life cycle model defines the possible sequences of inter- 
action in which a system can participate. It lists the various 
events they can send to and receive from the system, 
together with their arguments. The operation model defines 
the effect of each system operation. This description 
includes some formal semantics under the form of pre- and 
postconditions. However, the semantics of those conditions 
are not very rigorous, since their definition is not completely 
formalized. 

2.2 Design 

After analysis comes design. During design, the developer 
transforms the abstract models produced during analysis 
into software structures. In this phase, the developer must 
provide object interaction graphs, visibility graphs, inherit- 
ance graphs, and finally class descriptions. The object inter- 
action graphs attribute each system operation described in 
the operation model to a class and describe a decomposition 
of their behaviour by distributing their functionality among 
the various classes of the system. The visibility graphs show 
how the system is structured to enable inter-object commu- 
nication. The inheritance graphs complete the inheritance 
relationships already found during analysis by adding infor- 
mation on inheritance of implementation. In other words, 
during analysis, the supertype/subtype relationships are 
modeled, whereas in design the superclass/subclass rela- 
tionships are found. 

For example, the interaction graph of the operation Credit is 
given in figure 2. This operation withdraws an amount of 
money from one account and deposits it in another account, 
assuming that both accounts exist and that the withdrawal is 
authorized. (This authorization can depend on the type of 
account.) The operation is completed by keeping track of 
the transaction and notifying the owners of the account that 
the transaction was carried out. 

It is decomposed in sending messages to either a particular 
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object (Notify a customer, Create a transaction, etc.), or to 
the objects of a collection that fulfil a condition (find the 
account in the collection of accounts managed by the bank, 
the account number of which is From, etc.). The sequence in 
which methods are invoked is shown on top of the arrow 
describing the method invocation and summarized in text 
below the interaction graph: 

Credit (Fmm. To: Account-Numbec Amount Money) 

, c, .(I) , F = Lookup (AN. AccounLNumkr I From): Account 

Bank 

(2) 
T = Lookup (AN: Account-Number = To): Account 

,----- 

[AccountNumber - AN1 -----A 

(9) 
Notify (1: Transaction) 

4-l 
c2: Customer 

Deseripcm: 
operation Bank: Credit (From. To : Account~Numbe~. Amount: Money) 
Lookup wo bank accounts whose numbus are From and To (I) (2). 
If dtose two accounts exist 

Withdraw Amount fmm Ihe accotuu WIKSG number is From (3) 
If the wilhdmwal was sucassful. then 

Deposit the amount Amount in the account To (4) 
Crutc P tmnsrdon. and odd it to the collccdons of tnnsactions can&d 
by the bank. (5) 

AndIhccutlomnoftheuan~clion(6,7),ydNotigerhofthem~t~~tnnrrrion 
wxscmied od(8.9) 

method l3mk Lookup (AN: AccountJWnbcr): Account 
Lookup in Ihe bank accounts ofthe banktheaccount whose numbcris AN (1.1.2.1). 

Fig. 2. Interaction graph for the operation Credit 

Finally, the developer has to gather information coming 
from all these models and from the data dictionary to write a 
description of each class in the system. This description is 
the first step in coding the application. All information 
regarding the specification of each class is given: its various 
attributes, including their type and visibility information, its 
operations, including their various parameters and their 
result type. 

For instance, the class Account, inspired by the example of 
Seidewitz [22] would look like the following: 

typo Money: dolta 0.01 digits 15 
typo Account-Number: natural 

cla8r Account 
rttributo Number: 

bound exclusive Account-Number 
attribute Balance: bound l xclusiva Money 
attribute Owner: unbound 8huod Customer 
attribute Transactions: 

exclusive bound co1 Transaction 

wthod Create (Initial-Amount: Money) 
mthod Deposit (Amount: Money) 
mrthod Withdraw (Amount: Money): Boo1 
method Balance (1: Money 
method Owner-of 0: Customer 
method AccountJbnber-Of 0: AccountJbnber 
// other methods 

l lblCl~S~ 
Fig. 3. Class description of Account 

The subclass Checking would be defined as: 

class Checking i8r Account 
attribute conmtent Overdraft-Fee: 

bound exclumivb Money 

m&hod Set-Fee (To-Fee: Money) 
method Withdraw (Amount: Money): Boo1 

l ndclars 
Fig. 4. Class description of Checking 

During the implementation phase, the programmer’s job is 
to implement the class descriptions ,in the target language 
and code the behaviour of each method according to the 
descriptions of the interface model, the operation model, 
and the interaction graphs. 

3. Mapping classes 

3.1 General mapping strategy 

The general strategy to map a class description into Ada 95 
is to code it as an ADT, i.e. as the aggregation of 

l a private tagged type (or a private type extension), 

l possibly an access type (a general access-to-class-wide 
type) denoting its derivation class, so that access values 
designating objects of that derivation class can be cre- 
ated in a systematic way. The presence of this access 
type anticipates possible subtyping of this class in subse- 
quent iterations, or when reusing the class, and allows 
for easy heterogeneous data structure handling, 

l a set of (primitive) operations, and 

l a package, to provide encapsulation. 

The attributes are defined in the full type declaration, which 
appears in the private part of the package. 

The operations defined in the class description are usually 
primitive operations, i.e. inherited by derivatives of the 
type. It they must be visible from any client of the class, 
they must be declared in the public part of the specification 
package. If some primitive operations must be visible only 
by the descendants of the class, they must be declared in the 
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private part of the specification package (assuming the 
descendant is coded in a child package). Non-primitive 
operations can be declared in the package body, in which 
case they will only be usable by the class (and not inher- 
ited). In the interaction graphs, these private operations 
appear as method invocation whose client and server are 
objects of the same class. For example, on figure2, the 
operation Lookup is an operation private to the class Bank: 
no other class is involved in this operation (neither as client 
nor as server). 

Those three levels of encapsulation correspond respectively 
to’the public, protected, and private encapsulation levels of 
C++. However, Ada allows the introduction of (C++-like) 
private operations without modification of the specification 
package. Thus, it avoids the recompilation of the specifica- 
tion of the class and of its clients, which can be a costly 
operation. 

This strategy has been used extensively with Ada 83 (except 
for the ability to extend types). However, this strategy is not 
detailed enough to handle more complex descriptions, like 
the Fusion class descriptions. Furthermore, it does not take 
into account all the possibilities of Ada, such as generics. 
Generics do not appear in the standard Fusion notation, but 
some work has been carried out on extensions of the Fusion 
notation, for example the ION notation [2]. 

There can be exceptions to this general mapping strategy. 
For instance, closely related classes can be coded in the 
same package because they are related, or because they rep- 
resent different aspects of the same class. For example, the 
two types used to implement sibling inheritance can be 
coded in the same.package. (Sibling inheritance is the way 
multiple inheritance can be implemented in Ada 95 by bind- 
ing two types using an access discriminant to the current 
instance of a type -see [6], $4.6.3). On the other hand, 
very big classes will probably be divided into several pack- 
ages. For example, a plane in an air traffic control system 
may be an object too big to be programmed in a single pack- 
age. However, in this case, the resulting class cannot easily 
be inherited from, because the operations not declared in the 
same package as the type are not primitive operations (and 
therefore are not inherited when deriving from the type). 

3.2 Mapping aggregation 

In the object model, aggregate classes appear inside their 
enclosing class. This notation is purely pragmatic -to 
avoid the unnecessary introduction of “has” associations. It 
has no consequence on the architecture of the implementa- 
tion: aggregate classes can be coded in separate packages. 
These aggregate classes can also appear at different places 
in the object model, and be referenced by other classes than 
their enclosing class. Coding them inside the package of the 
enclosing class would not be practical, because their import 
would then require the import of the whole set of classes 
defined in the package. 

3.3 Mapping associations 

Associations are used to connect objects that have semantic 

relationships which do not influence their internal structure. 
The links of an association reflect the responsibilities of the 
associated objects. For example, the association called 
Owns represents the connection between a Customer and an 
Account. This connection reflects the semantics defined 
between an account and the customer who owns it. 

Associations do not appear in the design because they are 
replaced by visibility links on the interaction graphs. That 
is, they only appear as messages (e.g. on figure 2, 
Owner-Of), which can be used to find an object associated 
with another object. Thus, they do not constitute a software 
structure. However, in specific cases we shall examine in 
section 7, they must be coded as classes. 

3.4 Mapping inheritance 

During analysis, Fusion introduces inheritance as a means 
for subtyping, i.e. an object of the subtype can appear every- 
where an object of the supertype is allowed. Fusion supports 
partitioned and non-partitioned subtyping, respectively indi- 
cated in the object model by a full and an empty triangle. In 
partitioned inheritance, the domain of the subtypes must 
cover all the derivation class, i.e. no object belongs to the 
parent type. In Ada, this can be enforced by making the par- 
ent type an abstract type. For example, on figure 1, a check- 
ing and a saving account can appear everywhere a simple 
account is allowed. 

During the last phase of design, Fusion allows inheritance 
for implementation, to enhance reuse. This is mainly a case 
of non-partitioned inheritance. 

Subtyping inheritance should be made visible to the clients 
of the class, and performed in the visible part of a child 
package of the parent type’s package. That way, the Ada 
code reflects the inheritance relationship directly in the soft- 
ware, and all information regarding the representation of the 
class are available to implement the subtype. Implementa- 
tion inheritance should be performed in the private part of 
the package (possibly in a child unit too), to disallow mean- 
ingless (and dangerous) subtyping (see figure 5). 

package Parent.Derived ia psckage ExMlples is 

type Derived-Type in type E%mQle~Type im 
ImY Parent-Type taggad privat*: 

with privat..; -- the type is extended and 
-- the operations of -- cdn be extended. but 
-- Parent-Type are -- its parentis not visible 
-- visible from here . . . 
. . . 

privatm private 

type Derived-Type ie 
new Parent-Type 

with record 

tnm ExxamplezType ie 
new Implementation-Type 

with r-cord 

and record; 
-- the iprivacel structure 
-- of Parent-We is 
-- visible from here 

end r*catd: 
-- the operations of 
-- Implementation-Type 
-- are visible from here 

end Parent.Derived; oxad Examples; 

subtyping inheritance implementation inheritance 

Fig. 5. Subtyping inheritance vs. implementation inheritance 
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Multiple inheritance is allowed in Fusion. We will not give 
a strategy to map multiple inheritance, which is only needed 
in sporadic cases of multiple classification, since this topic 
is extensively discussed in the rationale ([6], $4.6). How- 
ever, we will show some cases where multiple inheritance is 
used in the design, but can be avoided during the implemen- 
tation. Also, we have been working on the design patterns 
of Gamma’s er al. catalogue [14], and found it interesting 
that amongst the 23 patterns described in this catalogue, 
only two use multiple inheritance. In both cases, the authors 
note that there a more elegant solution exist, that does not 
require multiple inheritance. 

3.5 Naming conventions 

Several naming problems arise when converting a class 
description into Ada 95. These problems must be solved 
with practical and systematic naming conventions, that 
allow for (semi-)automatic code generation from the class 
descriptions. 

Since two implementation entities -a package and a 
type- stand for a single design entity -a class-, a nam- 
ing problem arises: the identifier of the class cannot name 
both the package and the type. This problem is of course not 
new to Ada95, and it has already been discussed several 
places in the literature. Two main approaches have been 
proposed: 

. keeping the name of the class for the package and using 
a generic identifier for the type, and 

l using a Polish-inspired notation, by prefixing or suffix- 
ing the name of the class with an indication that distin- 
guishes the identifier as a type name or a package name. 

For Ada95 specifically, two similar naming conventions 
have already been proposed for the first approach, e.g. the 
Roman-9X [l 1 J and the Rosen [20] convention. Both con- 
ventions use the name of the class to identify the package, 
and use the identifier “Object” (respectively “Instance”) to 
name the type. This naming convention is also used in the 
Ada to CORBA IDL mapping [15]. However, we disagree 
with this convention for several reasons: 

l A name should describe a thing and not a property, so 
entities should be named as accurately as possible. 
Emphasis should be put on the type rather than on the 
package [7]. 

l This convention makes it difficult to put several tagged 
types in one package, whereas this may be a convenient 
thing to do, as mentioned in section 3.1. 

l It is relatively absurd to name a type “Object” or 
“Instance”. It makes the program harder to read, because 
the name of the package has to appear with each use of 
the type outside the package. 

l This convention makes it harder to take advantage of use 
clauses, or can be confusing in type conversions, which 
arise more often in object-oriented programming than in 
traditional structured programming. 

Consequently, we propose to use the second approach. Sev- 
eral conventions are possible. The most common is to name 
the type after the name of the class and add the suffix -Type. 
The package is named after the class, or, if possible, after a 
plural form of the name of the class. If the translation is 
automated, the singular form can be more suitable, espe- 
cially if, in the developer’s language, the plural form of a 
name is not systematically found from the singular form, as 
is the case in English (e.g., mouse becomes mice, or worse, 
sheep remains sheep). This convention has been used for 
years in the Ada community for example for the Ada 83 
Booth components [9] or for the LGL free software 
components [23]. 

The second problem arises from the lack of a name for the 
controlling operand in the Fusion class descriptions. In the 
class descriptions, the controlling parameter (i.e. the object 
on which the operation is invoked) is anonymous and does 
not appear in a method description, a name must be chosen 
for it. Three alternatives exist to solve this naming issue: 

l to use a generic identifier, like “Self’, ‘Target”, or “Con- 
troller”, 

l to prefix the name of the class (for example with 
“The-“, e.g. The-Account) 

l to use a more meaningful name with a semantic content. 

This last option is of course more sound, but the two first 
conventions may be better options if the translation is auto- 
mated. 

Finally, programmers should be aware that the Fusion class 
descriptions are case sensitive, whereas Ada programs, 
applying sound readability principles, are not. This problem 
can often arise since Fusion encourages the use of mixed 
case for class names and the use of the same name in lower 
case to designate objects of that type. When using the 
Polish-like convention mentioned above to name the pack- 
age and the type, this last problem can be easily solved. 

However, we are aware that those naming problems are 
mostly a question of taste, and no ultimate solution is likely 
to be found. 

4. Mapping attributes 

4.1 Kinds of attributes 

Two kinds of attributes appear in the class descriptions: data 
attributes and object attributes. 

4.1.1 Data attributes 

Data attributes are attributes of the standard data types (like 
Character, Integer, String, Float, user-defined enumeration 
types, etc.) or of any user-defined data type (in our example 
Money or Account-Number). The data attributes are varia- 
bles and have a name, but no identity, i.e. it is impossible to 
distinguish two data attributes holding the same value. In 
the class Account, Balance is a data attribute of the user- 
defined type Money. Data attributes are represented as com- 
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ponents of the record representing the class. 

4.1.2 Object Attributes 

An object attribute holds a reference to an object, for exam- 
ple to an enclosed object (in the case of aggregation), or 
more generally to any associated object. In the class 
Account, the owner of the account is an object attribute: it 
references an object of the class Customer. instead of hold- 
ing a reference to one specific object, Fusion also allows an 
object attribute to hold a collection of references, for exam- 
ple the transactions carried out on one account in the 
Account class description. 

The object attributes are at the heart of communications in 
an object-oriented system. Such a system is basically a set 
of connected objects that work by passing messages to each 
other (i.e. by invoking operations): a client object sends a 
message to a server object, which can in turn return a result 
message (e.g. a function result, an out parameter, an excep- 
tion, etc.). References to server objects exist in one of two 
forms, according to their “reference lifetime”: 

l A reference is dynamic if it only exists during the execu- 
tion of an operation, and can be forgotten at the end of 
this operation. 

A dynamic reference can be coded either as a reference 
local to the operation, or as a parameter of the message, 
according to its lifetime (i.e. whether its lifetime is con- 
tained in the execution of the operation or not). For 
examples, the references T, F, Cl and C2 in figure 2 are 
dynamic references and are not coded as attributes of the 
class Bank, but as references local to the operation 
Credit. 

. A reference is permanent if it must persist between dif- 
ferent calls. 

A permanent reference must be held by the client object 
as an object attribute, or possibly as a reference local to 
the package in which the client is declared, depending 
on whether the reference is shared between all the 
instances of the class or not. (This is the same difference 
as between static and non-static members in C++.) For 
example, the bank must hold a reference to the collec- 
tion of its accounts and its transactions, an account must 
keep track of who its owner is, etc. 

From the designer’s point of view, the information held by 
an object attribute is the identity of the referenced object. 
From an implementer’s point of view, an object attribute 
can be coded in any way that enables access to the refer- 
enced object (for example by holding an identifier that 
allows looking up the referenced object in a table). How- 
ever, an object attribute is usually coded as a component of 
the tagged record representing the class, i.e. either the refer- 
enced object itself or an access value to that object. The rep- 
resentation of object attributes can be more complex, for 
example if the developed system is a distributed application. 

4.2 Attribute qualifiers 

The Fusion method qualifies attributes with several “visibil- 

ity” qualifiers that explain how the attributes (and the 
objects they can reference) are related to the enclosing 
object or the potential clients of the object. 

attribute ::= [attribute] mutability Name : 
sharing binding type 

mutability ::= constant I variable 

sharing ::= shared I exclusive 

binding ::= bound I unbound 

type ::= [col] Name class I Name oataiWk 

Fig. 6. Syntax of an attribute definition and of the attribute 
qualifiers (reserved words appear in bold: the Name is 
the identifier of the reference) 

l Server visibility (sharing qualifier) 

The server visibility relationship establishes whether, 
when invoking an operation, a server object is exclu- 
sively referenced by one client, or if it can be shared 
among many clients. At different times, the server object 
can be referenced by different clients, which means that 
during an invocation, the exclusivity of a reference need 
not hold. (Sharing has not the same sense as in concur- 
rent programming: it only specifies whether an object 
can be designated by several references at the same time 
or not. Since Fusion is aimed at sequential programs, the 
protection of the object is implicit.) 

l Server binding (binding qualifier) 

The server binding relationship deals with the lifetime of 
referenced objects. A referenced object is bound when 
the referenced object does not outlive its client, and 
unbound if it does. 

l Reference mutability (mutability qualifier) 

Reference mutability specifies whether or not a refer- 
ence can designate different objects or if it will con- 
stantly designate the same object. Thus, a reference is 
variable if modification is allowed, and constant other- 
wise. Fusion does not make a distinction between muta- 
bility within a derivation class and mutability within a 
type. This last issue is important in Ada, because Fusion 
assumes no difference between a specific and a class- 
wide type, whereas in Ada, the user has the possibility of 
choosing between those two options. Thus, we will aug- 
ment the Fusion syntax of the mutability qualifier by 
adding class-wide. 

mutability ::= [class-wide] constant I variable 

Fig. 7. Modified mutability qualifier 

The presence of class-wide means that the reference can 
designate any object in the whole derivation class rooted 
at the type. For a class-wide constant attribute, this refer- 
ence cannot change during the lifetime of the object. 
The absence of the class-wide qualifier means that the 
attribute is of the specific type only. The mutability qual- 
ifier is a property of the reference, whereas the sharing 
and binding qualifiers are properties of the referenced 
object. It is possible for a designer who does not want to 
modifiy the design language, to consider that all refer- 
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ences are class-wide. However, as we will see below, 
this idea restricts the use of object values to map refer- 
ences. 

No default values for attributes appear in the class descrip- 
tion. Such values can appear in the data dictionary. The 
developer will possibly have to seek them there to complete 
the Ada specification. 

4.3 Mapping the attributes according to their 
qualifiers 

Attributes can be coded as object values (i.e. directly 
embedded into the object), as access values (a pointer to the 
object), or as functions. 

The Fusion method recommends all object attributes to be 
coded as access values. Besides the arguments of bounding 
and sharing, which are valid in Ada and that we will see 
below, Coleman ef al. [13] give this advice for efficiency 
reasons: to avoid the overhead of passing object values as 
parameters (implying a copy of the whole object on the 
stack). This reason is not valid in Ada, since tagged types 
are by-reference types. 

However, Coleman et al. [ 131 also give reasons to map the 
object attributes as object values rather than access values: 

l to access the data or the referenced object directly rather 
than through an indirection, 

l to avoid extra free store allocation, and guarantee the 
synchronization of the lifetime, 

l tc avoid dynamic binding (dispatching), when invoking 
operations on the object attribute, in the case where the 
specific type of the component is known. 

This last argument is not valid in Ada 95, because it is based 
on the assumption that in object-oriented programming lan- 
guages, access values are dispatching and objects values are 
not, while in Ada 95, this distinction is made on the basis of 
whether the type is class-wide, regardless of its representa- 
tion. 

In some cases an attribute can also be coded as a function, if 
it is a calculated attribute, for example if its value is 
deduced from the values of other attributes. 

4.3.1 Binding 

There are basically two ways to implement a bounded 
attribute: 

l as an object value of the enclosing object; this is the eas- 
iest and most convenient strategy, 

l as a controlled access value, in which case the attribute 
(not the referenced object) must be controlled’ and its 
lifetime terminated when finalizing the enclosing object. 
The attribute being controlled does not imply that the 
enclosing object itself is controlled: objects of a control- 
led type are initialized, adjusted and finalized even if 
they are components of a non-controlled composite 
type. For example, in the example on figure 8, the type 

Example-Type is ‘not controlled. However the compo- 
nent Controlled-Component, which holds the object 
attribute is controlled. The initialize operation can be 
implemented to create and bind the object referenced by 
the access value, and the Finalize operation is imple- 
mented so as to deallocate the memory (e.g. an 
unchecked deallocation), so that the attribute Compo- 
nent lifetime ends at the same time as the object to 
which it is bound. 

class Example is8 Base-Example 
attribute Component: 

axclusiva bound Component-Type 
l ndcla8s 

with . . . . US. . . . . 
package Examples i8 

typo Example-Type i8 
now BaseJxampleJype 

with private; 

DriV8tO 

typo Controlle~Component ia 
naw Controlled rith 

rmcord 
Component: Access-to_ComponentJypType; 

and record; 
procodura Initialize 

(C: in out Controlle~Component): 
procoduraAdjust (C: inoutControlled-Component); 
procmduro Finalize 

(C: in out Controlled_Component): 

typa Example-Type is 
naw BaseJxampleJype with 

record 
Component: Controlled-Component: 

end racordr 
-- the attribute is controlled, but neither 
-- its type, nor the enclosing type are. 

and Examples: 
Fig. 8. Component of a controlled type 

This is a typical case where multiple inheritance is needed 
in other languages (to combine Controlled and 
Example-Type), but is not required in Ada 95. 

References to unbound objects must be mapped as access 
values. An object attribute cannot be bound to more than 
one enclosing object.. 

4.3.2 Sharing 

There are also two ways to share an attribute. If the attribute 
is implemented as an access value, it is automatically shara- 
ble. If it is an object value or a data attribute, it .must be 
coded as an aliased component. However, while an access 
value can be either bound or unbound, an object value is 
inherently bound. Thus, it is not possible to have unbound 
shared components implemented as object values. Access 

‘.A controlled type is n type derived from Adn.Finalii- 
tion.[LimiredJControIled. Three user-definable primitive operations 
are defined for such P type: Initialize. which is invoked immediately af- 
ter Ihe normal default initialization of a controlled object, Finalize. 
which is invoked immediately before finalization of any of its compo- 
nents, and -for non-limited types- Adjust. which is automatically in- 
voked as the last step of an assignment (see. (11, $7.6). 
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values must be used for that purpose. 

An attribute is made (bound) exclusive by making it a non- 
aliased (private) component of the object. (It then becomes 
possible to make copies of the attribute, but the copies will 
have distinct identities, and the object will not be shared.) 
Unbound exclusive attributes are mapped as access values. 

Shared attributes must be visible to the clients of the class, 
while the exclusive components must not be visible. At the 
same time, shared and exclusive attributes can coexist in a 
class description. This causes a problem in Ada 95, since 
the components of a root type declaration or added by a 
given type extension are all either public or private. There 
are three solutions to this problem: 

l separate the type in a private part type and a public part 
type9 

l use discriminants, 

l provide access and update operations for the shared 
attributes. 

The first solution involves decomposing the class descrip- 
tion into two types, the first being a public abstract type 
(from which no object can be created), that holds the shared 
components, and the second a private type, that hides the 
exclusive components. 

For example: 

with Customers, Finance; 
us0 Customers, Finance; 
package Accounts is 

-- the public part type: 
type AccountlPublic-Type is abstract tagged 

record 
Owner: Customer-Ref; 
-- a shared unbound attribute 

and racord; 
-- (no primitive operations) 

-- the private part type: 
typo Account-Type is 

POW Account-Public-Type with 
private; 

type Account-Ref ia 
accom all Account-Type'Class: 

function Create (Initial-Amount: Money-Type) 
roturn AccountJ'ype'C1as.s; 

procedure Deposit 
(The-Account: in out Account-Type; 
Amount: in Money-Type); 

procedure Withdraw 
(The-Account: in out Account-Type; 
Amount: in Money-Type; 
Successful: out Boolean): 

function Balance (The-Account: Account-Type) 
roturn Money-Type; 

. . . -- other operations 

2,An aliased object (or component) is one that can be designated 
by an access value. This can he done by using the reserved word 
aliased in its declaration. The attribute Access, when applied to 
an object, returns an access value that designates that object (see 
Ill, 43.9). 

private 

typa Account-Type is 
now Account-Public-Type with 

tacord 
Number: Account-Number; 
Balance: Money-Type; 
-- exclusive bound attributes 

and racord; 

end Accounts; 
Fig. 9. Public and private attributes of a class 

All methods appearing in the class description are coded as 
primitive operations of the private part type, which is really 
the type that implements the class and that clients should 
use. 

There are several reasons why making attributes public is 
usually not a good idea: 

l the representation of the class may change, and 
attributes could be mapped differently in different itera- 
tions over the Fusion models; 

+ the semantics of the class may change, for example to 
become a protected class (in the Ada 95 sense, see the 
rationale [6], 9 9.6.1 on how protected and tagged types 
can be combined), in which case the direct reference to 
attributes would become forbidden. 

The second solution is to declare any shared components 
discriminants of the type, as in the following: 

with Customers, Finance; 
use Customers, Finance; 
packago Accounts is 

typo Account-Type (Owner: Customer-Ref) is 
tagged privatat 

typa Account-Ref is 
access all AccountJype'Class; 

-- various operations as on figure 9 

private 

type Account-Type (Owner: Customer-Ref) is 
naw Account-Public-Type with 

record 
Number: Account-Number: 
Balance: Money-Type; 

end record; 

end Accounts; 

Fig. 10. Shared attributes as discriminants 

This strategy can only be applied when the mutability quah- 
fier of the shared attributes is constant (because discrimi- 
nants cannot be modified). Also the discriminant values 
must be known when declaring objects. 

This is why we recommend using the third solution to get 
visibility on the shared components: the traditional method 
of providing access and update operations. These operations 
can potentially be inlined, so that no run-time overhead is 
added to the execution of the system when accessing the 
attribute. 

219 



4.3.3 Mutability 

The mutability qualifier is not perfectly mappable in 
Ada 95, because there is no way to declare a component as a 
constant, unless it is a shared attribute, in which case it can 
be coded as a discriminant (see above). For attributes non 
modelled as discriminants, it is therefore the responsibility 
of the programmer to check that no changes are made to a 
constant reference after. its initialization. (The constant 
mutability qualifier is not applied to the object, but to the 
reference itself.) 

Variable and class-wide references are implemented by 
using specific types and class-wide types respectively. 
Class-wide attributes are always mapped using access val- 
ues, because record components of a class-wide type are not 
allowed (because such a type has no fixed, nor known maxi- 
mal length.). 

4.3.4 Summary 

Here is a summary (in pseudo-Ada) of the strategies 
exposed above. (Naturally, anonymous access types are not 
allowed as written below.) 

I bound 

exclusive 
Attribute: Type; 

(in the private part) 

Attribute: 
am**. al1 Type; 

(in the private part) 

Attribute: 
.CE.‘S all Type: 

(in a public part or 
with an access and an 
update operation) 

Fig. 11. Attribute qualifiers for non class-wide mutability 

exclusive 

bound unbound 
Attribute: Attribute: 

accessa11Type'Class: aocessa11Type'Class; 
(in the private part) (in the private part) 

Attribute: Attribute: 
accessa11Type'Class: l ccessal1Type'Class: 

(in a public part or (in a public part or 
with an access and an with an access and an 
update operation) update operation) 

Fig. 12. Attribute qualifiers for class-wide mutability 

4.4 A strategy for collections 

In addition to being a predefined type or an object type, the 
type that appears in a attribute delinition can also be a col- 
lection of either data or object attributes. In this case, the 
developer will have to check through the object interactions 
graphs to see which of the available library component sup- 
porting collection abstractions (e.g. heap, stack, queue, list, 
tree, table) is suitabic for implementing the attribute. 

4.5 Mutual dependencies 

Although this issue is not raised in the Fusion method, an 
Ada programmer should think of checking for mutual 
dependencies: mutual dependencies are allowed among 

classes in Fusion, whereas Ada does not allow mutual 

dependencies among specification packages. Many mutual 

dependencies can usually be avoided during the design 
phase. 

. . . 

A- (‘) Create (Accounts: cd Account) 
I I m 

Customer 

Fig. 13. Mutual dependencies between 
MonthlyReport 

Customer and 

For example, in figure 13, there is a mutual dependency 
between Customer and MonthlyReport. because, when cre- 
ating a monthly report, the class MonthlyReport must get a 
piece of information -Address- back from the Customer 
(and needs a reference to customer for that purpose). This 
mutual dependency can be avoided by giving the address of 
the customer directly as an argument to the method Create. 
Thus MonthlyReport need not hold a reference to the class 
Customer3 

Some solutions also exist if the design cannot be changed. 
In figure 14, we show another example: each city knows of 
the country to which its belong, and each country has a cap- 
ital city. Here, Ada allows mUNd dependencies by decom- 
posing the structure of one of the two classes in two 
interrelated types: one in the package specification (plus an 
incomplete type to hold the dependency), and one in the 
package body. 

with Cities; us. Cities: 
package Cities ie oackew Countries ir 

CYL)* City-me is tme Country3ype ir 
taggod prfvata: taogod privet*: 

typm CityJ7ef is ICC.,, all tma Countryaef is ACE.~* 
City-Type'Class: all CountryJ!ypa'Class: 

-- operations on City-Type -- operations 0nCountzy~Type 

priratm privet* 
type DependencyJYype: 
type Dependency-Ref is 

sccess Dependency-~-s: 

typo City-Type ia tagged typa Country~Type i8 tagpa 
r~c0s-d record 

Name: String (1..20) Name: String (1..20); 
Dependency: Capital: City-Ref: 

Dependency-Fief; l ad rrord: 
ad record; 

end Cities; uxd Countries; 

with Countries; 
2s. Countries; 
prckrga body Cities i 

type Dependency is 
rmcord r 

Country: Country-Ref: 
and rmcord: 

end Cities: 

Fig. 14. Mutual dependency between City and Country 

“.While this solution seems obvious, it was the main source of mutual 
dependencies in some student projects, because this design style is en- 
couraged by certain examples of the Fusion manual [ 131. 
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However, this solution is not completely satisfying, because 
the primitive operations of the one class partly modelled in 
the package body cannot include parameters of the other 
type. 

Another solution is shown in figure 15. It is very similar to 
the previous solution, in the sense that it also consists in 
modelling a class with two types: an abstract type, that the 
mutually dependent class can reference, and a concrete type 
in a child unit. This time, it is also possible for operations to 
include references to the mutually dependent type. 

with Cities; use Cities; 
package Cities is package Countries is 

type City-Type is ebstract type country_Type is 
tagged null record: tagged privrta; 

type City-Ref is excess type Country-Ref is .cc.ss 
rll CityJype'Class; l ll Country3ype'Class: 

end Cities: function Capital-Of 
(C:Country~lype) 

rithCountries;useCountries; return City-Ref; 
peckageCities.Real-Cities is 

type Real-City-Type is private 
new City-Type with 

ptirrt.: type country_Type is tagged 
halctioo Country_Of record 

(C: RcalXity_Type) Name: String (l..ZOl; 
return Country-Ref: 

\I: 

Capital: City-Ref; 
end record; 

private end Countries; 

type Concrete-City-TyDe is 
new City-Type with 

rVCOrd 

Name: String (1..20); 
Country: Country-Ref. 

end record: 

sntl Cities.RealSities; 

Fig. 15. Mutual dependency between City and Country 

Since the abstract type City-Type cannot have instances, the 
attribute Capital will of course only designate objects of 
Real-City-Type. 

In section 7 we give another solution to this problem for the 
case of bidirectional associations. 

5. Mapping methods 

Mapping methods into primitive operations is quite straight- 
forward, because the syntax and the semantics of the 
method definition is very close to the Ada syntax for sub- 
programs, except for the controlling operand, which in Ada 
must be named. 

method ::= method Name ArgList [: Type = expression] 

Fig. 16. syntax of method declarations 

Fusion specifies that expressions must be given to specify 
the behaviour of each method with a.result type. However, it 
does not precise whether side effects are allowed in expres- 

The only other issues the programmer must be aware of are 
that: 

l a mode (in, out, in out) must bc selected for each 
parameter of an operation, including the controlling 
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operand. This issue can be solved by examining the 
semantics of each defined operation. 

l the mapping of methods with a result type does not auto- 
matically lead to an Ada function. If the controlling 
operand or any parameter is modified by the method, 
then the method can be mapped as a procedure with an 
out parameter for holding the result of the method. As 
long as no change of identity is required from one of the 
in out parameters, it can also remain a function by using 
access parameters instead of in out parameters. 

For example, the method Withdraw on figyre 3 cannot 
be implemented as a function, because the anonymous 
parameter of type Account is modified by the method. 
Thus, in figure 9, it is coded as a procedure, with two 
additional parameters: the controlling operand -the in 
out parameter The-Account- and the out parameter 
Successful that holds the result of the function. 

l the type of a parameter must be the related class-wide 
type and not the specific type if the parameter can 
belong to the derivation class rooted at the specific type 
instead of just the specific type. 

For example, every parameter of type Account in the 
class descriptions (except for the controlling operand, of 
course) should be mapped to the class-wide type 
Account-Type’Class, so that checking and saving 
accounts can be freely substituted for the simple 
account. 

This third rule also holds for coding some cases of dynamic 
references. For example, the references F and T in figure 2 
can reference any type of account and must be coded as 
being of type Account_Type’Class instead of just 
Account-Type. Failing to do so has dramatic consequences 
for the validity of the code, because the methods called for 
these references would be the methods defined for the root 
type Account, and would not dispatch to the possibly over- 
ridden operations of the reference. In this specific case, 
withdrawing money from a checking account with an insuf- 
ficient balance would be rejected even if the overdraft is 
allowed, because the implemtintation of Withdraw for the 
class Account would always be invoked instead of the over- 
ridden implementation provided in the class Checking. 

5.1 Creation methods 

Although the operation model of Fusion defines how to cre- 
ate objects (for example, the creation of an object Transac- 
tion is explicit on figure 2.), it does not define the creation 
methods in a systematic way. It is therefore the responsibil- 
ity of the programmer to make sure that all objects of the 
system can properly be created and initialized by providing 
the adequate creation routine(s) in the form of functions that 
take the initial values of the attributes of a created object 
and return the object. While performing this work, the 
developer should make sure that: 

l the creation routines are not inherited, because they usu- 
ally have no semantics in the context of a descendant. 
Strategies to avoid inheriting an operation include the 



use of a class-wide return type instead of a specific 
return type, as explained in [3], and declare creators sep- 
arately, for example in a subunit or a child package of 
the package that contains the definition of the class. 

l if the creation routine must absolutely be invoked in 
order to create an object, the type should be an indefinite 
type4, which will force all objects to be created by a call 
to a creation method, or by the copying of a preexisting 
object. However, records are not allowed to have com- 
ponents of an indefinite type. Thus, using indefinite 
types compels the use of object values to code the object 
attributes of those types. More details on indefinite types 
are given in [ 181. 

If some attributes cannot be initialized with a default 
expression, then those components should be controlled one 
way or another (see section 3.3.2) and initialized during the 
implicit invocation of the Initialize operation. 

6. Using generics 

Although generic units are not part of the description lan- 
guage, they remain an important building block in the con- 
struction of Ada specifications. They can be of great help in 
better modularizing systems and in building better abstrac- 
tions. 

6.1 Using generics to suppress coupling 

The foremost use of generics in the translation of object-ori- 
ented designs into implementation is to enhance modulari- 
zation, and thus reuse. Instead of coupling a class to another 
class, and introducing a strong coupling between the entities 
of the system, it is possible to abstract the properties needed 
by a class in its generic parameters, so that classes can be 
developed and tested individually. Such generic subsystems 
have the properties of reusable frameworks. 

6.2 Using generics to suppress inheritance 

Genericity can also be used as a substitute for inheritance, 
as long as no heterogeneous collections are involved [19]. 

6.3 Using generics to suppress protocol classes 

Generics can be used to suppress protocol classes, i.e. 
abstract classes that only define the set of properties that an 
object should have to be used in a certain context. One 
example of this is a protocol class Sortable (see figure 17), 
that only defines the property of having the “less-than” 
operator, and a class Sorted-List that stores only objects of 
the class Sortable. 

Classes like Sortable are sometimes called functionoid, 
because they do not constitute objects, but functions to be 
considered as objects, and are of great use in “pure” object- 
oriented languages, where all entities must be coded as 

‘.An indefinite type is a type whose objects cannot be declared without 
nn explicit initial value. Indefinite types include types with unknown 
discriminants (type T (0) is . ..). unconstrained array types, etc. 
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classes. However, in Ada, this design can easily and ele- 
gantly be replaced with a generic package, by integrating 
the protocol Sortable into the generic parameters of the 
package Sorted-List. 

Sorted-List 

* 

Sortable 

Fig. 17. Object model showing the protocol class Sortable 

In this case too, while multiple inheritance would be used in 
other programming languages (this specific example being 
taken out of the Eiffel class library), Ada 95 can do the same 
thing with its own building blocks. 

6.4 Specifying and implementing “inherited” 
generic subprograms 

A problem that developers can have when implementing 
some operations or classes as generic units is that the 
generic subprograms are not defined to be inheritable opera- 
tions, and thus are not inherited by the descendants of a for- 
mal type. 

To circumvent that problem, it is necessary to consider 
generic methods as being operations of a derivation class 
rather than of the specific type, and to implement them in 
terms of possibly new (private) operations that the sub- 
classes will have to override. 

For example, in the following Stack example, the iterator 
Traverse takes a class-wide parameter, to show that it 
belongs to the whole type hierarchy rooted at Stack-Type, 
and it is implemented in terms of the (abstract) operation 
Item, that must be overridden by the concrete descendants 
of Stack-Type (Bounded-Stack-Type, Managed-Stack-n- 
pe, etc.). 

genaric 
type Item-Type i8 private; 

package Stacks i8 
type Stack-Type is ab8tract taggod priv8te; 

9rocsdure Push (Stack: in out Stack-Type; 
Item: in Item-Type) is abstr8ct; 

procedure Pop (Stack: in out Stack-type: 
Item: out Item-Type) is abstract: 

functionsize (Stack: Stack-Type) returnNatural; 

function Item (Stack: in Stack-Type: 
Number: in Natural) 

rsturn Item-Type is abstract; 

generic 
with procedure Action (Item: in Item-Type); 

Drocsdura Traverse (Stack: in Stack-Type'class); 

private 



type Stack-Type 1s abstract tagged 
rword 

Size: Natural := 0; 
ad t8cord: 

oat3 Stacks: 

package body Stacks is 

function Size (Stack: Stack-Type) 
return Natural i8 . . . 

procaduraTraverse (Stack: inStack,Type'Class) is 
h8qin 

for Cursor in l..Size (Stack) loop 
Action (Item (Stack, Cursor)); 

l ndlccp: 
and Traverse; 

l ad Stacks; 

Fig. 18. A generic class-wide program with a (private) utility 
subprogram Item 

For the sake of the example, the implementation of this iter- 
ator is not the most efficient one. Furthermore, the primitive 
operation Item should be a private operation of the type 
Stack-Type (i.e. declared in the private part of Stacks). 
However, Ada 95 prevents us from declaring abstract opera- 
tions in the private part of a package. 

6.5 Using generics to program mixins 

Finally, generics are also useful to create mixins [5]. Mixin 
classes do not appear explicitly in the various models of 
Fusion. The developer will have to find them by himself, by 
exploring the object model. All classes that are inherited by 
more than one class, but are not referenced by any other 
class in the object model can be designed as mixins. 

A good hint to find mixins is to look for classes whose name 
is an adjective or a past participle. For example, in 
figure 17. which models the management of a pet shop, 
some dogs and some cats can be raced. In the object model, 
this property can appear as either a superclass for raced cats 
and dogs, as an association (a cat has zero or one race), or as 
a property common to non-related classes (a common 
attribute Race). 

SupercLass Associalion Common attribute 

Fig. 19. Three object models leading to a mixin class Raced 

In the thtee cases, “raced” can be coded as a mixin class, as 
long as it is not referenced directly by a class other than its 

descendants. That is, there are no object attributes holding a 
reference to Race (but there are attributes that reference 
Raced-Cat or to Raced-Dog). 

wita . . . . us. . . . . 
ganaric 

type Animal is now Pet with private; 
packag8 Raced is 

typo Race&Animal is 
new Animal with private: 

function Description (R: Raced-Animal) 
return String; 

-- gives information on the animal, 
-- including its race 

privata 
type Raced-Animal i8 

new Animal with 
record 

R: Race: 
and record: 

and Raced: 

Fig. 20. A mixin package for the class Raced 

Programmers should be aware that the fact that mixin 
classes do not exist if not connected to an ancestor type does 
not mean that there is no way they can used as building 
blocks. For example, it is possible to build utility packages 
that go on top of mixins using the Ada 95 feature of formal 
package parameters. 

with Raced; 
gonoric 

with package Raced-Pet is new Raced (<>I: 
package Utility-for-Raced-Pet is 

. . . -- makes use of the operation 
-- Description defined in Raced. 

and Utility-for-Raced-Pets 

Fig. 21. A utility package for a mixin class 

7. Implementing bidirectional 
associations 

The most obvious way to model associations is to translate 
the links into references. This is how we have translated 
unidirectional associations (in which only a member of the 
association is interested in knowing its associate(s)). How- 
ever, this way of translating associations is not satisfying for 
all purposes: 

If the association is bidirectional (both members of the 
association are interested in knowing their associate(s), 
for example, a customer needs to know the accounts he 
has opened at the bank, while the bank must trace the 
owners of all its accounts, to send them reports) it 
implies mutual references between objects, which can- 
not be fully achieved in Ada. 
It is not appropriate for associations relating one object 
to many others, or for optional associations. (In the 
optional case, a possible strategy consists of creating a 
subclass for the associated object and adding the refer- 
ence in that subclass.) 

It violates the principle of independence between objects 
of a system. We wish to maintain this independence of 
the objects in order to increase the modularity of the sys- 
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tern and the reusability of the objects and their classes. 
When the links are part of the class, reusing this class 
implies reusing all the classes it is associated with, even 
those which are not part of the problem domain to be 
developed. 

To handle bidirectional associations, we propose to model 
the bidirectional associations as a class. The type exported 
by the package is a record type whose components are the 
attributes of the association and the links to the associated 
objects. The identity of the associated objects will serve as 
links, generally access discriminants designating the associ- 
ated objects. Of course, we cannot use the objects them- 
selves as links, to preserve the integrity of the system. In the 
example below, the package Ownership-G is made genetic 
to satisfy the independence principle, on the class Account 
and Customer, although this is not necessary, but it could be 
replaced by a with clause. 

with Calendar; 
gWlarit2 

typo Account-Type i8 tamed private: 
typa Customer-Type ia tagged privata: 

p8cksge Ownerships-G is 
typo Ownership-Type 

(Account: acces8 AccountJ'ype'Class; 
Customer: accos8 Customer-Type'Class) is 

1imLtsd private; 
-- theconstant componentsAccountandCustomerare 
-- directly accessible (using the selector 
-- notation) 
function Opening-Date 

(Ownership: GwnershipJype) 
return Calendar.Time: 

-- returns date of election of the Account 
-- as head of Customer 

-- other operations on type Ownership-Type 
private 

typa Ownership-Type 
(Account: accasn Account-Type: 
Cus tamer : access Customer-Type) is 

limited 
record 

Creation: Calendar.Time; 
and sword: 

and Ownerships-G: 

with Accounts, Customers, Ownerships-G; 
package Ownerships i8 new Ownerships-G 

(Accounts.Account-Type, 
Customers.Customer-Type): 

with Ownerships, Customers, Accounts: 
use Ownerships, Customers, Accounts: 
procaduro Usage i8 

a-Account: aliased Account-Type := . . . 

a-Customer: aliased Customer-Type := . . . . 
a-tiership: Ownership-Type 

(A-ACCOUnt'ACCSSS, 

A-Customer'Access); 
begin 

. . . 
and Usage: 
Fig. 22. Bidirectional association modelled as a class 

The instances of the type Ownership-Type can then be 
stored in a collection, with selector functions to find an 
associated object when given the other one. More details on 
that topic can be found in [ 171. 

8. Summary and conclusion 

A good test of an object-oriented programming language is 
to see whether it can easily implement an object model 
defined by a popular object-oriented development method, 
such as Objectory, OMT or Fusion. This paper has shown 
that the building blocks that Ada 95 provides are usable and 
allow the programmer to create classes in an elegant fash- 
ion: packages for encapsulation, tagged types and type deti- 
vation for inheritance, class-wide types for mutability, 
access values, aliased objects and controlled types for other 
attribute qualifiers. 

We have also shown that features such as generics can add 
reusability to object-oriented programming by helping sup- 
press unnecessary coupling and providing mixin inherit- 
ance. We have also shown that multiple inheritance is not 
necessary in most cases where it would be needed in other 
object-oriented programming languages. 

Of course, this work is not complete: it does only cover the 
translation of class descriptions. It does not deal with the 
coding of the bodies of the operations, nor error handling or 
the global behaviour of the system (described in the life- 
cycle model.) These issues are however rather straightfor- 
ward in Ada, given the strategies for mapping class descrip 
tions described above. 

In the future, we plan to implement a tool, written in 
Ada 95, that handles the data dictionary and from which we 
will be able to generate Ada specifications of class descrip- 
tions in a (semi-)automatic fashion. Simultaneously, we will 
work on the test of those class descriptions, by first intro- 
ducing more formalism in the definition of the semantics 
(for example using the object-oriented specification lan- 
guage CO-OPN/2 [S]). We aim to generate to generate auto- 
matic test sets and an oracle for the Fusion classes coded to 
Ada [4]. 
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