
PRODUCT-LINE REUSE FOR ADA SYSTEMS

James R. Hamilton, Harold G. Hawley, and Clinton J. Lalum
Boeing Defense & Space Group

P. 0. Box 3999, M/S 87-37, Seattle, WA 98124-2499 USA

ABSTRACT
This paper describes how product-line reuse for A& systems

can be provided through integration of object-oriented and
rule-based technologies. The Advanced Research Projects
Agency (ARPA) Software Technology for Adaptable, Reliable
Systems (STARS)/ Navy demonstration project is using a
product-line approach to system development.

A STARS product-line approach to system development
includes a two life-cycle process where assets are developed for
reuse during a domain engineering life-cycle, and subsequent
application engineering life-cycles use these reusable assets to
generate applications to meet the specific needs of a customer.

The Boeing STARS team has developed an object-oriented
software engineering environment (SEE) which supports this
product-line reuse paradigm. The SEE utilizes rule-based
adaptation and other advanced techniques to provide rapid
generation of applications conforming to customer
requirements.

KEYWORDS

Application Engineering
Application Modeling
Asset Retrieval and Adaptation
Domain Engineering
Domain-specific
Object-oriented
Product-line
Rule-based Adaptation
Software Reuse

1 .O INTRODUCTION
This paper describes an approach for reuse within the

context of an organization which has or is developing a
product-line for which a business case analysis has shown
good potential for a significant return on investment That is,
the organization has adequate domain expertise and has
determined that the investment required to implement a reuse
program will result in a return on investmenr sufficient to
justify the assessed risks.

More specifically, the domain example we reference is the
Air Vehicle Training System (AVTS) domain, and the
approach to software reuse described is a tailored version of
the Software Productivity Consortium’s (SPC) Reuse-Driven
Software Process (RSP). The organizational context is the
Naval Air Warfare Command Training Systems Division
(NAWCTSD) in Orlando. Florida. For this demonstration
program. Boeing has, under contract with the Advanced
Research Projects Agency (ARPA) Software Technology for
Adaptable, Reliable System (STARS) Program, developed a
Software Engineering Environment (SEE) which provides
automation support for reuse within this organizational
context.

The RSP process employed on the demonstration project is
the leveraged version of RSP. The RSP describes a range of
reuse approaches which can be used by an organization to
achieve their reuse goals. The reuse approaches range from
opportunistic to anticipating. The Navy project selected a
leveraged approach which is one of the highest levels of reuse
described by RSP. Opportunistic reuse can be characterized as
developing a general purpose library of parts which can be
used by applicarion developers as they see fit. A leveraged
reuse approach includes development of an architecture for the
product-line’s family of systems, well defined and repeatable
processes, and generation technologies which insulate the
application engineer from the implementation details
contained in the reusable assets.

This leveraged approach to application engineering enables
an organization to have application engineers that understand
business issues and customer needs without needing to know
all details of the implementation. In leveraged RSP,
application engineers are presented a set of questions to
answer, and the resultant answers are used by the generation
technologies to produce an application from the architecture-
based reusable assets. This is a considerably different
approach than the typical opportunistic reuse paradigm where
users must browse through Ada code in a reuse library
looking for assets they can reuse.

To support leveraged reuse, automation technology must
support capturing architecture-based reusable assets and must
provide generation technologies for producing specific
applications. The SEE automation, used to support the
AVTS product-line development, may be viewed as either
domain-independent (able to support a variety of domains) or
domain-specific (dedicated to the AVTS domain). The
viewpoint is dependent on what the SEE is considered to
comprise. The “core” SEE (excluding, for example, domain-
specific processes, etc.) is domain-independent, whereas the

ACM 0-89791-705-7/95/0011--0341
341

http://crossmark.crossref.org/dialog/?doi=10.1145%2F376503.376658&domain=pdf&date_stamp=1995-11-01

“extended” SEE as delivered and used in the Navy
demonstration project is domain-specific. Throughout the
remainder of this paper, “SEE” refers to the “extended” SEE.

The following sections describe the product-line process,
some of the technical components of the chosen approach to
software reuse, and conclusions based on experience to date.

2.0. A PRODUCT-LINE PROCESS
The highest conceptual level of the product-line process

which Boeing selected for demonstrating reuse capabilities can
be described as being process-driven, domain-specific, reuse-
based, and automation-supported The conceptual foundations
of the STARS interpretation of “process-driven” am described
in [11, and tire STARS vision of “domain specific, reuse-
based” is described in [2,3]. A summary description is that
software development is predicated upon well-defined,
repeatable processes wherein new systems within a given
domain are built largely, if not entirely, from existing parts
constructed specifically to be reused, and that automation
support is available and utilized for most, if not all, of the
overall process.

2.1. TWO LIFE-CYCLE PROCESS
Another principle of the STARS vision embodied in this

product-line process is the two life-cycle process of domain
engineering (DE) and application engineering (AE) depicted in
figure 1. The first life-cycle, DE, is an on-going effort which
creates (and/or acquires) and maintains the domain architecture
and reusable components. The second life-cycle, AE, is
repeated for each instance of the product-line (family) which is

From an organization’s business perspective, DE represents
investment, and AE is the vehicle for achieving the desired
return on investment. For this reason, effective
communication across life-cycle boundaries (indicated by the
vertical arrows in figure 1) is a critical component of the
overall product-line process.

REUSE-DRIVEN SOFTWARE PROCESS

RSP as developed by the SPC is described in detail in [13].
RSP concentrates on the technical issues of both DE and AE,
but also includes non-technical (e.g., business) issues of early
DE work associated with assessing the viability of a given
product-line within the context of a given organization. We
do not attempt to make a clear distinction between “product-
line” and ‘domain,” except to note that a product-line may
comprise one or more domains.

One of the DE products defined by RSP is a “question-
decision model” over the product-line’s problem-solution
spaces. This decision model (DM) is used by an application
development project to select a set of reusable components
that can be used to produce a specific application instance.

The DM is organized hierarchically (i.e., as a question-
decision tree) where each node (decision group) includes a
manageable number of questions. During AE, the questions
are asked and answered, one decision group at a time,
beginning at the top of the hierarchy and proceeding down to
the lowest (“leaf”) level. At each step, the answers provided
may determine what questions are asked next and may
constrain allowable answers to subsequent questions.

The objective of this question-answer process is to
identify/define a tailored application (solution) based largely
(ideally, entirely) on a high-level of abstraction. By
answering the questions, the application developer provides
the SEE with the information required to generate a solution.
This solution will comprise both common and variable parts
from the set of reusable components in the domain
architecture, where some components are used without
modification and others are adapted (tailored) specifically for
the given application instance. That is. the application
consists of reused parts which have been selected specifically
for the application (possibly multiple times), some of which
have also been adapted specifically for the application. An
approach for meeting the objective of this question-answer
process is described in [19,20].

_- _
Domain Engineering

B; ,‘----w- a------ -------

----~~~ i - - - - -
Aoalicatlnn A

ir..,; --TT--- --_-- -” p

I I t I I

Figure 1: Product-line Approach

342

2.3. TAILORED RSP
A tailored version of RSP was developed for use in the

Navy demonstration project within the AVTS product-line.
The Boeing SEE, developed to provide automated support for
this tailored RSP process, includes process definition and
automation, object-oriented DE and AE repositories, and an
integrated set of tools. Each of these integrated SEE
components is either a commercial-off-the-shelf (COTS)
product or Boeing-developed software, available through
government sources. The tailored RSP process relies on the
two life-cycle approach (DE and AE) described earlier. The
demonstration project personnel are performing the DE and
AE tasks for the Navy demonstration project, and they have
developed many refinements to tailor the RSP process. The
scope of the demonstration project is confined to the Flight
Dynamics domain of the AVTS product-line.

The remainder of this subsection describes those parts of the
tailored RSP used in Navy demonstration project which are
relevant to the knowledge-based selection and adaptation
techniques discussed in the next section. Note: Throughout
the remainder of this paper, “RSP” refers to tailored, leveraged
RSP as used on the demonstration program unless specifically
noted otherwise.

RSP utilizes the capability of the SEE’s object-oriented
information model (IM) to capture and model fine grained
objects and relationships between objects. In particular,
answers to questions are modeled as “‘answer variable” (AV)
objects. Instances of another type of object, “decision
variable” (DV), are computed from AV’s. DV’s are thus
removed from the actual AE decisions by one level of
abstraction. The relationship of DV’s to AV’s can be
characterized as:

Wd = bn, jMAVj)h where
l (DVn) is a set of one or more DV’s,
9 (AVj) is a set of one or more AV’s,
. (pn, j) is a set of functions which computes the

V&ES of the DV’S in (DVn).
Each function p in (pn, j) computes the value of a single

DV in (DVn) , and is modeled as an “expression” object in the
repository. The expression (over one or more AV’s) is
evaluated at run-time to compute the value of the
corresponding DV. A single AV may be used to compute
multiple DV’s (via multiple functions), and multiple AV’s
may be required to compute a single DV. In effect, the former
is an example of deductive reasoning, and the latter a form of
inductive reasoning.

A third type of object, the “instantiation parameter” (IP), is
utilized for both selection of specific reusable components
from available domain assets, and for adaptation of individual
selected components. Each IP is computed via an expression
(over one or more DV’s) in a manner essentially identical to
the computation of DV’s from AV’s. It would be equally
viable to compute IP’s directly from AV’s. The described
two-step process was selected in part to reduce complexity in
the expressions (functions) used to perform the run-time
evaluations.

The functions (expressions) are part of the DE knowledge
base. In the initial SEE implementation this knowledge was
maintained in a rule-based application [19,201, and all
inferences over the knowledge base were performed by this
application. The next refinement of the SEE models this
knowledge base as repository objects, and distributes portions
of the inferences over this knowledge base.

It is important to note that the AE repository user
(application engineer) is allowed “‘read” but not “write” access
to the Reuse (DE) repository. The above description of the
computation of DV’s and lP’s omitted reference to specific
repositories (AE vs. DE). In reality, the AV, DV, IP, and
expression (function) objects are defined in the DE repository,
but the computed values are kept strictly in the AE
repository.

3.0 IMPLEMENTING PRODUCT-LINE REUSE
The implementation of product-line reuse via RSP requires

automation to support generating an application. The Boeing
SEE supports integral engineering processes (e.g., code
development, change and project management, and
requirements analysis) which am primarily used during domain
engineering, and generation processes which are primarily
used during application engineering. The generation
techniques being used by the Navy demonstration project
make use of the SEE’s inherent methods, knowledge base, and
integrated tools. The SEES’ IM is primarily comprised of a
hierarchy of types with properties and methods. The methods
function separately or in conjunction with the integrated tools
[21]. The IM has a number of meta data types, properties,
methods, and relations provided by the COTS vendor, as well
as Boeing extensions to the meta data types.

The two life-cycle approach to RSP centers around the hvo
hierarchical structures described below, the Decision Model
(DM) in the DE repository, and the Application Model (AM)
in the AE repository.

The DM is created by domain engineers (DE) during the
first life-cycle. The DM is a hierarchical structure with a top
node under which all design groups created by the DE are
attached. It is possible to support multiple AM hierarchies
during AE, but a single DM is typically created for each
domain. Figure 2 illustrates a typical DM hierarchy for the
AVTS domain.

\

Figure 2: AVTS Decision Model

343

The initialization process creates an AE repository and
relates it to the Reuse, i.e. DE repository. The initial starting
configuration of the AM within the AE repository is an
empty top AM node The structure of the AM is dynamically
built by the knowledge base engine in response to answers
provided by an application engineer. Figure 3 shows an AM
after a user has answered questions to meet a specific set of
requirements from the DM in figure 2.

Application Model

Figure 3: Application Model

3.1. RSP DOMAIN ENGINEERING OVERVIEW
For the DE life-cycle, there are a number of activities

explicitly defining the steps the domain engineer takes in
designing, building, and populating the DE repository. The
populating also includes the development of the DM.

This paper briefly summarizes some of the activities
performed during domain engineering: Decision Model,
Product Architecture, Component Design, Generation Design,
Component Implementation, and Generation Implementation
(sequentially listed in the order performed, as illustrated in
figure 4).

The following paragraphs describe each of these processes.

3.1.1. DEClSlON MODEL ACTIVITY
The Decision Model Activity defines the set of decisions an

application engineer must resolve to describe and construct a
deliverable product. These decisions, and the logical
relationships among them, determine the variety of products
in the domain. To construct a product, these decisions must
be sufficient to distinguish the desired product from all other
members of the family. The decisions affect how work
products of AE, including Ada source code and documentation,
will vary in form and content.

I
Decision Model

Component Implementation

Generation implementation

Figure 4: Selected DE Processes

In the Decision Model Activity (process), domain engineers
elaborate the essential requirements and engineering decisions
from the domain assumptions (not discussed here) into an
engineering work product identified as the DM. The DM is
composed of Decision Tables (DT) which contain DV’s. DT’s
are created in order to provide logical groupings of variation in
the product-line. Domain engineers generally create tables for
each area of expertise in the domain such as flight dynamics
or navigation/communication.

The domain engineers may develop two views of variation
in the product-line. One view for domain engineering
activities and one view for application engineering activities.
Two variation models may be created in some product-lines
where a higher level of abstraction is provided for the
application engineer and a detailed model is developed for the
domain engineers.

The AV’s, DV’s, and IP’s, discussed earlier in section 2.3,
are embedded in the DM. The expressions entered into the
AV’s are evaluated during application engineering (section
3.4.1) to assign values to DV’s, and hence to P’s, and thereby
identify specific assets and any adaptations applicable to them.

3.1.2. PRODUCT ARCHITECTURE ACTIVITY
The objective of the Product Architecture Activity is to

define an adaptable architecture for products that can be
produced in AR. The key to producing this architecture is
providing the flexibility such that this architecture will
support all instances of the product family. During Product
Architecture, domain engineers identify the structure of each
AE work product family in terms of components that
application engineer’s may produce from adaptable
components. Application engineers subsequently create work
products by selecting, adapting, and composing instances of
adaptable components produced by DE.

3.1.3. COMPONENT DESIGN ACTIVITY
The Component Design Activity uses the (previously

designed) product architecture to identify the set of adaptable
components required to construct an application within the
product family. These components are specified and designed
in accordance with the previously defined architecture. A set
of component designs defines a library of adaptable
components that may be adapted and composed to construct
applications within the product family.

A component design consists of three parts: Adaptation
Specification, Interface Specification, and Functionality
Specification. Component Design is required for adaptable
and non-adaptable components. Component Design for
documentation and other work products (non-code) may or
may not include an adaptation specification.

The Adaptation Specification, for an adaptable component,
describes the ways that the component can be tailored via a set
of parameters. Each parameter has a name and type to indicate
its range of variations.

The Interface Specification describes the desired
characteristics of the implementation of the component. The
form and content of the Interface Specification is particular to
the component type and the design method used.

344

The Functionality Specification is an additional requirement
for Component Design that is not an original part of RSP.
This specification contains pertinent design information.
This design information might include algorithms, control
structures, control loop diagrams, etc. It can be parameterized
with respect to the variations in the Adaptation Specification.

3.1.4. GENERATION DESIGN ACTIVITY
A Generation Design Activity specifies how to select and

adapt components according to decisions in the AM and to
compose them according to the internal organization of that
work product in the Product Architecture. The Generation
Design Activity uses the Decision Model, Product
Architecture and Component Design

Generation design produces Decision Mappings,
Architecture Mappings, and Component Mappings. These
mappings are, in effect, the functions described earlier in
section 2.3.

Decision Mapping is represented as a pairing between an IP
and a corresponding expression. The expression, which is
evaluated during application engineering to determine the
value of an IP, is described in terms of decisions in the
product family’s DM. These expressions are part of the
domain knowledge base, and are a logical equivalent of rules
in a rule-based expert system. The expression syntax is tich,
and may involve iteration over a group of decisions or
conditional testing of one or more decisions.

The Architecture mapping representation is the same as the
Decision mapping, except that the IP’s come from the
Product Architecture of the work product. Each expression in
the Architecture mapping evaluates to TRUE or FALSE,
representing the inclusion or exclusion of an architecture node
in the resulting application.

The Component mapping representation is the same as the
Decision mapping, except that the IP’s evaluate to component
names (defined in the Component Design). Component
mapping determines which components am used in each
Product Architecture node included via the Architecture
mapping.

3.1.5. COMPONENT IMPLEMENTATION
ACTIVITY

The objective of Component Implementation is to
implement adaptable components that satisfy their respective
component designs consistently with respect to product
requirements and product architecture. The result of
Component Implementation is a complete set of adaptable
components that can be used during AE to construct
applications or associated work products.

A given component may be anything required to build an
application: Ada source code, documentation, or
verification/validation data. Such a component, because it is
adaptable within a detined range of variation, actually
represents a family of (application) components. This
variability of adaptable components is an essential factor in
enabling application engineers to construct distinct
applications within the product family.

For each component, the Component Implementation

contains an Adaptation Specification which includes IP’s and
their constraints. In the case of some common components,
there may be no variation, and in such cases the Adaptation
Specification is null.

An adaptable A& component is uniquely named and
consists of two parts: an adaptability interface and a body. A
component family is characterized by a set of common
capabilities and variations in those capabilities. The
adaptability interface is a specification of a set of adaptation
parameters that provide for the characterization and extraction
of a particular instance of a component family. The body is
the sum of the potential implementations of all of the
components in the family. The term “‘potential” is used
because the parameters are sufficient to select any component
family instance uniquely, but the particular implementation
either may not be available or may be extracted from a
representation of the family or relevant subfamily. This varies
with the mechanism used for implementing adaptation of the
adaptable component.

3.1.6. GENERATION IMPLEMENTATION
ACTIVITY

The Generation Implementation Activity produces a
Generation Procedure which allows application engineers to
produce (generate) a work product in its final form (a set of
instantiated components) and associated product
documentation from an instance of the DM (r&a. AM).

The Generation Procedure has four major portions. The
first portion is an implementation of the expressions which
map DV’s to IP’s.

The second is an implementation of the use of Ip’s to select
nodes which will make up the architecture of the final work
product and the nodes’ corresponding adaptable component.

The third is an implementation of the use of DV’s to select
the artifacts associated with the component which may be
requirements, design, or test items.

The final part of the generation procedure uses IP’s to adapt
the components selected in step two or the texts selected in
step three. An IP (in the DE repository) may either select or
adapt (or both) one or more reusable components (in the DE
repository), depending on the corresponding IP value (in the
AE repository).

The application engineer subsequently answers the
questions associated with each design group in the Decision
Model (hierarchy of design groups), and thereby generates the
AV values. These AV values ate used to compute the DV
values, which are in turn used to compute the IP values.
Finally, the IP values determine which reusable components
need to be retrieved from the DE repository and precisely how
they are to be adapted for the specific application. This
retrieval specification is contained in a retrieve file which is
processed via the retrieve method. Section 3.4 provides more
details of this selection and adaptation process.

3.2. LIMITATIONS OF ADA GENERICS
The creation of adaptable components as discussed in

section 3.1.5 allows the design and creation of Ada generic
packages (for that matter, any package) but also provides more

345

kinds of instantiation adaptation than is provided in the A&
language. Although Ada provides generic packages as a
standard facility that can be used to implement adaptation of
source code, it requires explicit code segments for every
possible combination that can be instantiated. Adaptation is
limited to simple substitution which must be coded into
source code instances. Using Ada generics can be used to
support simple forms of variation, but it doesn’t handle the
more complex adaptation techniques such as alternate
implementations, conditional expressions/inclusions,
multiple instantiations of code units, or adaptation of other
types of assets such as requirements and test cases.

The adaptation capabilities that we have developed support
all of the above mentioned types of adaptation including
adapting assets such as process definitions, requirements,
plans, documents, and test data. An example of an adaptable
Ada code fragment can be seen in figure 5.

procmdure SP PROCEDURE TEST NA"S$ (
TEST ACTIVATE

PBSP
: in ik!3E-~YPES.DISCRETE-STATE:

: in EzA~E~;~P&SES.SE~CO";
NSWPOWER:
- -$- -Include it .?han e i; channel or
- -$- - fr*qu*ncy tmr ml mat., self t*st.
,-WE ~;~~EEME~TH~CHAN$ THEN

- -$EN6 IF
: RASE~TYPES.SXM_BooL!UN;

. . .
bmqin

PHASE POUND :- false:
DtTERkNED ACTIVE :- falm;
if POWER --TN. then

- -.$- - Include if WC-s is mush and relaasa
- -6IF SP INITIATE PZfH AND--RELEASES THEN
if TEST AETIVATE --On t&n

DCTE&lINED ACTIVE i- trua;
- -$- - In&xda if btn pr.rr restarts test
- -$- - Iif teat im alrmdy runninq.
- -$IF $P AFFECT OF REPRESS-RESTARTS THEN
if LAST PiiS ACT?VE-then

TIMER :- 6.0:
end if;
- -SEND IF

wad if;
- -SEND IF

Figure 5: Ada Co& Fragment

This adaptation technology has similarities with the C
language preprocessor, but it has a mom. powerful expression
capability to support our inference engine. The adaptation
language is documented as a BNF grammar and can be easily
parsed (e.g., by using YACC and LEX).

3.3. IMPLEMENTING REUSABLE ADA CODE
CONSTRUCTS

The coding of adaptable A& source code can be done with
two main perspectives on specifying what is to be adapted.
The adaptation implementation specified here is performed on
the Ada text file types and subtypes in the IM.

The specific adaptations done are performed by a default tool
or a user specified tool. It is possible to embed other
adaptation tool specifications in the retrieve file. The retrieve
file is equivalent to the RSP’s Adaptation Specification. It
specifies what object is to be adapted and how.

There are currently two adaptation tools available. Inputs
of interest for both adaptation tools are the files and options
provided to control the adaptation tool execution. Both tools
take one file specifying the substitutions to be performed and
a second file containing a list of objects (Ada source code) the
substitutions are performed upon. Additionally, one of the

adaptation tools allows options to further tailor the
adaptations. There is an option directing the removal of
commented out code sections that are not applicable to nor
used in the adapted source code file. Refer to the Ada code
fragment listed earlier in figure 5. The sections removed are
those portions of the “--$IF THEN --$ELSE --$END IF’ that
evaluate to FALSE. This adaptation tool is a two pass
parser, performing a substitution of IP parameters within
these expressions. The expressions are then evaluated and the
resultant file is again processed with the substitution file
directives. The other adaptation tool is a single pass parser
performing the substitutions one time through.

The use of either tool is dependent upon the creation of the
original adaptable assets. The domain engineer creating an
adaptable asset must know which adaptation tool will be used.

3.4. RULE-BASED ADAPTATION
Rule-based adaptation is based on a generator which

evaluates the expressions (rules) in the AV’s, DV’s, and IP’s.
After the domain engineers have created the DM and all its
supporting assets in a DE repository, this DM is available for
application engineers to exercise a Decide Activity upon, i.e.
answer questions from a DM node, thereby building a node in
the AM. This AM will contain all answers given by the AE
to questions in the DM. The AM with its answers in the
form of AV’s, in conjunction with the AV-DV mappings and
DV-IP mappings, contains all information necessary to
specify the adaptations of assets from the Reuse repository
and place them into the AE repository.

The application engineer, during the question/answer
session, need not completely answer all questions. Partial
answering of a DM node’s questions is petmitted. The states
of the answers are retained for further sessions. If the domain
engineers cmated dependences to lower DM node questions,
the lower node’s questions cannot be accessed until all higher
dependent questions have been answered This dependency
constraint is on the DV’s in the DT’s (not necessarily on all
DT’s in a design group).

3.4.1 DECIDE ACTIVITY (APPLICATION
MODELING)

The AE begins with the Application Modeling Activity.
The user is presented a list of available nodes in the DM
upon which the decide can be performed The AV’s, DV’s,
and IP’s, discussed earlier in section 2.3, are embedded in the
DM. The application engineer proceeds in a top down
fashion, answering questions at each node,thereby building a
tailored DM, i.e., the application model (AM), in the AE
repository as a hierarchical structure logically similar to the
DM. Each node in the AM will contain or have relations to
the answers to the questions in the applicable DM node.

Selecting a node in the DM and performing the decide
method will result in the rule-base code being generated for an
inference engine used by the SEE. The rule-base is comprised
of the questions, question-hdp, potential answers, and
dependency constraints upon other DV’s which restricts or
allows other questions. Additionally, this rule-base will
contain the specification of how to output the results of the
user answering the questions contained in the design group (a

346

node in the DM).
Exiting a decide session will initiate the update to the AM

in the AE repository. The update includes the creation of an.
applicable node in the AM, containing the answers from the
corresponding DM node, and tagging the just completed node
as Decided or Redecided as the case may be.

Updates include the next available DM nodes for Decide.
This is directed by the dependencies resolved in the last set of
questions answered. Answering certain questions (iterators or
dependencies) allows the user to access other nodes in the
DM. These nodes are only visible if the user answers
questions in such a manner that all entry constraints to a DT
are met. The answering of questions can also specify iterators
which in turn specify the name of lower AM nodes.

The saved answers become a part of the applicable AM
node. When later Decides are performed, all previous answers
are gathered and provided to the inference engine. This
allows the DE to specify dependency across various DM nodes
that will not be apparent based on the nodes location in the
DM hierarchy.

When the AE has sufficiently answered questions from the
DM and has created an AM, the creation of retrieval
specifications follows in the Application Production Activity.

3.4.2. APPLICATION PRODUCTION ACTIVITY
The process continues with the creation of retrieve files

based on the results of the application modeling (section
3.4.1). The retrieve file is the mechanism by which the SEE
specifies which objects in the Reuse repository are to be
retrieved into the AE repository. It additionally can specify
which objects are adapted and how they am adapted. After the
retrieve file has been built, the Application Production
activity uses copy and retrieve methods to produce an
application in the application engineering repository.

3.4.3. COPY METHOD SUPPORT OF
RETRIEVALS

The copy method refinement has been added to most types
of interest in the IM. In the core COTS product, the methods
for each type use a message dispatching mechanism and a
structured list to contain details specific to the method. Bach
types’ method can accept a message which invokes a specific
method. The copy method is a Boeing extension to the
repository.

The intent of the copy method is to ultimately create an
object of a given type at the destination with all properties
equal to an equivalent property value or state from the source
object. The notion of an equivalent property has different
meaning based on the copy refinement at a particular type.

The copy methods attempt to model the property refinement
or property definitions used by the “new” method provided by
the COTS tool. For named elements, a name property is
provided. If the object has a description property, it is copied.
Lower in the IM hierarchy at version, the location for creating
the versioned object is provided. Lower yet at binary, three
properties (storeType and either imported&m or filepath) are
provided. Whatever property the “new” method manipulates,
the copy method at the same level in the type hierarchy also

manipulates.
There is one major feature to the copy method refinements

that is necessary to support the retrieval specification. The
retrieve method which performs the actions specified in this
specification (i.e. contained in a retrieve file), will pre-build a
partial list based on the directives found the retrieve file. The
copy methods must check for the existence of a refinement
prior to the type unique refinement

3.4.4. RETRIEVE METHOD OVERVIEW
The retrieve method has been defined on the two types used

in the AM, the type used for the node instances and a file
type. The retrieve method requires a location to create objects
and two optional arguments.

The copy uses information derived from the location
specified for the new objects and from the objects being
copied. This information is used to locate the meta data type
hierarchy for both the user’s AB repository and the Reuse
repository. These information must be kept separate even
though the method definitions from each repository point to
the same shareable images. The location to create the new
object, an attach point, is used as the “destination” repository.
The object receiving the copy message is assumed to be from
the “sourcen repository. This object will be recreated in the
“destination” repository using the applicable meta data types
from the “destination” repository. This permits the copy to
function between repositories or in the same repository.

The fit’st optional argument, an enumerated selection, is
used to determine if all copies specified in the retrieve file are
performed and/or filtered to restrict the types copied, and also
whether copied “as is” or “adapted”. The second optional
argument may be a list of types to be retrieved.

The selection option argument takes precedence over the
filter type list. By default, the retrieve method will attempt to
retrieve every COPY directive found in a retrieve file. If the
filtering argument is present, it is used to compare against the
type of the COPY directives found in the retrieve file. If the
filter type argument is not present but the selection argument
directs filtering. a Motif dialog box prompts the user for one
of 4 categories of types; Requirements, Design Parts, Source
Code , and Work Packages. These four categories map to a
specific set of types.

There is a notion of scoping or nesting in the retrieve file
BNF. BEGIN starts a scope, END closes it. The
BEGlN/BNDs can be nested. Bach COPY specified in the
retrieve file is processed in a top down order. The COPY
directive only states that an object is to be recreated in the
destination repository. Whether or not adaptations are
performed depends upon the ADAPT and SETPROP directives
specified within the BEGIN/E?ND scope containing the COPY
and then higher scoped BEGIN/ENDS.

The retrieve method will initially create the lists used to
specify what is created (type, name, various properties, etc.).
It will place on the list any SETPROP directives specified in
the retrieve file for each applicable COPY directive. This list
is used in the “copy” message sent by the retrieve method to
the COPY specified object found in the “source” repository.
This is where the copy method takes over and finishes filling

347

in the necessary entries for a “new” sent to the user’s
“destination” repository.

Curmntly, the adaptations by the TOOL directive applies
only to the Ada file types. An internal parser is used to adapt
all other files and description lists. The adaptation of
descriptions is done intemaily for speed. The non-Ada file
adaptation is simple substitution, line by line from the source
file to the adapted file.

3.4.5. ADAPTATION TOOL SPECIFICS
The retrieve file BNF has a TOOL directive to accommodate

adaptations of Ada files. The image specified immediately
following the TOOL directive will be used for the adaptation
of the instances specified for alI applicable lower BEGIN/END
scoped COPY directives. A sample retrieve file is shown in
figure 6.

BEGIN
ADAPT from 3 to-3
BEGIN -

TOOL "pathname to image" -
ADAPT from-l to-l
ADAPT from-2 "to string 2"
COPY type-l name-l name

END
ATTACH tme-1 name-2
COPY type-2 name-3 name

END

Figure 6: Retrieve File
The TOOL invocation uses any specified options and three

files; a file with search and replace specifications, the A& file,
and a report file. The option shown above, -r, is the most
pertinent here. It specifies the removal of unused --$IF THEN
-$ELSE --$END IF clauses after the expressions are
evaluated. The default is to leave the clauses, that do not
evaluate to true, in the source code as comment lines.

This TOOL directive will override the default within a
given BEGIN/END. All higher BEGIN/ENDS that have
adaptations for an object will be gathered into a substitution
file for input to the tool. One and only one TOOL directive
is permitted within a BEGIN/END.

Various formats for specifying the search and replacement
strings are supported. The format for the substitution file is
line oriented, fiist token is searched for and replaced with the
second token. Figure 7 contains an example substitution file.

Sfrom-l$ to-1
Sfrom-2$ "to string 2
Sto-S to-3

Figure 7: Substitution File
This file will contain an ordered list of adapt specifications

starting with the lowest nested BEGIN/END and proceeding
up to any higher BEGIN/ENDS. Adapts within a specific
BEGIN/END are listed in a top down order.

If used, the default SEE adaptation tool will apply all
adaptations to the file’s specially delineated lines (--$IF, --
SELSE, --$END IF, etc.). These expressions are then

evaluated and the resultant file has the adaptations applied
again. Prior to returning the file to the retrieve method, a
commented out section wiIl be prepended to the file. This
section wilI contain the TOOL name with any command line
options used to process the file followed by the substitution
file (a list of all adaptations attempted). A sample of this
header information in an adapted Ada component is shown in
figure 8.

--
-- Adaptation done on yymmdd-hh:mm
-- Adaptation tool: "full path to ima
--

-- Search and replace list:
-- Sfrom-l$ Sto-l$
-- $from-2$ "to string 2"
-- Sto-l$ to-3
--

-- Adapted results follows:
--

. . . . <adapted code>

Figwe 8: Adapted Component Header

4.0. CONCLUSIONS
Effective automated support for product-line development

can be provided with a combination of COTS tools and the
Boeing/STARS developed software. Defining a reuse strategy
is an essential step before an organization can achieve
significant pay back from automation. Our automation
strategic decision to use RSP was supported well by the
adoption of the Boeing SEE together with development of
generation technologies to support leveraged (versus
opportunistic) reuse in AE processes. The technologies we
developed are being demonstrated for the Air Vehicle Training
gs$ (AVTS) domain. but can be applied to virtually any

.
The overall tailored RSP process will (as in the case of the

Navy demonsuation program) have characteristics of
independence and specificity with respect to both the domain
and the organization. RSP (both as defined by the SPC and
as tailored for the demonstration project) can be applied to
virtually any domain, and is thus domain-independent.
However, since part of the DE task identified in RSP is the
definition of the AE processes to be used by the given
organization to build an instance of the product-line family,
RSP is by definition always a tailored process. This tailored
process will be specific at least to the organization and likely
to the domain as well. This inherent recognition by RSP of
the necessity for reuse to be “context sensitive** with respect
to the organization and the domain is one of the strengths of
RSP.

The reuse automation technologies that we developed were
based on supporting the tailored RSP process. While Ada
generics and object oriented principles supported in A& 95
provide some support for reuse, they don’t provide the
generation capabilities and the reuse IM that our process
dictated. Generation technologies that are coupled with rule-
based dialogs can enable an organization to make use of
reusable Ada assets without requiring the application engineer

348

to understand all the details in the resulting Ada system.
However, an application engineer may need to modify the
generated system and will certainly need to test this generated
system, therefore the generation technology must support
generation of support documentation and test information.
Our integration of reuse technologies with an object oriented
repository has provided us with a capability to support not
only generation of Ada code, but also the support materials
needed by an application engineering project.

5.0. REFERENCES

[11 Software Technology for Adaptable, Reliable Systems
(STARS), Process Definition Guidelines, Boeing STARS
Technical Report CDRL 05150, Advanced Research Projects
Agency (ARPA) STARS Technology Center, 801 N.
Randolph St. Suite 400, Arlington VA 22203, July 1993.
[Z] Software Technology for Adaptable, Reliable Systems
(STARS), STARS Reuse Concepts Volume I - Conceptual
Framework for Reuse Processes (CFRP), Paramax STARS
Technical Report STARS-UC-05159/001/00, STARS
Technology Center, 801 N. Randolph St. Suite 400,
Arlington VA 22203, November 1992.
[3] Brad Cox, “Planning the Software Industrial
Revolution.” IEEE Software, 7(6):25-33, November 1990.
[4] Constance Palmer, “Identification and Tailoring of
Reusable Software Components,” Proceedings of the Fourth
Annual Workshop on Software Reuse, Reston, VA,
November 199 1.
[51 Luqi and J. McDowell, “Software Reuse in
Specification-Based Prototyping,” Proceedings of the Fourth
Annual Workshop on Software Reuse, Reston, VA,
November 199 1.
[6] Haikuan Li and Jan van Katwijk, “A Model for Reuse-in-
the-large,” Proceedings of the Fourth Annual Workshop on
Software Reuse, Reston, VA, November 1991.
171 Karen Huff, Ronnie Thomson, and James W. Gish, “The
Role of Understanding and Adaptation in Software Reuse
Scenarios,” Proceedings of the Fourth Annual Workshop on
Software Reuse, Reston, VA, November 199 1.
[8] Software Technology for Adaptable, Reliable Systems
(STARS), Reuse Library Process Model, IBM STARS
Technical Report CDRL 03041-001, STARS Technology
Center, 801 N. Randolph St. Suite 400, Arlington VA
22203, July 1991.
191 Software Technology for Adaptable, Reliable Systems
(STARS), The Reuse-Oriented Software Evolution (ROSE)
Process Model. Paramax STARS Technical Report STARS-
UC- 05156/001/00, STARS Technology Center, 801 N.
Randolph St. Suite 400, Arlington VA 22203, July 1993.
[lo] Rub#n Prieto-Diaz, “Domain Analysis for
Reusability,” Proceedings COMPSAC ‘87, Tokyo, Japan,
pp. 23-29, October 1987.
1111 Software Technology for Adaptable, Reliable Systems
(STARS), Reuse Library Framework (RLF), Paramax
STARS Technical Report STARS-UC-05156/015/00,
STARS Technology Center, 801 N. Randolph St. Suite 400,
Arlington VA 22203, March 1993.

[121 Steven Wartik and Ruben Prieto-Diaz, “Criteria for
Comparing Domain Analysis Approaches,” Proceedings of
the Fourth Annual Workshop on Software Reuse, Reston,
VA, November 1991.
[133 Software Productivity Consortium, Domain
Engineering Guidebook, Technical Report SPC-92019~CMC,
Software Productivity Consortium, Hemdon, VA, December
1992.
[14] Software Technology for Adaptable, Reliable Systems
(STARS), Product-line Application Engineering Guidebook,
Boeing STARS Technical Report CDRL 05152, STARS
Technology Center, 801 N. Randolph St. Suite 400,
Arlington VA 22203, July 1993.
[15] NASA Software Technology Branch, “C Language
Integrated Production System (CLIPS)” reference manuals,
JSC-25012, September, 1991.
[16] Clinton Lalum, “Reusable Objects Access and
Management System (ROAMS),” Abstracts of Posters
Presented at the 15th International Conference on Software
Engineering.
[17] ANSI, “Future Direction for Evolutions of IRDS
Services,” ANSI X3H4/92-161, September 1992.
[18] Software Technology for Adaptable, Reliable Systems
(STARS), SEE Integration to Support Megaprogramming,
Boeing STARS Technical Report CDRL 05 104, STARS
Technology Center, 801 N. Randolph St. Suite 400,
Arlington VA 22203, June 1993.
[191 Margaret J. Davis and Harold G. Hawley, “Dialogue-
Specified Reuse of Domain Engineering Work Products,”
Proceedings of the Eleventh Annual Washington Ada
Symposium, McLean, VA, June 1994.
[20] Margaret J. Davis and Harold G. Hawley, “Reuse of
Software Process and Product Through Knowledge-based
Adaptation,” Proceedings of the Third International
Conference on Software Reuse, Rio de Janeiro, Brazil,
November 1994.
[211 James R. Hamilton, “SEE Integration to Support
Megapmgramming,” Proceedings 1993 Software Engineering
Environments Conference, Reading, United Kingdom, July 7-
9. 1993.

BIOGRAPHIES
Mr. James R. Hamilton has worked on the Boeing STARS project
for over 5 years primarily working on software engineering
environment (SEE) technologies. Mr. Hamilton lead the
development of joint STARS documents in the area of SEE
technologies and has lead the development of the Boeing STARS
SEE. Prior to STARS work Mr Hamilton has worked in
developing real-time Ada avionics systems for military
applications. Mr. Hamilton holds a B.S. in Electronic
Engineering from Oregon State University.
Mr. Harold G. Hawley has worked on the Boeing STARS project
for over four years. initially organizing and managing the STARS
“CASE Vendor’s Workshop” in July, 1991, and subsequently as a
member of the reuse team. Mr. Hawley was also Boeing’s
representative on the STARS program Reuse Joint Activity
Group, which coordinated joint reuse activities by the three
STARS prime contractors (Boeing, Loral. and Unisys) and played

349

an active role in reuse technology transition to the DOD.
government contractors, and industry. Before joining the STARS
project, Mr. Hawley worked with a small team which produced a
prototype model-based reasoning tool to diagnose Problems with
electro-mechanical equipment. Mr. Hawley has been a lead
software engineer on a number of aerospace and other real-time
projects. Mr. Hawley holds a MS. in Applied Mathematics from
the University of Colorado and a MS. in Computer Science from
San Jose State University.
Mr. Clinton J. Lahun has worked on the Boeing STARS project
since 1989. Initial work encompassed a comparative analysis of
DCDS (Distributed Computing Design System) against earlier
versions of the repository currently supporting the Boeing SEE.
Subsequent work has been with the Boeing STARS reuse
technology, designing and implementing the fundamental
information model components and functionality of ROAMS
(Reusable Object Assess and Management System). Before
joining Boeing and the STARS project, Mr. L&m worked on
development of a PC based real-time spreadsheet, on
enhancements and maintenance of embedded Power monitoring
systems, high speed flight testing data acquisition systems, and
missile hardness surveillance systems. Mr. Lalum holds a B.A. in
Computer Science and a minor in mathematics from the
University of Montana.

Messrs. Hamilton, Hawley, and Lalum can be contacted at Boeing
Defense & Space Group, P. 0. Box 3999 - M/S 87-37, Seattle,
WA 98027 (U.S.A). Their respective e-mail addresses are
hamilton@plato.ds.boeing.com, hawley@plato.ds.boeing.com,
and lalum@plato.ds.boeing.com.

350

