
Hardware/Software Instruction Set Configurability
for System-on-Chip Processors

Albert Wang
awang@tensilica.com

Earl Killian
earl@tensilica.com

Dror Maydan
maydan@tensilica.com

Chris Rowen
rowen@tensilica.com

Tensilica, Inc.

3255-6 Scott Blvd.
Santa Clara, CA 95054

+1 408 986 8000

ABSTRACT
New application-focused system-on-chip platforms motivate new
application-specific processors. Configurable and extensible
processor architectures offer the efficiency of tuned logic
solutions with the flexibility of standard high-level programming
methodology. Automated extension of processor function units
and the associated software environment – compilers, debuggers,
simulators and real-time operating systems – satisfies these needs.
At the same time, designing at the level of software and
instruction set architecture significantly shortens the design cycle
and reduces verification effort and risk. This paper describes the
key dimensions of extensibility within the processor architecture,
the instruction set extension description language and the means
of automatically extending the software environment from that
description. It also describes two groups of benchmarks,
EEMBC’s Consumer and Telecommunications suites, that show
20 to 40 times acceleration of a broad set of algorithms through
application-specific instruction set extension, relative to high
performance RISC processors.

1. WHY CONFIGURE PROCESSORS?
Two major shifts – one technical, one economic – are changing
the design of electronic systems. First, continuing growth in
silicon chip capability is rapidly reducing the number of chips in a
typical system, and magnifying the size, performance and power
benefits of system-on-chip integration. Second, many of the
fastest-growing electronics products demand ever-better cost,
bandwidth, battery life, and software functionality. These systems
– network routers, MP3 players, cell-phones, home gateways,
PDAs, and many others – require both full programmability (to
manage complexity and rapidly evolving requirements) and high
silicon efficiency (for superior application performance per watt,
per dollar and per mm2). Application-specific processor cores
promise such a combination of full software flexibility with high
efficiency
The demand for application-specific processors creates a paradox
for modern system design: how do architects develop new

processors that combine the key benefits of generic
programmable chips – longevity, development costs amortized
over large volume, adaptability to changing market requirements
– without taking too much development time or expense. If the
cost of fashioning new optimized processors could be radically
reduced, then a much broader array of highly refined processor
cores could be used in system-on-chip designs.
Tensilica enables rapid design of highly efficient processor cores
by providing a base architecture, a lean core implementation, and
an automated method to seamlessly extend the processor
hardware and software to fit each system’s application
requirements. Processors extended by this methodology close the
performance gap between high-overhead general-purpose
programmable processors and efficient, specialized hardware-
only solutions based on hardwired-datapath-plus-state-machine
logic functions [1]. This methodology also closes the design gap
between the rapid, exponential growth of silicon capacity and the
slower growth in designer productivity [2]. This paper outlines
the capabilities of Tensilica’s Xtensa processor generator [3],
including the Tensilica Instruction Extension (TIE) methodology
and demonstrates a resolution to the paradox.

2. WHAT’S THE RIGHT
ARCHITECTURE?
But what is the right new architecture for extended processors?
What instructions should we add? There is no universal
extension, or even one for each application class. System
designers may already know the answer for their own problem
area. Good candidate instructions can be found in the datapaths of
dedicated hardware solutions sometimes added outside the
processor to enhance application performance. By moving these
datapaths into the processor, the system architect can discard the
external control logic: the finite state machines and micro-
sequencers. The processor and its software can provide this
sequencing much more flexibly. Moreover, removing the
function-specific control logic also eliminates most of the
verification infrastructure necessary to test that logic and
guarantees flexibility to accommodate new algorithms using the
same datapath functions.
Moving the application-specific datapaths into the processor
provides several other advantages. Fast instruction set extension
and performance testing encourages, in turn, rapid prototype
validation and experimentation. This allows the system designer
to home in quickly on the best design for the target application
set. The datapath is fully accessible from C/C++ code through

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

184

12.3

the compiler using extended intrinsics and data-types. Storage
elements (register files and special state registers) and pipeline
flip-flops are generated by the TIE compiler in response to a
high-level specification, and need not be created manually.
Storage elements can be configured in width and number to adapt
to the data precision and bandwidth requirements of the
algorithm. The paradigm also simplifies the use of data memory,
since the processor can simply share a unified data memory
across many different tasks. This avoids the typical duplication of
the assorted RAM structures, address generators, access ports and
external interfaces found in designs that attempt to combine a
range of specialized execution engines. Xtensa's RAM structures
are configurable in type, depth and width beyond what the
processor core requires, so as to support the width required by the
added datapaths. So, this approach design time also reduces
system cost through hardware sharing.

3. EXTENSION DESCRIPTION METHOD
To facilitate the new system design paradigm described in the
previous section, Tensilica has introduced the Tensilica
Instruction Extension (TIE) language for system designers to
formally specify extensions to the Xtensa core processor. Like
most previous machine description languages [4, 5, 6], TIE is an
Instruction Set Architecture (ISA) description language. It relies
on a tool, the TIE compiler, to generate an efficient hardware
implementation and required additions to a suite of software tools,
including the compiler, instruction-set simulator and debugger.
TIE is not intended to be a complete processor description
language. Instead, the TIE language provides designers simple
ways to describe a broad variety of computational instructions, yet
allows the TIE compiler to generate efficient hardware
implementation for the instructions as an integral part of the
processor. The language is simple enough for a wide range of
designers to master, yet general enough to permit efficient
description of complex instruction sets. As a result, the
implementation efficiency matches that of a highly optimized
processor core. In the rest of this section we briefly describe the
capabilities of TIE language.

3.1 Instruction format and encoding
Instruction format and encoding can be specified through a
combination of TIE field, opcode, operand, and iclass statements.
A field statement simply gives a name to a group of bits in the
instruction word. An opcode statement assigns instruction fields
with values. An operand statement specifies how an instruction
operand is encoded in an instruction field. An iclass statement
defines the assembly format for an instruction. Since a TIE
description defines extension instructions to the core Xtensa
instruction set, there is a large set of pre-defined instructions
fields, immediate fields and operands that can be used directly in
the description. The following example completely defines the
formats of two instructions, A4 and S4, which take two 32-bit
input operands from the core register file, perform four 8-bit
additions and subtractions, and store the result back to the core
register file:

opcode A4 op2=0 CUST0

opcode S4 op2=1 CUST0

iclass RR{A4,S4}{out arr, in ars, in art}
The first two lines define the opcodes for A4 and S4 as sub-
opcodes of a previously defined opcode CUST0 with the addition
field op2 equal to 0 and 1 respectively. The second line makes

use of the core-defined register operands arr, ars and art, and
defines two new assembly instructions

A4 arr, ars, art

S4 arr, ars, art

3.2 Customized datapath
The computational part of an instruction is specified in a TIE
reference block, which contains a series of assignment
statements. The syntax of assignments is very similar to the
Verilog hardware description language. The variables used in a
reference block are either pre-defined, representing instruction
operand values, or locally declared temporaries. For the A4 and
S4 instructions defined in the previous section, their reference
descriptions are

reference A4 {

 assign arr = {

ars[31:24] + art[31:24],

 ars[23:16] + art[23:16],

 ars[15:8] + art[15:8],

 ars[7:0] + art[7:0]}

}

reference S4 {

 assign arr = {

ars[31:24] - art[31:24],

 ars[23:16] - art[23:16],

 ars[15:8] - art[15:8],

 ars[7:0] - art[7:0]}

}
Even though the reference descriptions for the instructions are
simple and direct, they may not yield the best hardware
implementation, as in this example, where the logic for addition
and subtraction should ideally be shared by the two instructions.
To allow the specification of such logic sharing, TIE offers an
alternative semantic statement that allows computations of
multiple instructions to be specified in a single description block.
For example, the semantics of A4 and S4 can also be described
as:

semantic addsub {A4, S4} {
 assign arr = {

 ars[31:24]+(S4?~art[31:24],art[31:24])+S4,

 ars[23:16]+(S4?~art[23:16],art[23:16])+S4,

 ars[15:8]+(S4?~art[15:8],art[15:8])+S4,

 ars[7:0]+(S4?~art[7:0],art[7:0])+S4}

}
While the semantic statements allow more efficient hardware
implementation, the reference statements are much simpler to
write, more suitable for inclusion in documentation, and better for
efficient simulation code generation. For these reasons, the TIE
language allows the instruction semantics to be specified using
either or both constructs. Typically, reference semantics are
written first, and after the appropriateness of the instruction
definition is verified, the implementation semantics are then
coded.

3.3 Multi-cycle instructions
To keep up with the speed of the Xtensa core processor that is
pipelined to run at high clock rate, instructions with complex
computations require multiple clock cycles to complete. Writing
and verifying multi-cycle implementations with efficient interlock

185

and data-forwarding logic is a challenging task for designers
unfamiliar with the base processor’s pipeline. TIE language
provides a simple schedule construct to capture the multi-cycle
requirement and relies on TIE compiler to derive the
implementation automatically. For example, a MAC instruction
that performs the following operation

acc = acc + a * b;
typically requires at least two cycles in an efficiently pipelined
implementation. In order to achieve one MAC operation per cycle
throughput, it needs to use a and b at the beginning of the first
cycle, use acc at the beginning of the second cycle and produce a
new acc at the end of the second cycle. This instruction timing
can be easily specified in TIE as:

schedule MAC_SCHED {MAC} {

 use a 1; use b 1; use acc 2; def acc 2;

}
The rest of the implementation, including efficient insertion of
pipeline registers, def-use interlock hardware, bypassing of results
and generation of good code schedules are all handled by the TIE
compiler.

3.4 Adding states and register files
Adding new state registers and register files can dramatically
reduce the pressure on the core register file and increase the
amount of data an instruction can send to and receive from the
computational logic. For example, one could add state for the
accumulator used by the MAC instruction. Without using the
accumulator state, the MAC instruction would either take up three
read ports and one write port of the register file in every clock
cycle, or would have to take three cycles to finish the equivalent
operations should the register file only have two read ports.
TIE states are extensions to the software-visible programming
model. They allow instructions to have many more sources and
destinations than are provided by the read and write ports of the
core register files. They can be seen as analogous to the processor
status registers or to states in finite state machines. They can also
be used as dedicated registers holding values for some temporary
variables during the program execution. Multiple temporary
variables can be mapped to the same register if their live ranges
are disjoint. When an application needs a large number of such
sharable TIE states, it becomes more convenient to group the state
registers into a register file and rely on the C compiler to assign
variables to register entries. We discuss more about compiler
support for TIE register files in section 4.
Describing instructions using a TIE state is straightforward. It
involves declaring the state, specifying, in an instruction class,
how the state is to be used, and describing the computational
logic. The following TIE example completely describes a MAC
instruction:

state acc 40 /* a 40-bit accumulator */

opcode MAC op2=0 CUST0

iclass RS{MAC}{in ars, in art}{inout acc}

reference MAC {

 assign acc = ars * art + acc;

}
Using register files involves one more step of describing register
operands. For example we may wish to add a 24-bit register file
for an application involving heavy processing of 24-bit graphics,
using the following TIE statements:

regfile GR 24 16 /* 24-bit 16-entry */

operand gr r {GR[r]}

operand gs s {GR[s]}

operand gt t {GR[t]}
The three register operands use pre-defined instruction fields r, s
and t as indices to access the register file contents. With this
declaration, an instruction that averages two RGB pixel values can
be simply described by the following:

iclass C {AVE} {out gr, in gs, in gt}

reference AVE {

 wire [8:0] r = gs[23:16]+gt[23:16];

 wire [8:0] g = gs[15:8]+gt[15:8];

 wire [8:0] b = gs[7:0]+gt[7:0];

 assign gr = {r[8:1],g[8:1],b[8:1]};

}
Note that the TIE language provides mechanism for creation of
invisible state, that is, state not explicitly declared and directly
accessible by the programmer. This dramatically reduces the
opportunity for state-dependent errors and helps guarantee
correctness and consistency of the processor in all of its
implementations.

4. SOFTWARE SUPPORT
The Xtensa software system provides support for each
configuration as seamlessly as software developed for traditional,
non-configurable, systems. In many ways, it provides better
support. In a traditional processor software developers are often
forced to adapt their algorithms to constraints imposed by general-
purpose programming languages targeted for general-purpose
hardware. In contrast, configurable processor users can design
their hardware and software development system together to better
match the underlying algorithm. The key requirement for seamless
support is completeness. When a user adds a custom TIE
instruction, the Xtensa C/C++ compiler, assembler, simulator,
debugger, operating systems and application libraries are all
automatically modified to support the resulting architecture.
The Xtensa software system supports configurability through
appropriate features in the TIE and the generation of dll's
(dynamically linked libraries) and Xtensa target code from the
TIE description. When a new instruction is added, TIE compiler
generates dll's that describe the TIE instructions, typically in 30-
60 seconds for large extensions. This speed is essential to support
rapid instruction set architecture tuning and experimentation.
Every TIE instruction is directly accessible in C or C++ via an
intrinsic function. In addition, the TIE language allows users to
define new C datatypes that are mapped to TIE register files along
with instruction sequences to load and store these datatypes from
and to memory. The C/C++ programmer can use these types as if
they were built-in data-types, declaring scalar variables, arrays or
structures of them. Data operations are described via intrinsics,
but register allocation, instruction sequences for loading and
storing new datatypes, addressing arithmetic and control flow
generation are all handled automatically just as native datatypes
are. The generated dll’s contain information about the side effects
and pipelining of all TIE instructions, enabling the C/C++
compiler to schedule these instructions correctly and efficiently.
Programming with custom data-types is generally simpler than
with pure C since algorithms directly map into appropriate
operations.

186

The TIE compiler also generates operating system context switch
code using the load and store instruction sequences for new
datatypes, mentioned above, further automating software platform
delivery. Commercial operating systems, such as Wind River’s
VxWorksTM, are delivered pre-built with hooks in their context
switching code to call the routines generated by the TIE compiler.
The architecture and operating system code generator also
supports lazy context switching. Register files and state can be
grouped into coprocessor classes, each protected by an access
flag. This way registers need to be saved and restored only when
multiple processes actively share a particular coprocessor.
The same TIE semantic descriptions used to generate hardware
are also used to generate the dll for the instruction set simulator.
For each TIE instruction, a semantic function is generated
containing callbacks into the simulator API for updating and
evaluating simulated state. The simulator is able to correctly
simulate an Xtensa program at close to one million instructions
per second regardless of whether the simulated program uses TIE
instructions or not. The TIE compiler also generates descriptions
of custom register files so that the debugger is able to handle
custom register files as cleanly as the base registers.
The compiler also supports vectorization, which allows ordinary
scalar C code to fully exploit SIMD (single instruction, multiple
data) or vector extensions, such as the TIE-based Vectra DSP
engine, a vector DSP coprocessor. The compiler is able to
automatically vectorize C code regardless of how many vector
elements are configured into each Vectra register. Tensilica also
provides hand-coded application libraries including FFTs, filters,
convolution decoders, and other routines. Those routines are also
automatically customized for each configuration of the Vectra
engine.

5. APPLICATION EXAMPLES
Two sets of representative application kernels – one for consumer
devices and one for telecommunications – help illustrate the
impact of TIE-based configurability on application performance.
The process of tuning these two suites of algorithms parallels the
typical use of extensible processors – each of the algorithms is
complex and a single processor is tuned for enhanced
performance across the whole mix of tasks. Moreover, the twenty
separate applications or test-cases in these two suites were ported,
analyzed and used to drive processor configuration over a period
of just eight weeks by one engineer, using Tensilica’s standard
tools.

5.1 Example 1: Consumer Multimedia
Video processing lies at the heart of consumer electronics – in
digital video camera, in digital television and in games. Common
tasks include color-space conversion, two-dimensional filters and
image compression. The industry-standard EEMBC Consumer
benchmark suite includes a representative sample of all these
applications [7]. A baseline configuration of Tensilica’s Xtensa
processor already includes many appropriate features for these
tasks, and even this baseline configuration at 200MHz delivers
performance more than eleven times of a basic RISC processor,
and on par with popular high-end 32-bit and 64-bit stand-alone
processors, where performance is measured as the geometric mean
of the relative number of iterations per second through each
algorithm compared to the reference processor (ST
Microelectronics ST20C2TM at 50MHz). However, when

instructions for image filtering and color-space conversion (RGB-
to-YIQ and RGB-to-CYMB) are added using TIE, the average
performance is increased by a further 17 times, resulting in a
processor with almost 200 times the performance of the reference
processor as shown in Figure 1. The base configuration was
optimized for 200MHz worst-case performance in 0.18µ CMOS
technology and utilized 16KB two-way set associative caches,
256KB local data RAM, 16-entry write buffer and 32-bit
multiplier for a total of 57,600 gates of logic. The optimized
results used software that exploited the additional 64,100 gates of
extensions implemented in TIE.

Figure 1: EEMBC Consumer Suite

0

50

100

150

200

Pe
rf

or
m

an
ce

 re
la

tiv
e

to
 S

T2
0C

2/
50

AMD ElanSC520/133 NEC V832/143
National Geode GX1/200 NEC VR5432/167
Xtensa Baseline/200 NEC VR5000/250
AMD K6-2E/400 Xtensa Optimized/200

5.2 Example 2: DSP Telecommunications
Telecommunications applications present a different set of
challenges. Here the data is often represented as 16-bit fixed-
point values, as densely compacted bit-streams or as redundantly
encoded channel data. Over the past ten years, standard DSP
processors have evolved to address many of filtering, error
correction and transform algorithms. The EEMBC “Telemark”
benchmark includes many of these common tasks. In this case,
the applications designer might start with a standard Xtensa
configuration. This gives baseline performance on the EEMBC
benchmarks that compares well with other leading 32-bit and 64-
bit RISC processors, where performance is measured as the
geometric mean of the relative number of iterations per second
through each algorithm compared to the reference processor (IDT
32334TM – MIPS32 architecture - at 100MHz). However, when
additional features are added, including the Vectra DSP co-
processor and a few additional instructions in TIE, and the code is
re-optimized to exploit the configuration, the performance jumps
another 37 times. The overall performance then exceeds that a
high-end Texas Instruments TMS320C6203TM VLIW DSP using
hand-optimized code, as shown in Figure 2. The base
configuration was again optimized for 200MHz worst case
performance in 0.18µ CMOS technology and used 16KB two-way

187

set associative caches, 16-entry write buffer, but not the Vectra
extensions. The optimized code utilizes Vectra and 18,000
additional gates of TIE for a total of 180,000 gates.

Figure 2: EEMBC Telecom Suite

0

20

40

60

80

100

Pe
rf

or
m

an
ce

 re
la

tiv
e

ID
T

32
33

4/
10

0

Analog Devices 21065L/60 NEC V832-143
Xtensa Baseline/200 NEC VR5432-167
NEC VR5000/250 AMD K6-2E/400
TI TMS320C6203 Opt/300 Xtensa Optimized/200

6. CONCLUSION
System-on-chip integration offers significant improvements in
system bandwidth, cost and power efficiency, compared to
systems build with discrete semiconductor building blocks. These
application-specific system ICs can take full advantage of the
efficiency benefits of application-specific processors, but
designers can generate new processors quickly and completely to
fit tight schedule requirements. Automatic generation of
optimized processor core hardware and of software tools sharply
reduces the time, cost and risk in development of new processor-
based platforms, and eases the integration of processors into
system-on-chip designs. New methodologies, tools, and processor
foundations are required for this shift to processors. These
methods enable significant new silicon platforms that combine the
flexibility of standard programming models and the efficiency of
application-tuned silicon.

Processor configurability has many dimensions — sizing of
memories, addition of specialized external interfaces, and
incorporation of closely coupled peripherals. The single most
important dimension of configurability is instruction set
extension. This paper has outlined the mechanisms for instruction
set extensibility, the Tensilica Instruction Extension (TIE)
description format and techniques for full configuration of
compilers, simulators, RTOS and RTL implementation. The
performance impact is significant, often averaging more than ten-
fold that of current implementations of traditional, fixed-
instruction set, general-purpose processors.

7. ACKNOWLEDGEMENT
The authors wish to thank the entire technical staff of Tensilica,
whose efforts underlie the Xtensa Processor Generator, the
foundation of this work. Special recognition is due to Michael
Carchia, who did all the EEMBC benchmarking, and to Kim
Alfaro and Pavlos Konas who reviewed the manuscript.

8. REFERENCES
[1] N. Zhang and R. W. Brodersen, "Architectural Evaluation of

Flexible Digital Signal Processing for Wireless Receivers,"
Proc. Asilomar Conf., Pacific Grove, CA, October 2000

[2] R.G. Bushroe et al., “CHDS: A Foundation for Timing-
Driven Physical Design into the 21st Century,”
SEMATECH, Inc.

[3] R. Gonzalez, “Configurable and Extensible Processors
Change System Design”. Hot Chips 11, 1999.
ftp://www.hotchips.org/pub/hotc7to11cd/hc99/hc11_pdf/hc9
9.s4.3.Gonzalez.pdf

[4] G. Hadjiyiannis, S. Hanono, and S. Devadas. “ISDL: An
instruction set description language for retargetability”.
Design Automation Conference, 1997

[5] V. Zivojnovic et al. “LISA - machine description language
and generic machine model for HW/SW co-design”. In IEEE
Workshop on VLSI Signal Processing, 1996.

[6] A. Fauth, J. Van Praet, and M. Freericks. “Describing
instructions set processors using nML”. In Proc. European
Design and Test Conf., pages 503-507, Paris (France), Mar.
1995.

[7] http://www.emmbc.org

188

