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ABSTRACT 
New application-focused system-on-chip platforms motivate new 
application-specific processors.  Configurable and extensible 
processor architectures offer the efficiency of tuned logic 
solutions with the flexibility of standard high-level programming 
methodology.  Automated extension of processor function units 
and the associated software environment – compilers, debuggers, 
simulators and real-time operating systems – satisfies these needs.  
At the same time, designing at the level of software and 
instruction set architecture significantly shortens the design cycle 
and reduces verification effort and risk. This paper describes the 
key dimensions of extensibility within the processor architecture, 
the instruction set extension description language and the means 
of automatically extending the software environment from that 
description.  It also describes two groups of benchmarks, 
EEMBC’s Consumer and Telecommunications suites, that show 
20 to 40 times acceleration of a broad set of algorithms through 
application-specific instruction set extension, relative to high 
performance RISC processors. 

1. WHY CONFIGURE PROCESSORS? 
Two major shifts – one technical, one economic – are changing 
the design of electronic systems.  First, continuing growth in 
silicon chip capability is rapidly reducing the number of chips in a 
typical system, and magnifying the size, performance and power 
benefits of system-on-chip integration. Second, many of the 
fastest-growing electronics products demand ever-better cost, 
bandwidth, battery life, and software functionality. These systems 
– network routers, MP3 players, cell-phones, home gateways, 
PDAs, and many others – require both full programmability (to 
manage complexity and rapidly evolving requirements) and high 
silicon efficiency  (for superior application performance per watt, 
per dollar and per mm2). Application-specific processor cores 
promise such a combination of full software flexibility with high 
efficiency 
The demand for application-specific processors creates a paradox 
for modern system design: how do architects develop new 

processors that combine the key benefits of generic 
programmable chips – longevity, development costs amortized 
over large volume, adaptability to changing market requirements 
– without taking too much development time or expense. If the 
cost of fashioning new optimized processors could be radically 
reduced, then a much broader array of highly refined processor 
cores could be used in system-on-chip designs.   
Tensilica enables rapid design of highly efficient processor cores 
by providing a base architecture, a lean core implementation, and 
an automated method to seamlessly extend the processor 
hardware and software to fit each system’s application 
requirements. Processors extended by this methodology close the 
performance gap between high-overhead general-purpose 
programmable processors and efficient, specialized hardware-
only solutions based on hardwired-datapath-plus-state-machine 
logic functions [1]. This methodology also closes the design gap 
between the rapid, exponential growth of silicon capacity and the 
slower growth in designer productivity [2].  This paper outlines 
the capabilities of Tensilica’s Xtensa processor generator [3], 
including the Tensilica Instruction Extension (TIE) methodology 
and demonstrates a resolution to the paradox. 

2. WHAT’S THE RIGHT 
ARCHITECTURE? 
But what is the right new architecture for extended processors?  
What instructions should we add?  There is no universal 
extension, or even one for each application class. System 
designers may already know the answer for their own problem 
area. Good candidate instructions can be found in the datapaths of 
dedicated hardware solutions sometimes added outside the 
processor to enhance application performance. By moving these 
datapaths into the processor, the system architect can discard the 
external control logic: the finite state machines and micro-
sequencers. The processor and its software can provide this 
sequencing much more flexibly.  Moreover, removing the 
function-specific control logic also eliminates most of the 
verification infrastructure necessary to test that logic and 
guarantees flexibility to accommodate new algorithms using the 
same datapath functions.  
Moving the application-specific datapaths into the processor 
provides several other advantages.  Fast instruction set extension 
and performance testing encourages, in turn, rapid prototype 
validation and experimentation.  This allows the system designer 
to home in quickly on the best design for the target application 
set.  The datapath is fully accessible from C/C++ code through 
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the compiler using extended intrinsics and data-types.  Storage 
elements (register files and special state registers) and pipeline 
flip-flops are generated by the TIE compiler in response to a 
high-level specification, and need not be created manually.  
Storage elements can be configured in width and number to adapt 
to the data precision and bandwidth requirements of the 
algorithm.  The paradigm also simplifies the use of data memory, 
since the processor can simply share a unified data memory 
across many different tasks. This avoids the typical duplication of 
the assorted RAM structures, address generators, access ports and 
external interfaces found in designs that attempt to combine a 
range of specialized execution engines.  Xtensa's RAM structures 
are configurable in type, depth and width beyond what the 
processor core requires, so as to support the width required by the 
added datapaths.  So, this approach design time also reduces 
system cost through hardware sharing. 

3. EXTENSION DESCRIPTION METHOD 
To facilitate the new system design paradigm described in the 
previous section, Tensilica has introduced the Tensilica 
Instruction Extension (TIE) language for system designers to 
formally specify extensions to the Xtensa core processor.  Like 
most previous machine description languages [4, 5, 6], TIE is an 
Instruction Set Architecture (ISA) description language.  It relies 
on a tool, the TIE compiler, to generate an efficient hardware 
implementation and required additions to a suite of software tools, 
including the compiler, instruction-set simulator and debugger.  
TIE is not intended to be a complete processor description 
language.  Instead, the TIE language provides designers simple 
ways to describe a broad variety of computational instructions, yet 
allows the TIE compiler to generate efficient hardware 
implementation for the instructions as an integral part of the 
processor.  The language is simple enough for a wide range of 
designers to master, yet general enough to permit efficient 
description of complex instruction sets.  As a result, the 
implementation efficiency matches that of a highly optimized 
processor core.  In the rest of this section we briefly describe the 
capabilities of TIE language.   

3.1 Instruction format and encoding 
Instruction format and encoding can be specified through a 
combination of TIE field, opcode, operand, and iclass statements.  
A field statement simply gives a name to a group of bits in the 
instruction word.  An opcode statement assigns instruction fields 
with values.   An operand statement specifies how an instruction 
operand is encoded in an instruction field.  An iclass statement 
defines the assembly format for an instruction.  Since a TIE 
description defines extension instructions to the core Xtensa 
instruction set, there is a large set of pre-defined instructions 
fields, immediate fields and operands that can be used directly in 
the description.  The following example completely defines the 
formats of two instructions, A4 and S4, which take two 32-bit 
input operands from the core register file, perform four 8-bit 
additions and subtractions, and store the result back to the core 
register file: 

opcode A4 op2=0 CUST0 

opcode S4 op2=1 CUST0 

iclass RR{A4,S4}{out arr, in ars, in art} 
The first two lines define the opcodes for A4 and S4 as sub-
opcodes of a previously defined opcode CUST0 with the addition 
field op2 equal to 0 and 1 respectively.  The second line makes 

use of the core-defined register operands arr, ars and art, and 
defines two new assembly instructions 

A4 arr, ars, art 

S4 arr, ars, art 

3.2 Customized datapath 
The computational part of an instruction is specified in a TIE 
reference block, which contains a series of assignment 
statements.  The syntax of assignments is very similar to the 
Verilog hardware description language.  The variables used in a 
reference block are either pre-defined, representing instruction 
operand values, or locally declared temporaries.  For the A4 and 
S4 instructions defined in the previous section, their reference 
descriptions are 

reference A4 { 

    assign arr = { 

ars[31:24] + art[31:24], 

 ars[23:16] + art[23:16], 

 ars[15:8] + art[15:8], 

 ars[7:0] + art[7:0]} 

} 

reference S4 { 

    assign arr = { 

ars[31:24] - art[31:24], 

 ars[23:16] - art[23:16], 

 ars[15:8] - art[15:8], 

 ars[7:0] - art[7:0]} 

} 
Even though the reference descriptions for the instructions are 
simple and direct, they may not yield the best hardware 
implementation, as in this example, where the logic for addition 
and subtraction should ideally be shared by the two instructions.  
To allow the specification of such logic sharing, TIE offers an 
alternative semantic statement that allows computations of 
multiple instructions to be specified in a single description block.  
For example, the semantics of A4 and S4 can also be described 
as: 

semantic addsub {A4, S4} { 
  assign arr = { 

    ars[31:24]+(S4?~art[31:24],art[31:24])+S4, 

    ars[23:16]+(S4?~art[23:16],art[23:16])+S4, 

    ars[15:8]+(S4?~art[15:8],art[15:8])+S4, 

    ars[7:0]+(S4?~art[7:0],art[7:0])+S4} 

} 
While the semantic statements allow more efficient hardware 
implementation, the reference statements are much simpler to 
write, more suitable for inclusion in documentation, and better for 
efficient simulation code generation.  For these reasons, the TIE 
language allows the instruction semantics to be specified using 
either or both constructs.  Typically, reference semantics are 
written first, and after the appropriateness of the instruction 
definition is verified, the implementation semantics are then 
coded. 

3.3 Multi-cycle instructions 
To keep up with the speed of the Xtensa core processor that is 
pipelined to run at high clock rate, instructions with complex 
computations require multiple clock cycles to complete.  Writing 
and verifying multi-cycle implementations with efficient interlock 
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and data-forwarding logic is a challenging task for designers 
unfamiliar with the base processor’s pipeline.  TIE language 
provides a simple schedule construct to capture the multi-cycle 
requirement and relies on TIE compiler to derive the 
implementation automatically.  For example, a MAC instruction 
that performs the following operation 

acc = acc + a * b; 
typically requires at least two cycles in an efficiently pipelined 
implementation. In order to achieve one MAC operation per cycle 
throughput, it needs to use a and b at the beginning of the first 
cycle, use acc at the beginning of the second cycle and produce a 
new acc at the end of the second cycle.  This instruction timing 
can be easily specified in TIE as: 

schedule MAC_SCHED {MAC} { 

  use a 1; use b 1; use acc 2; def acc 2; 

} 
The rest of the implementation, including efficient insertion of 
pipeline registers, def-use interlock hardware, bypassing of results 
and generation of good code schedules are all handled by the TIE 
compiler. 

3.4 Adding states and register files 
Adding new state registers and register files can dramatically 
reduce the pressure on the core register file and increase the 
amount of data an instruction can send to and receive from the 
computational logic.  For example, one could add state for the 
accumulator used by the MAC instruction.  Without using the 
accumulator state, the MAC instruction would either take up three 
read ports and one write port of the register file in every clock 
cycle, or would have to take three cycles to finish the equivalent 
operations should the register file only have two read ports.  
TIE states are extensions to the software-visible programming 
model.  They allow instructions to have many more sources and 
destinations than are provided by the read and write ports of the 
core register files.  They can be seen as analogous to the processor 
status registers or to states in finite state machines.  They can also 
be used as dedicated registers holding values for some temporary 
variables during the program execution.  Multiple temporary 
variables can be mapped to the same register if their live ranges 
are disjoint.  When an application needs a large number of such 
sharable TIE states, it becomes more convenient to group the state 
registers into a register file and rely on the C compiler to assign 
variables to register entries.  We discuss more about compiler 
support for TIE register files in section 4. 
Describing instructions using a TIE state is straightforward.  It 
involves declaring the state, specifying, in an instruction class, 
how the state is to be used, and describing the computational 
logic.  The following TIE example completely describes a MAC 
instruction: 

state acc 40 /* a 40-bit accumulator */ 

opcode MAC op2=0 CUST0 

iclass RS{MAC}{in ars, in art}{inout acc} 

reference MAC { 

  assign acc = ars * art + acc; 

} 
Using register files involves one more step of describing register 
operands.  For example we may wish to add a 24-bit register file 
for an application involving heavy processing of 24-bit graphics, 
using the following TIE statements: 

regfile GR 24 16 /* 24-bit 16-entry */ 

operand gr r {GR[r]} 

operand gs s {GR[s]} 

operand gt t {GR[t]} 
The three register operands use pre-defined instruction fields r, s 
and t as indices to access the register file contents.  With this 
declaration, an instruction that averages two RGB pixel values can 
be simply described by the following: 

iclass C {AVE} {out gr, in gs, in gt} 

reference AVE { 

  wire [8:0] r = gs[23:16]+gt[23:16]; 

  wire [8:0] g = gs[15:8]+gt[15:8]; 

  wire [8:0] b = gs[7:0]+gt[7:0]; 

  assign gr = {r[8:1],g[8:1],b[8:1]}; 

} 
Note that the TIE language provides mechanism for creation of 
invisible state, that is, state not explicitly declared and directly 
accessible by the programmer.  This dramatically reduces the 
opportunity for state-dependent errors and helps guarantee 
correctness and consistency of the processor in all of its 
implementations. 

4. SOFTWARE SUPPORT  
The Xtensa software system provides support for each 
configuration as seamlessly as software developed for traditional, 
non-configurable, systems. In many ways, it provides better 
support.  In a traditional processor software developers are often 
forced to adapt their algorithms to constraints imposed by general-
purpose programming languages targeted for general-purpose 
hardware. In contrast, configurable processor users can design 
their hardware and software development system together to better 
match the underlying algorithm. The key requirement for seamless 
support is completeness.  When a user adds a custom TIE 
instruction, the Xtensa C/C++ compiler, assembler, simulator, 
debugger, operating systems and application libraries are all 
automatically modified to support the resulting architecture. 
The Xtensa software system supports configurability through 
appropriate features in the TIE and the generation of dll's 
(dynamically linked libraries) and Xtensa target code from the 
TIE description.  When a new instruction is added, TIE compiler 
generates dll's that describe the TIE instructions, typically in 30-
60 seconds for large extensions. This speed is essential to support 
rapid instruction set architecture tuning and experimentation. 
Every TIE instruction is directly accessible in C or C++ via an 
intrinsic function.  In addition, the TIE language allows users to 
define new C datatypes that are mapped to TIE register files along 
with instruction sequences to load and store these datatypes from 
and to memory.   The C/C++ programmer can use these types as if 
they were built-in data-types, declaring scalar variables, arrays or 
structures of them.  Data operations are described via intrinsics, 
but register allocation, instruction sequences for loading and 
storing new datatypes, addressing arithmetic and control flow 
generation are all handled automatically just as native datatypes 
are.  The generated dll’s contain information about the side effects 
and pipelining of all TIE instructions, enabling the C/C++ 
compiler to schedule these instructions correctly and efficiently.  
Programming with custom data-types is generally simpler than 
with pure C since algorithms directly map into appropriate 
operations.  
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The TIE compiler also generates operating system context switch 
code using the load and store instruction sequences for new 
datatypes, mentioned above, further automating software platform 
delivery.  Commercial operating systems, such as Wind River’s 
VxWorksTM, are delivered pre-built with hooks in their context 
switching code to call the routines generated by the TIE compiler.  
The architecture and operating system code generator also 
supports lazy context switching.  Register files and state can be 
grouped into coprocessor classes, each protected by an access 
flag.  This way registers need to be saved and restored only when 
multiple processes actively share a particular coprocessor. 
The same TIE semantic descriptions used to generate hardware 
are also used to generate the dll for the instruction set simulator.  
For each TIE instruction, a semantic function is generated 
containing callbacks into the simulator API for updating and 
evaluating simulated state.  The simulator is able to correctly 
simulate an Xtensa program at close to one million instructions 
per second regardless of whether the simulated program uses TIE 
instructions or not.  The TIE compiler also generates descriptions 
of custom register files so that the debugger is able to handle 
custom register files as cleanly as the base registers. 
The compiler also supports vectorization, which allows ordinary 
scalar C code to fully exploit SIMD (single instruction, multiple 
data) or vector extensions, such as the TIE-based Vectra DSP 
engine, a vector DSP coprocessor.  The compiler is able to 
automatically vectorize C code regardless of how many vector 
elements are configured into each Vectra register.  Tensilica also 
provides hand-coded application libraries including FFTs, filters, 
convolution decoders, and other routines.  Those routines are also 
automatically customized for each configuration of the Vectra 
engine. 

5. APPLICATION EXAMPLES 
Two sets of representative application kernels – one for consumer 
devices and one for telecommunications – help illustrate the 
impact of TIE-based configurability on application performance.  
The process of tuning these two suites of algorithms parallels the 
typical use of extensible processors – each of the algorithms is 
complex and a single processor is tuned for enhanced 
performance across the whole mix of tasks.  Moreover, the twenty 
separate applications or test-cases in these two suites were ported, 
analyzed and used to drive processor configuration over a period 
of just eight weeks by one engineer, using Tensilica’s standard 
tools. 

5.1 Example 1: Consumer Multimedia 
Video processing lies at the heart of consumer electronics – in 
digital video camera, in digital television and in games.  Common 
tasks include color-space conversion, two-dimensional filters and 
image compression.  The industry-standard EEMBC Consumer 
benchmark suite includes a representative sample of all these 
applications [7].  A baseline configuration of Tensilica’s Xtensa 
processor already includes many appropriate features for these 
tasks, and even this baseline configuration at 200MHz delivers 
performance more than eleven times of a basic RISC processor, 
and on par with popular high-end 32-bit and 64-bit stand-alone 
processors, where performance is measured as the geometric mean 
of the relative number of iterations per second through each 
algorithm compared to the reference processor (ST 
Microelectronics ST20C2TM at 50MHz).   However, when 

instructions for image filtering and color-space conversion (RGB-
to-YIQ and RGB-to-CYMB) are added using TIE, the average 
performance is increased by a further 17 times, resulting in a 
processor with almost 200 times the performance of the reference 
processor as shown in Figure 1.  The base configuration was 
optimized for 200MHz worst-case performance in 0.18µ CMOS 
technology and utilized 16KB two-way set associative caches, 
256KB local data RAM, 16-entry write buffer and 32-bit 
multiplier for a total of 57,600 gates of logic.  The optimized 
results used software that exploited the additional 64,100 gates of 
extensions implemented in TIE. 

Figure 1: EEMBC Consumer Suite
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5.2 Example 2: DSP Telecommunications 
Telecommunications applications present a different set of 
challenges.  Here the data is often represented as 16-bit fixed-
point values, as densely compacted bit-streams or as redundantly 
encoded channel data.  Over the past ten years, standard DSP 
processors have evolved to address many of filtering, error 
correction and transform algorithms.  The EEMBC “Telemark” 
benchmark includes many of these common tasks.  In this case, 
the applications designer might start with a standard Xtensa 
configuration. This gives baseline performance on the EEMBC 
benchmarks that compares well with other leading 32-bit and 64-
bit RISC processors, where performance is measured as the 
geometric mean of the relative number of iterations per second 
through each algorithm compared to the reference processor (IDT 
32334TM – MIPS32 architecture - at 100MHz).  However, when 
additional features are added, including the Vectra DSP co-
processor and a few additional instructions in TIE, and the code is 
re-optimized to exploit the configuration, the performance jumps 
another 37 times.  The overall performance then exceeds that a 
high-end Texas Instruments TMS320C6203TM VLIW DSP using 
hand-optimized code, as shown in Figure 2. The base 
configuration was again optimized for 200MHz worst case 
performance in 0.18µ CMOS technology and used 16KB two-way 
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set associative caches, 16-entry write buffer, but not the Vectra 
extensions. The optimized code utilizes Vectra and 18,000 
additional gates of TIE for a total of 180,000 gates. 

Figure 2: EEMBC Telecom Suite
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6. CONCLUSION 
System-on-chip integration offers significant improvements in 
system bandwidth, cost and power efficiency, compared to 
systems build with discrete semiconductor building blocks.  These 
application-specific system ICs can take full advantage of the 
efficiency benefits of application-specific processors, but 
designers can generate new processors quickly and completely to 
fit tight schedule requirements. Automatic generation of 
optimized processor core hardware and of software tools sharply 
reduces the time, cost and risk in development of new processor-
based platforms, and eases the integration of processors into 
system-on-chip designs. New methodologies, tools, and processor 
foundations are required for this shift to processors.  These 
methods enable significant new silicon platforms that combine the 
flexibility of standard programming models and the efficiency of 
application-tuned silicon. 

Processor configurability has many dimensions — sizing of 
memories, addition of specialized external interfaces, and 
incorporation of closely coupled peripherals. The single most 
important dimension of configurability is instruction set 
extension.  This paper has outlined the mechanisms for instruction 
set extensibility, the Tensilica Instruction Extension (TIE) 
description format and techniques for full configuration of 
compilers, simulators, RTOS and RTL implementation.  The 
performance impact is significant, often averaging more than ten-
fold that of current implementations of traditional, fixed-
instruction set, general-purpose processors. 

7. ACKNOWLEDGEMENT 
The authors wish to thank the entire technical staff of Tensilica, 
whose efforts underlie the Xtensa Processor Generator, the 
foundation of this work.  Special recognition is due to Michael 
Carchia, who did all the EEMBC benchmarking, and to Kim 
Alfaro and Pavlos Konas who reviewed the manuscript. 

8. REFERENCES 
[1] N. Zhang and R. W. Brodersen, "Architectural Evaluation of 

Flexible Digital Signal Processing for Wireless Receivers," 
Proc. Asilomar Conf., Pacific Grove, CA, October 2000 

[2] R.G. Bushroe et al., “CHDS: A Foundation for Timing-
Driven Physical Design into the 21st Century,” 
SEMATECH, Inc. 

[3] R. Gonzalez, “Configurable and Extensible Processors 
Change System Design”. Hot Chips 11, 1999. 
ftp://www.hotchips.org/pub/hotc7to11cd/hc99/hc11_pdf/hc9
9.s4.3.Gonzalez.pdf 

[4] G. Hadjiyiannis, S. Hanono, and S. Devadas. “ISDL: An 
instruction set description language for retargetability”. 
Design Automation Conference, 1997 

[5] V. Zivojnovic et al. “LISA - machine description language 
and generic machine model for HW/SW co-design”. In IEEE 
Workshop on VLSI Signal Processing, 1996. 

[6] A. Fauth, J. Van Praet, and M. Freericks. “Describing 
instructions set processors using nML”. In Proc. European 
Design and Test Conf., pages 503-507, Paris (France), Mar. 
1995. 

[7] http://www.emmbc.org

 

188


