
Publicly Detectable Techniques
for the Protection of Virtual Components

Gang Qu
Electrical & Computer Engineering Department and Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742 USA

Abstract

Highlighted with the newly released intellectual property (IP) pro-
tection white paper by VSI Alliance, the protection of virtual com-
ponents (VCs) has received a large amount of attention recently.
Digital signature is one of the most promising solutions among
the known protection mechanisms. However, the trade-off between
hard-to-attack and easy-to-detect and the lack of efficient detection
schemes are the major obstacles for digital signatures to thrive. In
this paper, we propose a new watermarking method which (i) al-
lows the watermark to be public detected without forensic experts,
(ii) gives little advantage to attackers for forgery, and (iii) does
not lose the strength of protection provided by other watermark-
ing techniques. The basic idea is to make part of the watermark
public. We explain the concept of this public-private watermark
and discuss the generation and embedding of such marks. We use
popular VLSI CAD problems, namely technology mapping, parti-
tioning, graph coloring, FPGA design, and Boolean satisfiability, to
demonstrate its easy detectability, high credibility, low design over-
head, and robustness. Finally, this technique is compatible with all
the known watermarking and fingerprinting techniques.

1 Introduction

The advances in VLSI semiconductor technology and system-on-
a-chip design paradigm, coupled with the shrinking time-to-market
window, have changed the traditional system design methodology.
Design reuse and intellectual property (IP) based design become
more and more important. Unlike design from scratch, the real
challenge nowadays for system designers is to find IPs and make
necessary modification, as little as possible, to meet customer’s re-
quirements in a timely fashion.

The Virtual Socket Interface Alliance (VSIA), an international
organization that includes representatives from system houses, semi-
conductor vendors, electronic design automation companies, and
IP providers, specifies open standards to facilitate the mix and match
of virtual components from multiple sources in order to accelerate
system-chip development. According to VSIA, virtual component
(VC) is a block that meets the virtual socket interface specification
and is used as a component in the design environment[13]. Ven-
dors offer VCs in three forms: soft VC (in the form of behavioral
description), firm VC (in the form of structural description), and
hard VC (in the form of physical description).

VC trading plays a central role in the design-for-reuse method-
ology and the potential of infringement is growing fast. However,
the global awareness of VC protection remains low. The goals of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00

VC protection are to enable IP providers to protect their VCs against
unauthorized use, to detect and to trace the use of VCs. Of the
early efforts on VC protection, only detection mechanisms enable
designers to do the so-called self-protection. Other approaches re-
quire either time, or money, or both1 . Using the detection meth-
ods, designers embed digital signatures or other traceable marks
into VCs during the design and implementation phases, such that
unauthorized usage can be detected and the source of theft can be
traced[1, 2, 5, 7, 9, 10].

1.1 Related Work and Motivation

There have been various proposals for the identification of VC’s
ownership. In tagging and tracking technique, labels are attached to
VCs in the manufacturing phase for the purpose of tracing. Exam-
ples include the “physical tagging standard” from VSIA and silicon
fingerprinting technology from SiidTech Inc.(www.siidtech.com/).
Digital watermarking techniques enable VC owners to show their
authorship by demonstrating their hidden digital signatures[2, 5, 7]
and fingerprinting makes it possible to trace each individual VC by
creating a unique copy for each user[1, 9].

Kahng et al.[5] first explain how to embed digitalized signature
into VCs as additional design constraints and demonstrated this ap-
proach in the context of physical design. These extra constraints
are selected in such a way that the VC’s value is maintained. The
indistinguishability of such constraints from the original design
constraints provides the watermark’s robustness. Later on, similar
ideas have been applied on behavioral level, logic synthesis, FPGA
design, and standard cell place and route algorithms[4, 7, 9, 10].
Meanwhile, Charbon[2] proposes the hierarchical watermarking,
where signatures are created and hidden at multiple levels of hi-
erarchy to enhance the robustness. Lach et al.[9] utilize certain
special structures in FPGA design to embed IP buyer’s fingerprint.
Caldwell et al.[1] give a generic and efficient approach to create
fingerprinted IPs.

Clearly the success of digital signatures relies on the detectabil-
ity and traceability of the copyright marks. However, a general
copy detection process is equivalent to the problems of pattern
matching or subgraph isomorphism which are well-known NP-hard.
Up to date, three different approaches for copy detection have been
reported. Charbon and Torunoglu[3] discuss copy detection under
a design environment that involves IPs from multiply sources that
requires IP providers to register their IPs in a trusted agent. For sev-
eral instances (namely scheduling, graph coloring, and gate-level
layout), Kahng et al.[6] choose signatures selectively and develop
fast comparison schemes to detect such signatures. More recently,
Kirovski et al.[8] propose a forensic engineering technique to iden-
tify solutions generated by strategically different algorithms.

Efficient detection technique is an essential piece of the protec-
tion mechanism and is as important as watermarking techniques.
Comparing to watermarking and fingerprinting, we see the research

1According to the IP protection white paper released recently by VSIA, there are
three approaches to the problem of securing a VC: deterrent approach like patents,
copyrights, and trade secrets; protection via licensing agreements or encryption; detec-
tion mechanism such as physical tagging, digital watermarking and fingerprinting[14].

474

30.1

on copy detection lack both in breadth and in depth. Due to the
hardness of the detection problem in general, most of the existing
watermarking and fingerprinting literature focus on how to make
the marks more secure and leave copy detection as an open chal-
lenge problem[4, 7]. The trade-off is that, in most cases, the more
secure watermarks or fingerprints are, the more difficult to detect
them, even for the authors.

The lack of detection mechanisms may cause problems for both
IP providers and buyers who obtain IPs from other brokers and dis-
tributors. On one hand, if IP providers cannot detect their digital
signatures, such marks become useless and IP’s copyright is lost.
On the other hand, dishonest parties may illegally sell the repro-
duced IPs to innocent buyers at a much lower price, knowing that
the end users are unable to tell the real source of the IP. Things be-
come even worse in the latter scenario, since IP buyers usually do
not possess the knowledge that IP providers have for copy detection
or the required expertise for forensic engineering.

1.2 New Approach and Contributions

In this paper, we propose a new watermarking technique to solve
the copy detection problem. The core concept is to divide the wa-
termark into two parts: the public part which is visible to the pub-
lic, and the private part which is only visible for authorized peo-
ple. Both public watermark and private watermark are in the form
of addition design constraints. Their difference is that public wa-
termark is embedded in designated locations with known method
to guarantee public detectability, while private part are embedded
the same way as traditional constraint-based watermark. We use
cryptographic techniques for data integrity to deter any attempt of
removing or modifying the public watermark.

The separation of public watermark and private watermark pro-
vides the following advantages:

� It facilitates easy public copy detection. A relatively convinc-
ing authorship can be verified by end users without forensic
experts and in great extend deters illegal redistribution.

� IP providers can select private watermark as before to obtain
the desired level of credibility.

� There is little extra cost to trade for easy detectability. The
new technique is compatible with all the existing watermark-
ing/fingerprinting methods.

1.3 Motivational Example

Researchers in UCLA propose a watermarking technique to hide
signatures during logic synthesis where the marks are in the form
of a set of primary outputs which are not necessary to be primary in
the original design[7]. Constraints are introduced to enforce the se-
lected gates to be visible in the final technology mapping solution.
Suppose there are 100000 gates in a design out of which 10000
nodes are visible, and 1000 visible nodes are selected based on
designer’s secret key and the encryption scheme being used. The
authors argue that the possibility that others accidentally obtain ex-
actly the same solution is 10�1000 . The strength of this watermark
relies on the uniqueness of these 1000 nodes. Designer’s secrete
key is necessary for watermark detection.

Now we illustrate how public detectability can be achieved with
the same example using the same watermarking method.

1. select 160 gates, G1; G2; � � � ; G160, and make them public
(the selection of such gates will be discussed later);

2. hash a 4-letter design company symbol (32 bits in ASCII) by
one-way hash function such as MD5;

3. append the 128-bit hash result to the 32-bit company symbol
to make a 160-bit string: m1m2 � � �m160;

4. for each gate Gi, make it visible if mi = 1 and invisible
otherwise. Suppose that half of them (80 gates) are made
visible.

5. select 920 more gates other than the 160 public gates based
on designer’s secret key. Enforce these gates to be visible to
embed private watermark.

It is clear that the new scheme chooses 1000 (920+80) gates to
be visible, therefore it can achieve the same level of protection as
the previous one2 . Moreover, one can detect the (public) watermark
without knowing the designer’s secret key as follows:

1. check the visibility of gates G1; G2; � � � ; G160 in that order.
Let mi = 1 if Gi is visible, otherwise let mi = 0.

2. pick the first 32 bits from the 160-bit string m1m2 � � �m160.
This is the provider’s plain text message in ASCII;

3. hash the selected 32-bit and compare the hash result with
the remaining 128 bits. If they are the same, the authorship
is established. A mismatch indicates a sign of piracy and
further careful moves should be considered.

In the next section, we briefly discuss the IP-based design flow
with the public-private watermarking. Then in Section 3, we ex-
plain the selection, embedding, and detection of public-private wa-
termark. Besides the above logic synthesis example, we consider
several other well-studied problems in the context of VLSI: the
Boolean satisfiability (SAT), partitioning, FPGA layout, and graph
coloring. The proposed watermarking technique is validated and
experimental results are reported before we draw the conclusion.

2 IP-based Design Flow with the Public-Private
Watermark

Testing
IP

IP Reuse MethodologyIP Verific
ation IP Intergration

System Specification

Third-Party
IP Provider

IP Library

IP Core

IP Testing

System Implementation

IP Verification

IP WatermarkingIP Authorization

 or do further detection
 4.2 if not match, reject theIP

 authorization.
 4.1 if match, pass the IP

 remaining public part.
4. Compare hash result with
3. Hash the header.
2. Convert header to text.
1. Check public watermark.

 and search for other IPs.

1. Compose public watermark.

1.3 Hash the header.
1.2 Convert header to ASCII.

1.4 Append hash result to the

1.1 Select header in plain text.

 ASCII header.
2. Compose private watermark.
3. Convert both watermarks to
 constraints and public the
 public part.

Figure 1: IP-based design flow with the detection and embedding
of public-private watermarking.

2In fact, the new watermark is stronger since 80 gates are forced to be invisible.

475

Figure 1 depicts the global design flow based on IP reuse. With the
system specification, the designers will take the necessary IP blocks
from the IP library and the third-party IP providers3. IP verifica-
tion process is required for external IPs and IPs from third-party
IP providers. An IP authentication is performed during this phase
too as shown in the lower left text box in Figure 1. The purpose
of this is to avoid getting illegal IPs. Notice that the easy and pub-
lic detectability of the public watermark reduces the cost for this
authentication. Then designers can exploit the reuse methodology
to build the core with the public-private watermark embedded. Af-
ter IP testing is accomplished, this design can be added to the IP
library for later use and will have market value.

3 Public-Private Watermarking Technique

Watermarking and fingerprinting are indirect protection schemes
in that they provide a deterrent to infringers by offering the ability
to demonstrate ownership of a VC to its originator[14]. The most
popular watermarking and fingerprinting techniques are based on
the addition of a pseudo-random bitstream as design constraints[1,
4, 5, 7, 10]. Our approach is a direct extension of the same ideas.

3.1 Watermark Selection and Embedding

Our watermark consists of two parts: public and private, which are
selected separately. We first explain how to create two bit steams
based on public and private message, and then discuss how to en-
code them to watermarks as extra design constraints.

Selection of Private Watermark Message

The private watermark is the same as the traditional digital water-
mark discussed in early works[1, 4, 5, 7, 10]. A typical watermark
is a cryptographical strong pseudo-random bit stream created by
crypto systems using designer’s digital signature as the secret key.
Figure 2(a) shows the procedure of how to create such bit streams.
We hash the plain text message and get a 128-bit or higher hash
result, which is used next as the key for a stream cipher to make the
plain text message pseudo random.

ASCII encoding

one-way hash
 function

stream cipher

private message

 key

111010101000011...

(a) private watermark message

1101001110101...
header message body

ASCII encoding

one-way hash
 function

short public message

stream cipher

010011...

(b) public watermark message

 key

Figure 2: construction of public-private watermark messages.

Selection of Public Watermark Message

The public watermark message is composed of a header and a body.
We first pick a short plain text message containing design informa-
tion such as ownership, project title, and starting date. A good
example may be the 4- or 3-letter symbol for the design company.
The ASCII code of this short text is put as the header for the public

3We refer here IP library as both the internal IPs and external IPs in the public
domain where watermarks may not be imposed.

watermark. Then we use a one-way hash function to hash this mes-
sage. The hash result is put into the stream cipher with the plain
text message as key. The output from the stream cipher makes the
body of the public watermark message as shown in Figure 2(b).

Watermark Embedding

Once we have both watermark messages, we can use encoding
schemes to translate the binary strings to design constraints. De-
veloping such schemes needs to use the characteristics of a given
problem and we will discuss it in Section 4 for specific VLSI CAD
problems). To ensure the public detectability of the public water-
mark, we make the followings public: (i) the hash function being
used in the construction of public watermark, (ii) the watermarking
scheme we use to create the constraints, and (iii) the place where
we embed these constraints. We keep the secret key out of the reach
of public to make the private watermark secure4.

As illustrated in Figure 2, we can use the same cryptographic
tools to generate both watermark messages and convert them to
constraints using the same watermarking scheme. Therefore, com-
paring to the traditional watermark, there is no extra computational
cost or a second pass to embed the public-private watermark. We
gain the public detectability at the expense of releasing part of the
watermark, which we call public watermark.

Finally, notice that we have not used any special properties of
the watermarking scheme, therefore the idea of public-private wa-
termark is compatible with all existing watermarking techniques.

3.2 Watermark Detection and Security

We limit our discussion to the detection of public watermark, the
private part can be detected by the existing copy detection tech-
niques with the secret key[3, 6, 8].

Since we have made (i) the hash function, (ii) the watermark
scheme, and (iii) the place that hosts the (public) watermark public,
one can check for the existence of constraints in the part of the
design that carries the public watermark to reveal the entire public
watermark message. Next the message header is taken and hashed,
if the hash result coincides with the the message body, the public
watermark is detected and the authorship is established.

The public watermark can only provide a limited level of con-
fidence on the authorship, further evidence is possible when se-
cret key is available or forensic tools are used to detect the private
watermark. The combined public-private watermark can provide
the same level of credibility as a traditional constraint-based water-
mark.

The private watermark is as secure as before, however the pub-
lic part is visible to everyone and may be vulnerable to attacks. In
most known constraint-based watermarking techniques, attackers
will have a great amount of advantage if they can detect the water-
mark. That is not the case in our scheme due to the fact that the
message body in the public watermark is the hash of the header.
We add security to public watermark by data integrity.

Suppose an adversary follows the same steps and get our public
watermark. It is relatively easy for him to remove or modify this
mark. It is also trivial for him to compute the hash based on the
modified watermark. However, the following two fundmental facts
make this attack hard and unrealistic5:

� The faked hash will be different from the original in half of
the bits statistically. We can make message body long such
that this change will be significant.

4The security of the cryptographic function depends on the secret key, not on which
hash function and stream cipher we use to encrypt the message. Also it is the digital
signature, which is independent of the watermarking schemes, that carries the proof of
authorship.

5By unrealistic, we mean that the degradation of performance is so large that one
will not accept it and the design loses its value.

476

� Design is an integrated process, it is unlikely one can make
one change without altering the behavior of the design. At
least some level of local modification is expected.

The message body in public watermark is pseudo random, but
the header is not. We make the header relatively short to keep the
majority of the public watermark stream “pseudo random”. The
selection and embedding of private watermark are almost indepen-
dent of the public watermark6 . So attackers gain little on how to
break the private watermark7 .

4 Validation and Experimental Results

We have explained how to create the public-private watermark which
is a pseudo-random bit stream (except the header of public water-
mark). In this section, we conduct several case studies to validate
this approach. More specifically, we discuss where to embed the
(public) watermark, how to detect it, what is the impact to system’s
performance, and how much damage can an attacker do to the (pub-
lic) watermark.

4.1 Partitioning

Partitioning, which enables the powerful divide and conquer ap-
proach, plays a key role in VLSI design. Given a hypergraph G =
(V;E) on a set of vertices V and a set of hyperedges E, the par-
titioning problem is to partition V into disjoint nonempty subsets.
The constraints and objective functions for the partitioning vary
with the level at which partitioning is performed and different de-
sign styles being used. Typical objective functions include mini-
mize interconnections and delay under constraints such as number
of nodes in each partition (balance constraint), area of each par-
tition and number of partitions. Two most popular classes of al-
gorithms for this NP-hard problem are group migration algorithms
(e.g., Kernighan-Lin and Fiduccia-Mattheyses) and simulated an-
nealing and evolution based algorithms[12].

A k-bit public watermark is hidden in a graph partitioning so-
lution as follows: we select k pairs of vertices and order them ran-
domly; for each pair, we enforce them to be in different subsets to
embed a bit 1 and enforce them to be in the same partition to embed
a bit 0 by adding proper constraints8.

Figure 3(a) shows two partitioning solutions: the one separated
by the dashed line with arrow heads has letter ‘p’ as its public wa-
termark, and letter ‘O’ is hidden in the other solution. To detect
these watermark, one only needs to know the above public water-
marking scheme and the 8 pairs of vertices holding the watermark
as we marked from 0 to 7 in Figure 3(b). The way these 16 ver-
tices are partitioned shows an 8-bit public watermark9. For exam-
ple, the two vertices in pairs 0,1,2,3, and 7 are on the same side of
the dashed line with arrow heads, which implies 0’s at the corre-
sponding bit positions. The message has bit 1 at the other positions
because the other pairs are separated by the line. Consequently,
assuming bit 0 is the least significant bit, we get an 8-bit mes-
sage from this solution: “0111000”, which is ‘p’ in ASCII code.

6We say almost independent because the selection and embedding of private wa-
termark are restricted by the existence of public watermark. For example, the addition
of private watermark should not change the public watermark.

7What the attacker gains are: the place that public watermark sits, which is small
comparing to the entire design place; and the (public) watermarking scheme being
used which may not be the same as the scheme that private watermark is embedded.

8The type of constraints depends on the objective function of the partition. For
example, if we want to minimize the interconnection cost in a weighted graph, two
vertices will go to different partitions if we change the weight of the edge between
them to�1 (when they are connected) or add an extra edge of weight�1; similarly,
they will stay together if the edge between them has a1 weight.

9Due to the small size of the example, we assume that we have only the public
watermark message header here. The encrypted message body can be embedded and
detected in the same way.

7 7

6

2

3

0

0

1

1

2

6

3

4

4

5

5

(a) (b)

Figure 3: Public-private watermark messages hidden in graph par-
titioning solutions. The solution separated by the dashed line with
arrow heads has message ‘p’, and the other hides the letter ‘O’.

One can easily verify that the other solution hides the bit stream
“01001111”, i.e. letter ‘O’.

4.2 FPGA Layout

Lach et al.[9] propose an FPGA fingerprinting technique that utilize
the FPGA design flexibility to put a unique identification mark into
the design for each customer. For example, the four tiles in Figure
4, each contains four configurable logic blocks, all implement the
same Boolean function Z = A+B +C �D. Moreover, they have
the same interfaces and thus are interchangeable. The timing of the
circuit may vary due to the changes in routing.

A

B

C

D

Z

A

B

C

D

Z

A

B

D

Z

C

B

C

D

Z

A

Figure 4: Four instances of the same function with fixed interfaces
(redrawn from [9]).

This observation is used to create different design for different
customer to trace the use of the design[9]. However, the same prop-
erty can be used to embed public watermark. We first label the four
CLBs as 00, 01, 10, 11 clockwise from the upper left to the lower
left. To hide 2 bits from the public watermark message, one can
choose one of these four implementations, with the unused CLB
has the same label as the given 2 bits. For example, from left to
right, the four design in Figure 4 have “11”, “00”, “10”, and “01”
as the embedded message respectively. With a few of such tiles,
one can find sufficient space for public watermark messages.

Forgery is a problem for this approach. Given a FPGA lay-
out with the public-private watermark embedded, an attacker can
go to the tiles where public watermark is hidden and obtain the bit
stream easily. Then he can change the message header at his wish,
use one-way hash function and stream cipher on his new message
header to forge a message. Next, he can do the necessary modi-
fications in these tiles to replace the original public watermark by
his faked message. This will be a successful attack unless private
watermark is revealed. However, this is the same problem as what
FPGA watermarking and fingerprinting techniques are facing. The
solution lies on the difficulty of reverse engineering and the fact
that most FPGA vendors will not reveal the specification of their
configuration streams[5, 9].

477

4.3 Boolean Satis�ability

The Boolean satisfiability problem (SAT) seeks to decide, for a
given formula, whether there is a truth assignment for its variables
that makes the formula true. SAT appears in many contexts in the
field of VLSI CAD, such as automatic pattern generation, logic
verification, timing analysis, delay fault testing and channel rout-
ing. We necessarily assume that the SAT instance to be protected
is satisfiable and that there is a large enough solution space to ac-
commodate the watermark.

Given a formula F on a set of boolean variables V , the simplest
watermarking technique for public detectability is to hide the pub-
lic watermark behind a known subset of variables fv1; v2; � � � ; vkg.
Suppose the public watermark message is mk � � �m2m1, we em-
bed it by forcing vi = mi in the solution. This can be done by
adding to the formula F single-literal clause vi (if mi = 1) or v0i
(if mi = 0)10.

We pick four 4-letter messages A, B, C, and D. We use MD5[11]
(ftp://ftp.sunet.se/pub3/vendor/sco/skunkware/uw7/fileutil/md5/src)
as the one-way hash function to obtain four 128-bit messages H(A),
H(B), H(C), and H(D). Next we use RC4 (ftp://ftp.ox.ac.uk/pub/
crypto/misc/rc4.tar.gz) to encrypt these messages using their ASCII
codes as the encryption keys. The resulting pseudo-random bit
streams are appended to the ASCII codes of the corresponding
plain text to form the four public watermark messages as illustrated
in Figure 2(b).

0

10

20

30

40

50

60

70

80

90

Nu
mb

er
of

dif
fer

en
tb

its

A vs. B A vs. C A vs. D B vs. C B vs. D C vs. D

Figure 5: Hamming distance among the four public watermark
message. The bottom half comes from the message header(plain
text part), and the top half comes from the message body(results of
RC4).

Figure 5 shows pairwisely the Hamming distance among these
four public watermark message. A and B, B and D are relatively
close because each pair has one letter in common accidentally11 .

We now embed these public watermark messages to DIMACS
SAT benchmarks, where the instances are generated from the prob-
lem of inferring the logic in an 8-input, 1-output “blackbox” (http://
dimacs.rutgers.edu/). We first select 32 variables for the message
header, then choose 128 (or 64 for instances of small size, e.g., with
less than 600 variables) more variables for the message body. We
then assign values to these variables based on the public watermark
and solve for the assignment of the rest variables to get the original
solution.
10A single-literal clause imposes a very strong constraint to the formula. Statis-

tically it will cut the entire solution space by one half. Therefore we may use a
short public watermark message, in particular for instances with not so many vari-
ables. However, the credibility can always be enhanced by adding private watermark
using other techniques, such as those proposed in [5].
11The ASCII codes for messages A, B, C, and D are: “01010011 01000111

01001001 00100000”, “01000011 01000100 01001110 00100000”, “01010011
01001110 01010000 01010011”, and “01001101 01000101 01001110 01010100”.

With the given solution (and variables that carry the public wa-
termark), an adversary retrieve the public message header, modify
it and compute the new message body. He then embed this forged
message and resolve the problem. Our goal is to show that there is
little correlation between the original solution and adversary’s new
solution, i.e., attacker has little advantage from the original solution
or it is equally difficult to obtain a solution.

4 bits in header 8 bits in header 16 bits in header 24 bits in header
F N body sol. body sol. body sol. body sol.

ii8b1 336 31.2 148 32.8 150 31.8 168 32.6 170
ii8b2 576 33.6 260 30.6 258 32.4 265 32.0 272
ii8b3 816 62.2 363 64.0 376 67.4 358 61.6 387
ii8b4 1068 65.8 489 66.2 472 63.4 492 62.6 513
Ave. Dist. (%) 40.2% - 43.5% - 50.5% - 56.2% -
Ave. Dist. (%) - 44.9% - 44.9% - 46.5% - 48.3%

Table 1: Average number of different bits in public message body
(“body”), average distance (rounded to integer) from the original
solution (“sol.”) when 4-bit, 8-bit, 16-bit, and 32-bit forgery is con-
ducted to the public message header on SAT benchmarks.

Table 1 shows our experimental results, where messages A, B,
C, D are embedded to the four SAT instances respectively. The
second column gives the number of variables N in these instances.
We consider the adversary changes randomly 4 bits, 8 bits, 16 bits,
and 24 bits in the 32-bit message header. We repeat each trial 5
times, the columns labeled “body” show the average number of
bits changed in the faked message body from the original. We solve
each instance with this faked message (both header and body) em-
bedded and calculate the Hamming distance between the new so-
lution and the original solution. The average distances (rounded to
the nearest integer) are reported in columns with label “sol.”.

The last two rows report these average distances percentage-
wise. The first is the distance in public domain, which is very close
to 50% if we exclude the mandatory header part. It is independent
of the number of bits being modified in the header and shows the
robustness of our cryptographic tools in generating pseudo-random
bit streams. The last row shows that the new solutions are not close
to the original solution. (When we solve the original instances for
multiple solution, their average distance is also about 45%.) There-
fore, we can conclude that the new solutions are independent of the
given solution, which means that once the public watermark has
been modified, the adversary loses almost all the advantage from
the given solution. This is further verified by the fact that the run
time difference for resolving the problem and solving from scratch
is so small (within 5%) that we consider they are the same.

4.4 Graph Coloring

The NP-hard graph vertex coloring optimization seeks to color a
given graph with as few colors as possible, such that no two ad-
jacent vertices receive the same color. We propose the following
public-private watermarking technique for graph coloring problem
and use it to demonstrate our approach’s impact to the quality of
the solution:

For a given graph, we select pairs of vertices that are
not connected directly by an edge. We hide one bit of
information behind each pair as follows: adding one
edge between the two vertices and thus making them
to be colored by different colors to embed 1; collaps-
ing this pair and thus forcing them to receive the same
color to embed 0.

Consider Figure 6, two pairs of unconnected vertices, nodes 0
and 7, and nodes 1 and 8, are selected as shown in the dashed circles
in 6(a). The rest of Figure 6 shows four different coloring schemes
with a 2-bit public watermark message embedded. To detect such

478

B

Y

Y

YG

G
GR

R

B

3

0 1

2 4

5 6 7

8 9

3

0 1

2 4

5 6 7

8 9

3

0 1

2 4

5 6 7

8 9

(c) Public message: 01.

(b) Public message: 00.(a) Original graph and host for public message.

3

0 1

2 4

5 6 7

8 9

3

0 1

2 4

5 6 7

8 9

(d) Public message: 10. (e) Public message: 11.

R

B Y

R G
G

R B

Y

G Y

B G

R G
R

R B

Y

G B

B Y

R G
R

B G

Y

Y

Figure 6: Four GC solutions with different public watermarks
added to the same graph.

watermark, one can simply check the colors received by nodes 0,
1, 7, and 8. For example, in Figure 6(c), nodes 0 and 7 are col-
ored by G(reen) and Y(ellow) respectively, which means the first
bit (the most significant bit) is 0. Similarly, the observation that
nodes 1 and 8 are both colored by R(ed) tells us the second bit of
the message is 1. Therefore, we detect a public message “01”.

To evaluate the trade-off between protection and solution degra-
dation (in the case of graph coloring, the number of extra colors),
we first color the original graph, then color the watermarked graph
and comparing the average number of colors required. We consider
two classes of real life graphs (the fpsol2 and inithx instances from
http://mat.gsia.cmu.edu/COLOR/instances.html) and the DIMACS
on-line challenge graph (available at http://dimacs.rutgers.edu/).

Table 2 shows the number of vertices in each graph, the optimal
solutions (the DSJC1000 problem is still open. The number in the
table is the average of 10 trials with 85-color solutions occur several
times), and the overhead introduced by public watermark messages
of various length. For each instance, we create ten 32-bit and ten
64-bit public watermark messages randomly. We add the message
to the graph and color the modified graph. The average number of
colors and the best solution we find are reported. One can easily
see that the proposed approach causes little overhead for real life
instances, but loses best solutions for the randomized DSJC1000
graph. The reason is that there exist localities in real life graph of
which we can take advantage of. However, such localities do not
exist or are very difficult to find in random graphs.

original instance 32-bit message 64-bit message
vert. opt. overhead best overhead best

fpsol2.i.1 496 65 0.2 65 0.7 65
fpsol2.i.2 451 30 0.1 30 0.5 30
fpsol2.i.3 425 30 0.1 30 0.5 30
inithx.i.1 864 54 0.0 54 0.2 54
inithx.i.2 645 31 0.9 31 1.8 32
inithx.i.3 621 31 1.1 31 1.9 32

DSJC1000 1000 85.8 0.5 86 2.0 87

Table 2: Embedding public watermark to real life graph and ran-
domized graph.

5 Conclusion

We propose the first watermarking technique that facilitates easy
and public detection. We achieve this by allowing part of the water-
mark to be public. We use cryptographic techniques, in particular

techniques for data integrity, to protect the public watermark from
forgery. Using the traditional constraint-based watermark as private
part, this public-private watermarking scheme is capable of pro-
viding public detectability with no degradation on the watermark’s
strength. We explain the basic approach and develop specific tech-
niques for various classes of VLSI CAD problems. The new ap-
proach is compatible with all the existing watermarking techniques.
With the help from organizations pushing for design standards, for
example VSIA, this method has the potential of solving eventually
the IP protection problem.

References

[1] A.E. Caldwell, H. Choi, A.B. Kahng, S. Mantik, M. Potkon-
jak, G. Qu, and J.L. Wong. “Effective Iterative Techniques for
Fingerprinting Design IP”, 36th ACM/IEEE Design Automa-
tion Conference Proceedings, pp. 843-848, June 1999.

[2] E. Charbon. “Hierarchical Watermarking in IC Design”, IEEE
1998 Custom Integrated Circuits Conference, pp. 295-298,
May 1998.

[3] E. Charbon and I. Torunoglu. “Copyright Protection of De-
signs Based on Multi Source IPs”, IEEE/ACM International
Conference on Computer Aided Design, pp. 591-595, Novem-
ber 1999.

[4] I. Hong and M. Potkonjak. “Behavioral Synthesis Techniques
for Intellectual Property Protection”, 36th ACM/IEEE De-
sign Automation Conference Proceedings, pp. 849-854, June
1999.

[5] A.B. Kahng, J. Lach, W.H. Magione-Smith, S. Mantik, I.L.
Markov, M. Potkonjak, P. Tucker, H. Wang and G. Wolfe.
“Watermarking Techniques for Intellectual Property Protec-
tion”, 35th ACM/IEEE Design Automation Conference Pro-
ceedings, pp. 776-781, June 1998.

[6] A.B. Kahng, D. Kirovski, S. Mantik, M. Potkonjak, and J.L.
Wong. “Copy Detection for Intellectual Property Protection of
VLSI Design”, IEEE/ACM International Conference on Com-
puter Aided Design, pp. 600-604, November 1999.

[7] D. Kirovski, Y. Hwang, M. Potkonjak, and J. Cong. “Intel-
lectual Property Protection by Watermarking Combinational
Logic Synthesis Solutions”, IEEE/ACM International Con-
ference on Computer Aided Design, pp. 194-198, November
1998.

[8] D. Kirovski, D. Liu, J.L. Wong, and M. Potkonjak. “Foren-
sic Engineering Techniques for VLSI CAD Tools”, 37th
ACM/IEEE Design Automation Conference Proceedings, pp.
581-586, June 2000.

[9] J. Lach, W.H. Mangione-Smith, and M. Potkonjak. “FPGA
Fingerprinting Techniques for Protecting Intellectual Prop-
erty”, Proceedings of the IEEE 1998 Custom Integrated Cir-
cuits Conference, pp. 299-302, May 1998.

[10] A.L. Oliveira. “Robust Techniques for Watermarking Sequen-
tial Circuit Designs”, 36th ACM/IEEE Design Automation
Conference Proceedings, pp. 837-842, June 1999.

[11] R.L. Rivest. “The MD5 Message-Digest Algorithm”, http://
www.cis.ohio-state.edu/htbin/rfc/rfc1321.html, April 1992.

[12] N.A. Sherwani. “Algorithms for Vlsi Physical Design Au-
tomation”, 3rd edition, Kluwer Academic Publishers, June
1999.

[13] Virtual Socket Interface Alliance. “Architecture Document
Version 1.0”, March 1997.

[14] Virtual Socket Interface Alliance. “Intellectual Property Pro-
tection White Paper: Schemes, Alternatives and Discussion
Version 1.0”, September 2000.

479

